JP2001217001A - Additive for non-aqueous electrolyte secondary battery - Google Patents

Additive for non-aqueous electrolyte secondary battery

Info

Publication number
JP2001217001A
JP2001217001A JP2000126568A JP2000126568A JP2001217001A JP 2001217001 A JP2001217001 A JP 2001217001A JP 2000126568 A JP2000126568 A JP 2000126568A JP 2000126568 A JP2000126568 A JP 2000126568A JP 2001217001 A JP2001217001 A JP 2001217001A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
secondary battery
additive
electrolyte secondary
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000126568A
Other languages
Japanese (ja)
Inventor
Masami Ootsuki
正珠 大月
Shigeki Endo
茂樹 遠藤
Takao Ogino
隆夫 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2000126568A priority Critical patent/JP2001217001A/en
Priority to EP00976252A priority patent/EP1253662B1/en
Priority to KR1020027006644A priority patent/KR100775566B1/en
Priority to DE60043266T priority patent/DE60043266D1/en
Priority to US10/130,069 priority patent/US6955867B1/en
Priority to PCT/JP2000/008041 priority patent/WO2001039314A1/en
Publication of JP2001217001A publication Critical patent/JP2001217001A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an additive for a non-aqueous electrolyte secondary battery, which can give superior self fire-extinguishing and fire retardance and excellent low temperature discharging characteristics to the non-aqueous electrolyte as well as small surface resistance of the electrolyte, while keeping the necessary battery properties, by adding to the non-aqueous electrolyte of the secondary battery. SOLUTION: This is an additive for a non-aqueous electrolyte secondary battery having non-aqueous electrolyte containing supporting salt and organic solvent, which is added in the non-aqueous electrolyte and contains at least a phosphagen derivative inside it. It is a desirable state and manner that the above organic solvent is made of a non-protonic organic solvent and that, in particular, the non-protonic organic solvent contains a cyclic or chain (aliphatic) ester compound and further, that the added amount of the additive in the above non-aqueous electrolyte is 20 to 90 volume % and 30 to 90 volume %, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池における非水電解液に好適に添加可能であり、該非水
電解液に自己消火性ないし難燃性を付与し得る非水電解
液二次電池用添加剤に関する。
The present invention relates to a non-aqueous electrolyte which can be suitably added to a non-aqueous electrolyte in a non-aqueous electrolyte secondary battery, and which can impart self-extinguishing properties or flame retardancy to the non-aqueous electrolyte. The present invention relates to an additive for a liquid secondary battery.

【0002】[0002]

【従来の技術】従来、特に、パソコン・VTR等のAV
・情報機器のメモリーバックアップやそれらの駆動電源
用の二次電池としては、ニカド電池が主流であった。近
年、高電圧・高エネルギー密度という利点を有し、か
つ、優れた自己放電性を示すことから、ニカド電池に代
替するものとして非水電解液二次電池が非常に注目さ
れ、その一部は商品化されている。例えば、ノート型パ
ソコンや携帯電話等は、その半数以上が非水電解液二次
電池によって駆動している。
2. Description of the Related Art Conventionally, in particular, AVs of personal computers, VTRs, etc.
・ Ni-Cd batteries have been the mainstream for memory backup of information devices and secondary batteries for their driving power supply. In recent years, non-aqueous electrolyte secondary batteries have attracted much attention as an alternative to nickel-cadmium batteries because they have the advantages of high voltage and high energy density, and exhibit excellent self-discharge properties. It has been commercialized. For example, more than half of notebook computers and mobile phones are driven by non-aqueous electrolyte secondary batteries.

【0003】前記非水電解液二次電池の負極を形成する
材料としては、カーボン(ハードカーボン、ソフトカー
ボン)が多用されているが、その表面上にリチウムが生
成した場合の危険性の低減及び高駆動電圧化を目的とし
て、各種有機溶媒が電解液として使用されている。又、
カメラ用の非水電解液二次電池としては、負極材料とし
てアルカリ金属(特に、リチウム金属やリチウム合金)
等が用いられているため、水と激しく反応した場合の危
険性を低減するために、その電解液としては、通常エス
テル系有機溶媒等の非プロトン性有機溶媒が使用されて
いる。
As a material for forming the negative electrode of the nonaqueous electrolyte secondary battery, carbon (hard carbon, soft carbon) is frequently used. Various organic solvents have been used as electrolytes for the purpose of increasing the driving voltage. or,
For non-aqueous electrolyte secondary batteries for cameras, alkali metals (particularly lithium metals and lithium alloys) are used as negative electrode materials
In order to reduce the danger of violent reaction with water, an aprotic organic solvent such as an ester organic solvent is usually used as the electrolytic solution.

【0004】しかし、これらの非水電解液二次電池は、
高性能ではあるものの、安全性において以下のように問
題があった。先ず、非水電解液二次電池の負極材料とし
て用いられるアルカリ金属(特にリチウム金属やリチウ
ム合金等)を用いた場合には、該アルカリ金属は、水分
に対して非常に高活性であるため、例えば電池の封口が
不完全で水分が侵入した際等には、負極材料と水とが反
応して水素が発生したり、発火する等の危険性が高いと
いう問題があった。
However, these non-aqueous electrolyte secondary batteries are:
Although having high performance, there were the following problems in safety. First, when an alkali metal (particularly, lithium metal or lithium alloy) used as a negative electrode material of a non-aqueous electrolyte secondary battery is used, the alkali metal has a very high activity against moisture, For example, when moisture enters due to incomplete sealing of the battery or the like, there is a problem in that there is a high risk that the anode material and water react with each other to generate hydrogen or ignite.

【0005】また、リチウム金属は低融点(約170
℃)であるため、短絡時等に大電流が急激に流れると、
電池が異常に発熱して電池が溶融する等の非常に危険な
状況を引き起こすという問題があった。更に、電池の発
熱につれ前述の有機溶媒をベースとする電解液が気化・
分解してガスを発生したり、発生したガスによって電池
の破裂・発火が起こるという問題があった。
Also, lithium metal has a low melting point (about 170
° C), so if a large current suddenly flows, such as during a short circuit,
There is a problem in that a very dangerous situation such as abnormal heat generation of the battery and melting of the battery is caused. Furthermore, as the battery generates heat, the electrolyte based on the above-mentioned organic solvent is vaporized.
There has been a problem that the gas is decomposed to generate gas, and the generated gas causes the battery to burst or ignite.

【0006】前記問題を解決するため、例えば、筒形電
池において、電池の短絡時・過充電時に温度が上がって
電池内部の圧力が上昇した際に、安全弁が作動すると同
時に電極端子を破断させることにより、該筒型電池に、
所定量以上の過大電流が流れることを抑止する機構を電
池に設けた技術が提案されている(日刊工業新聞社、
「電子技術」1997年39巻9号)。
In order to solve the above problem, for example, in a cylindrical battery, when the battery temperature rises when the battery is short-circuited or overcharged and the internal pressure of the battery rises, the safety valve is activated and the electrode terminals are simultaneously broken. Thereby, in the cylindrical battery,
A technique has been proposed in which a battery is provided with a mechanism for suppressing the flow of an excessive current of a predetermined amount or more (Nikkan Kogyo Shimbun,
"Electronic Technology", Vol. 39, No. 9, 1997).

【0007】しかし、前記機構が常に正常に作動すると
信頼できるわけではなく、正常に作動しない場合には、
過大電流による発熱が大きくなり、発火等の危険な状態
となることが懸念されるため問題が残る。
However, it is not reliable that the mechanism always operates normally. If the mechanism does not operate normally,
There is a concern that heat generation due to an excessive current may increase and a dangerous state such as ignition may be caused.

【0008】前記問題を解決するためには、前述のよう
に安全弁等の付帯的部品を設けることによる安全対策で
はなく、根本的に高い安全性を有する非水電解液二次電
池の開発が要求されている。
In order to solve the above-mentioned problem, it is necessary to develop a non-aqueous electrolyte secondary battery having a fundamentally high safety, not a safety measure by providing ancillary parts such as a safety valve as described above. Have been.

【0009】[0009]

【発明が解決しようとする課題】本発明は、前記従来に
おける諸問題を解決、又は、諸要求に応え、以下の目的
を達成することを課題とする。即ち、本発明は、非水電
解液二次電池における非水電解液に添加することによっ
て、電池として必要な電池特性等を維持させつつ、非水
電解液に優れた自己消火性ないし難燃性、優れた低温放
電特性を付与することが可能で、非水電解液の小界面抵
抗化が可能な非水電解液二次電池用添加剤を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned conventional problems or to meet various demands and achieve the following objects. That is, the present invention, by adding to the non-aqueous electrolyte in a non-aqueous electrolyte secondary battery, while maintaining the battery characteristics and the like required as a battery, the non-aqueous electrolyte has excellent self-extinguishing properties or flame retardancy It is an object of the present invention to provide an additive for a non-aqueous electrolyte secondary battery which can provide excellent low-temperature discharge characteristics and can reduce the interfacial resistance of the non-aqueous electrolyte.

【0010】[0010]

【課題を解決するための手段】前記課題を解決するため
の手段としては、以下の通りである。即ち、 <1> 支持塩及び有機溶媒を含有する非水電解液を有
する非水電解液二次電池における、非水電解液に添加さ
れ、ホスファゼン誘導体を少なくとも含有することを特
徴とする非水電解液二次電池用添加剤である。
Means for solving the above problems are as follows. <1> A non-aqueous electrolyte in a non-aqueous electrolyte secondary battery having a non-aqueous electrolyte containing a supporting salt and an organic solvent, wherein the non-aqueous electrolyte contains at least a phosphazene derivative. It is an additive for a liquid secondary battery.

【0011】<2> 有機溶媒が、非プロトン性有機溶
媒である前記<1>に記載の非水電解液二次電池用添加
剤である。 <3> 非プロトン性有機溶媒が、環状又は鎖状のエス
テル化合物を含有する前記<2>に記載の非水電解液二
次電池用添加剤である。
<2> The additive for a non-aqueous electrolyte secondary battery according to <1>, wherein the organic solvent is an aprotic organic solvent. <3> The additive for a non-aqueous electrolyte secondary battery according to <2>, wherein the aprotic organic solvent contains a cyclic or chain ester compound.

【0012】<4> 非水電解液における添加量が、2
0〜90体積%である前記<1>から<3>のいずれか
に記載の非水電解液二次電池用添加剤である。 <5> 非水電解液における添加量が、30〜90体積
%である前記<1>から<3>のいずれかに記載の非水
電解液二次電池用添加剤である。
<4> The amount of addition in the non-aqueous electrolyte is 2
The additive for a nonaqueous electrolyte secondary battery according to any one of <1> to <3>, which is 0 to 90% by volume. <5> The additive for a non-aqueous electrolyte secondary battery according to any one of <1> to <3>, wherein the additive amount in the non-aqueous electrolyte is 30 to 90% by volume.

【0013】<6> 支持塩がLiPF6を含み、有機
溶媒がエチレンカーボネートを含み、非水電解液におけ
る添加量が、1.5〜2.5体積%である前記<1>か
ら<3>のいずれかに記載の非水電解液二次電池用添加
剤である。 <7> 支持塩がLiPF6を含み、有機溶媒がエチレ
ンカーボネートを含み、非水電解液における添加量が、
2.5体積%を超え、90体積%以下である前記<1>
から<3>のいずれかに記載の非水電解液二次電池用添
加剤である。 <8> ホスファゼン誘導体が、分子構造中にハロゲン
元素を含む置換基を有する前記<1>から<7>のいず
れかに記載の非水電解液二次電池用添加剤である。 <9> ハロゲン元素のホスファゼン誘導体における含
有量が、2〜80重量%である前記<8>に記載の非水
電解液二次電池添加剤である。
<6> The above-mentioned <1> to <3>, wherein the supporting salt contains LiPF 6 , the organic solvent contains ethylene carbonate, and the amount added in the nonaqueous electrolyte is 1.5 to 2.5% by volume. The additive for a non-aqueous electrolyte secondary battery according to any one of the above. <7> The supporting salt contains LiPF 6 , the organic solvent contains ethylene carbonate, and the amount added in the non-aqueous electrolyte is
<1> is more than 2.5% by volume and 90% by volume or less.
The additive for a nonaqueous electrolyte secondary battery according to any one of <1> to <3>. <8> The additive for a nonaqueous electrolyte secondary battery according to any one of <1> to <7>, wherein the phosphazene derivative has a substituent containing a halogen element in a molecular structure. <9> The additive for a nonaqueous electrolyte secondary battery according to <8>, wherein the content of the halogen element in the phosphazene derivative is 2 to 80% by weight.

【0014】[0014]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明の非水電解液二次電池用添加剤は、非水電解液二
次電池における非水電解液に添加される。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The additive for a non-aqueous electrolyte secondary battery of the present invention is added to a non-aqueous electrolyte in a non-aqueous electrolyte secondary battery.

【0015】<非水電解液二次電池>前記非水電解液二
次電池は、正極と、負極と、非水電解液と、を有し、必
要に応じてその他の部材を有する。
<Non-Aqueous Electrolyte Secondary Battery> The non-aqueous electrolyte secondary battery has a positive electrode, a negative electrode, and a non-aqueous electrolyte, and may have other members as necessary.

【0016】[正極]前記正極の材料としては、特に制
限はなく、公知の正極材料から適宜選択して使用でき
る。例えば、V25、V613、MnO2、MoO3、L
iCoO2、LiNiO2、LiMn24等の金属酸化
物、TiS2、MoS2等の金属硫化物、ポリアニリン等
の導電性ポリマー等が好適に挙げられ、これらの中で
も、高容量で安全性が高く電解液の濡れ性に優れる点
で、LiCoO2、LiNiO2、LiMn24が特に好
適である。これらの材料は、1種単独で使用してもよ
く、2種以上を併用してもよい。
[Positive Electrode] The material of the positive electrode is not particularly limited, and may be appropriately selected from known positive electrode materials. For example, V 2 O 5 , V 6 O 13 , MnO 2 , MoO 3 , L
Metal oxides such as iCoO 2 , LiNiO 2 , and LiMn 2 O 4 , metal sulfides such as TiS 2 and MoS 2 , and conductive polymers such as polyaniline are preferable. Among them, high capacity and safety are high. LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 are particularly preferable because they are high in the wettability of the electrolyte. These materials may be used alone or in combination of two or more.

【0017】前記正極の形状としては、特に制限はな
く、電極として公知の形状の中から適宜選択することが
できる。例えば、シート状、円柱形状、板状形状、スパ
イラル形状等が挙げられる。
The shape of the positive electrode is not particularly limited, and may be appropriately selected from known shapes as electrodes. For example, a sheet shape, a column shape, a plate shape, a spiral shape, and the like can be given.

【0018】[負極]前記負極の材料としては、例え
ば、リチウム又はリチウムイオン等を吸蔵・放出可能で
あれば特に制限はなく、公知の負極材料から適宜選択し
て使用できる。例えばリチウムを含む材料、具体的に
は、リチウム金属自体、リチウムと、アルミニウム、イ
ンジウム、鉛、又は、亜鉛等との合金、リチウムをドー
プした黒鉛等の炭素材料等が好適に挙げられ、これらの
中でも安全性がより高い点で黒鉛等の炭素材料が好まし
い。これらの材料は、1種単独で使用してもよく、2種
以上を併用してもよい。前記負極の形状としては、特に
制限はなく、前記正極の形状と同様の公知の形状から適
宜選択することができる。
[Negative Electrode] The material of the negative electrode is not particularly limited as long as it can occlude and release lithium or lithium ions, for example, and can be appropriately selected from known negative electrode materials. For example, a material containing lithium, specifically, lithium metal itself, an alloy of lithium, aluminum, indium, lead, or zinc, a carbon material such as graphite doped with lithium, and the like are preferable. Among them, a carbon material such as graphite is preferable in terms of higher safety. These materials may be used alone or in combination of two or more. The shape of the negative electrode is not particularly limited, and may be appropriately selected from known shapes similar to the shape of the positive electrode.

【0019】[非水電解液]前記非水電解液は、支持塩
及び有機溶媒を含有する。
[Non-Aqueous Electrolyte] The non-aqueous electrolyte contains a supporting salt and an organic solvent.

【0020】−支持塩− 前記支持塩としては、例えば、リチウムイオンのイオン
源となる支持塩等が好ましい。前記リチウムイオンのイ
オン源としては、例えば、LiClO4、LiBF4、L
iPF6、LiCF3SO3、及び、LiAsF6、LiC
49SO3、Li(CF3SO22N、Li(C25SO
22N等のリチウム塩が好適に挙げられる。これらは、
1種単独で使用してもよく、2種以上を併用してもよ
い。
-Supporting salt- As the supporting salt, for example, a supporting salt serving as an ion source of lithium ions is preferable. Examples of the lithium ion ion source include LiClO 4 , LiBF 4 , L
iPF 6 , LiCF 3 SO 3 , LiAsF 6 , LiC
4 F 9 SO 3, Li ( CF 3 SO 2) 2 N, Li (C 2 F 5 SO
2) lithium salts such as 2 N are preferably exemplified. They are,
One type may be used alone, or two or more types may be used in combination.

【0021】前記支持塩の前記非水電解液に対する配合
量としては、前記非水電解液(溶媒成分)1kgに対
し、0.2〜1モルが好ましく、0.5〜1モルがより
好ましい。前記配合量が、0.2モル未満の場合には、
非水電解液の十分な導電性を確保することができず、電
池の充放電特性に支障をきたすことがある一方、1モル
を超える場合には、非水電解液の粘度が上昇し、前記リ
チウムイオン等の十分な移動度が確保できないため、前
述と同様に非水電解液の十分な導電性を確保できず、電
池の充放電特性に支障をきたすことがある。
The compounding amount of the supporting salt with respect to the non-aqueous electrolyte is preferably 0.2 to 1 mol, more preferably 0.5 to 1 mol, per 1 kg of the non-aqueous electrolyte (solvent component). When the amount is less than 0.2 mol,
Insufficient conductivity of the non-aqueous electrolyte cannot be ensured, which may impair the charge / discharge characteristics of the battery.On the other hand, if it exceeds 1 mol, the viscosity of the non-aqueous electrolyte increases, Since sufficient mobility of lithium ions or the like cannot be secured, sufficient conductivity of the non-aqueous electrolyte cannot be secured as described above, and the charge / discharge characteristics of the battery may be affected.

【0022】−有機溶媒− 前記有機溶媒としては、安全性の点で特に非プロトン性
有機溶媒が好ましい。前記非水電解液に、前記非プロト
ン性有機溶媒が含有されていれば、前記負極の材料と反
応することなく高い安全性を得ることができる。また、
前記非水電解液の低粘度化が可能であり、容易に非水電
解液二次電池としての最適なイオン導電性を達成するこ
とができる。
-Organic solvent- As the organic solvent, an aprotic organic solvent is particularly preferred from the viewpoint of safety. If the non-aqueous electrolyte contains the aprotic organic solvent, high safety can be obtained without reacting with the material of the negative electrode. Also,
The viscosity of the non-aqueous electrolyte can be reduced, and optimal ionic conductivity as a non-aqueous electrolyte secondary battery can be easily achieved.

【0023】前記非プロトン性有機溶媒としては、特に
制限はないが、前記非水電解液の低粘度化の点で、エー
テル化合物やエステル化合物等が挙げられる。具体的に
は、1,2−ジメトキシエタン、テトラヒドロフラン、
ジメチルカーボネート、ジエチルカーボネート、ジフェ
ニルカーボネート、エチレンカーボネート、プロピレン
カーボネート、γ−ブチロラクトン、γ−バレロラクト
ン、メチルエチルカーボネート、エチルメチルカーボネ
ート、等が好適に挙げられる。これらの中でも、エチレ
ンカーボネート、プロピレンカーボネート、γ−ブチロ
ラクトン等の環状エステル化合物、1、2−ジメトキシ
エタン、ジメチルカーボネート、エチルメチルカーボネ
ート、ジエチルカーボネート等の鎖状エステル化合物等
が好適である。特に、環状のエステル化合物は、比誘電
率が高くリチウム塩等の溶解性に優れる点で、鎖状のエ
ステル化合物は、低粘度であるため、非水電解液の低粘
度化の点で好適である。これらは1種単独で使用しても
よく、2種以上を併用してもよいが、2種以上を併用す
るのが好適である。
The aprotic organic solvent is not particularly limited, but may be an ether compound, an ester compound or the like from the viewpoint of reducing the viscosity of the non-aqueous electrolyte. Specifically, 1,2-dimethoxyethane, tetrahydrofuran,
Preferable examples include dimethyl carbonate, diethyl carbonate, diphenyl carbonate, ethylene carbonate, propylene carbonate, γ-butyrolactone, γ-valerolactone, methyl ethyl carbonate, and ethyl methyl carbonate. Among these, cyclic ester compounds such as ethylene carbonate, propylene carbonate, and γ-butyrolactone, and chain ester compounds such as 1,2-dimethoxyethane, dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate are preferred. In particular, a cyclic ester compound has a high relative dielectric constant and is excellent in solubility of a lithium salt or the like, and a chain ester compound has a low viscosity. Therefore, it is suitable in terms of reducing the viscosity of a nonaqueous electrolyte. is there. These may be used alone or in combination of two or more, but it is preferable to use two or more in combination.

【0024】前記非プロトン性有機溶媒の25℃におけ
る粘度としては、特に制限はないが、10mPa・s
(10cP)以下が好ましい。
The viscosity of the aprotic organic solvent at 25 ° C. is not particularly limited, but may be 10 mPa · s.
(10 cP) or less is preferable.

【0025】前記非水電解液としては、前記支持塩がL
iPF6を含み、前記有機溶媒がエチレンカーボネート
を含む場合に特に好ましく、この場合、本発明の非水電
解液二次電池用添加剤の添加量が少量であっても、優れ
た自己消火性ないし難燃性の効果を発揮し得る。
In the non-aqueous electrolyte, the supporting salt is L
Including iPF 6 , the organic solvent is particularly preferable when the solvent contains ethylene carbonate. In this case, even if the additive amount of the non-aqueous electrolyte secondary battery additive of the present invention is small, excellent self-extinguishing property or It can exhibit a flame retardant effect.

【0026】[その他の部材]前記その他の部材として
は、非水電解液二次電池において、正負極間に、両極の
接触による電流の短絡を防止する役割で介在させるセパ
レーターが挙げられる。前記セパレーターの材質として
は、両極の接触を確実に防止し得、かつ、電解液を通し
たり含んだりできる材料、例えば、ポリテトラフルオロ
エチレン、ポリプロピレン、ポリエチレン等の合成樹脂
製の不織布、薄層フィルム等が好適に挙げられる。これ
らの中でも、厚さ20〜50μm程度のポリプロピレン
又はポリエチレン製の微孔性フィルムが特に好適であ
る。
[Other Members] As the other members, there is a separator interposed between the positive electrode and the negative electrode in a non-aqueous electrolyte secondary battery so as to prevent a current short circuit due to contact between the two electrodes. As the material of the separator, a material capable of reliably preventing contact between the two electrodes, and capable of passing or containing an electrolytic solution, for example, a nonwoven fabric made of a synthetic resin such as polytetrafluoroethylene, polypropylene, or polyethylene, a thin film And the like. Among these, a polypropylene or polyethylene microporous film having a thickness of about 20 to 50 μm is particularly preferable.

【0027】前記セパレーターのほか、前記その他の部
材としては、通常電池に使用されている公知の各部材が
好適に挙げられる。
As the above-mentioned other members in addition to the above-mentioned separator, well-known members usually used for batteries are preferably exemplified.

【0028】以上説明した非水電解液二次電池の形態と
しては、特に制限はなく、コインタイプ、ボタンタイ
プ、ペーパータイプ、角型又はスパイラル構造の円筒型
電池等、種々の公知の形態が好適に挙げられる。前記ス
パイラル構造の場合、例えば、シート状の正極を作製し
て集電体を挟み、これに、負極(シート状)を重ね合わ
せて巻き上げる等により非水電解液二次電池を作製する
ことができる。
The form of the non-aqueous electrolyte secondary battery described above is not particularly limited, and various known forms such as a coin type, a button type, a paper type, a square type or a spiral type cylindrical battery are preferable. It is listed. In the case of the spiral structure, for example, a nonaqueous electrolyte secondary battery can be manufactured by forming a sheet-shaped positive electrode, sandwiching a current collector, and stacking and winding the negative electrode (sheet-shaped) on the current collector. .

【0029】<非水電解液二次電池用添加剤>前記本発
明の非水電解液二次電池用添加剤は、ホスファゼン誘導
体を含有し、必要に応じてその他の成分を含有する。
<Additive for Non-Aqueous Electrolyte Secondary Battery> The additive for a non-aqueous electrolyte secondary battery of the present invention contains a phosphazene derivative and, if necessary, other components.

【0030】前記本発明の非水電解液二次電池用添加剤
が、ホスファゼン誘導体を含有する理由としては、以下
の通りである。従来、非水電解液二次電池における非水
電解液に用いられている非プロトン性有機溶媒をべース
とした電解液においては、短絡時等に大電流が急激に流
れ、電池が異常に発熱した際に、気化・分解してガスが
発生したり、発生したガス及び熱により電池の破裂・発
火が起こることがあるため危険性が高い。
The reason why the additive for a non-aqueous electrolyte secondary battery of the present invention contains a phosphazene derivative is as follows. Conventionally, in an electrolyte based on an aprotic organic solvent used for a non-aqueous electrolyte in a non-aqueous electrolyte secondary battery, a large current suddenly flows during a short circuit, etc. When heat is generated, the gas is vaporized and decomposed to generate gas, or the generated gas and heat may cause the battery to burst or ignite, which is highly dangerous.

【0031】一方、これらの従来の非水電解液に、ホス
ファゼン誘導体を含有する本発明の非水電解液二次電池
用添加剤を添加することにより、ホスファゼン誘導体か
ら誘導される窒素ガス、ハロゲンガス等の作用によっ
て、前記非水電解液に自己消火性ないし難燃性が付与さ
れ、前述のような危険性を低減することが可能となる。
又、リンには電池を構成する高分子材料の連鎖分解を抑
制する作用があるため、効果的に自己消火性ないし難燃
性を付与することができる。
On the other hand, by adding the additive for a nonaqueous electrolyte secondary battery of the present invention containing a phosphazene derivative to these conventional nonaqueous electrolytes, nitrogen gas and halogen gas derived from the phosphazene derivative are added. By such actions, self-extinguishing property or flame retardancy is imparted to the non-aqueous electrolyte, and the above-described danger can be reduced.
Further, since phosphorus has an effect of suppressing chain decomposition of a polymer material constituting a battery, self-extinguishing property or flame retardancy can be effectively provided.

【0032】前記非水電解液における前記本発明の非水
電解液二次電池用添加剤の添加量としては、前記非水電
解液二次電池を前記非水電解液二次電池に添加させるこ
とにより得られる効果によって、前記非水電解液に自己
消火性を付与し得る第1の添加量、及び、前記非水電解
液に難燃性を付与し得る第2の添加量、の2通りの添加
量が好適に挙げられる。
The additive amount of the non-aqueous electrolyte secondary battery of the present invention in the non-aqueous electrolyte may be such that the non-aqueous electrolyte secondary battery is added to the non-aqueous electrolyte secondary battery. According to the effect obtained by the above, two types of a first addition amount capable of providing the non-aqueous electrolyte with self-extinguishing property and a second addition amount capable of providing the non-aqueous electrolyte with flame retardancy The addition amount is suitably mentioned.

【0033】前記第1の添加量としては、20〜90体
積%が好ましく、40〜75体積%がより好ましい。前
記添加量が、20体積%未満では、十分な自己消火性を
付与できないことがある一方、90体積%を超えると、
非水電解液の粘度が高くなり、導電率が極端に低下する
ことがある。
The first amount is preferably 20 to 90% by volume, more preferably 40 to 75% by volume. If the amount is less than 20% by volume, sufficient self-extinguishing properties may not be provided.
In some cases, the viscosity of the non-aqueous electrolyte increases, and the conductivity may extremely decrease.

【0034】但し、前記非水電解液において、前記支持
塩がLiPF6を含み、前記有機溶媒がエチレンカーボ
ネートを含む場合には、前記第1の添加量としては、
1.5〜2.5体積%が好ましい。尚、本発明におい
て、自己消火性とは、下記自己消火性の評価方法におい
て、着火した炎が25〜100mmラインで消火し、か
つ、落下物にも着火が認められない状態となる性質をい
う。
However, in the non-aqueous electrolyte, when the supporting salt contains LiPF 6 and the organic solvent contains ethylene carbonate, the first addition amount is as follows:
1.5-2.5% by volume is preferred. In the present invention, the self-extinguishing property means a property in which an ignited flame extinguishes on a 25 to 100 mm line in the following self-extinguishing property evaluation method, and a state in which ignition is not recognized even on a falling object. .

【0035】前記第2の添加量としては、30〜90体
積%が好ましく、40〜60体積%がより好ましい。前
記添加量が、30体積%未満では、十分な難燃性を付与
できないことがある一方、90体積%を超えると、非水
電解液の粘度が高くなり、良好な導電率を維持できない
ことがある。
The second addition amount is preferably from 30 to 90% by volume, and more preferably from 40 to 60% by volume. If the addition amount is less than 30% by volume, sufficient flame retardancy may not be imparted. On the other hand, if it exceeds 90% by volume, the viscosity of the non-aqueous electrolyte increases, and good electrical conductivity cannot be maintained. is there.

【0036】但し、前記非水電解液において、前記支持
塩がLiPF6を含み、前記有機溶媒がエチレンカーボ
ネートを含む場合には、前記第2の添加量としては、
2.5体積%を超え、90体積%以下が好ましく、3体
積%以上90体積%以下がより好ましい。尚、本発明に
おいて、難燃性とは、下記難燃性の評価方法において、
着火した炎が25mmラインまで到達せず、かつ、落下
物にも着火が認められない状態となる性質をいう。
However, in the case where the supporting salt contains LiPF 6 and the organic solvent contains ethylene carbonate in the non-aqueous electrolyte, the second addition amount is as follows:
More than 2.5% by volume, preferably 90% by volume or less, more preferably 3% by volume or more and 90% by volume or less. Incidentally, in the present invention, the flame retardant, in the following flame retardancy evaluation method,
This refers to the property in which the ignited flame does not reach the 25 mm line, and ignition is not recognized even for falling objects.

【0037】−−自己消火性・難燃性の評価方法−− 前記自己消火性・難燃性の評価は、UL(アンダーライ
ティングラボラトリー)規格のUL94HB法をアレン
ジした方法を用い、大気環境下において着火した炎の燃
焼挙動を測定・評価した。その際、着火性、燃焼性、炭
化物の生成、二次着火時の現象についても観察した。具
体的には、UL試験基準に基づき、不燃性石英ファイバ
ーに1.0mlの各種電解液を染み込ませ、127mm
×12.7mmの試験片を作製して行った。
--- Evaluation method of self-extinguishing property and flame retardancy-- The evaluation of the self-extinguishing property and flame retardancy was carried out under the atmospheric environment by using a method arranged by UL (Underwriting Laboratory) standard UL94HB method. The combustion behavior of the ignited flame was measured and evaluated. At that time, ignitability, flammability, formation of carbides, and phenomena during secondary ignition were also observed. Specifically, based on the UL test standard, a non-combustible quartz fiber was impregnated with 1.0 ml of various electrolytic solutions, and was 127 mm
A test piece having a size of 12.7 mm was produced.

【0038】前記ホスファゼン誘導体としては、分子構
造中にハロゲン元素を含む置換基を有するのが好まし
い。前記分子構造中に、ハロゲン元素を含む置換基を有
すれば、前記ホスファゼン誘導体から誘導されるハロゲ
ンガスによって、前記自己消火性ないし難燃性付与の効
果を更に効果的に発現させることが可能となる。従っ
て、より少量の添加量で、前述と同様の効果を得ること
が可能となる。具体的には、前記ホスファゼン誘導体が
分子構造中にハロゲン元素を含む置換基を有する場合、
前記第1の添加量としては、10〜90体積%が好まし
く、20〜75体積%がより好ましい。また、前記第2
の添加量としては、体積比で20〜90体積%が好まし
く、30〜60体積%がより好ましい。
The phosphazene derivative preferably has a substituent containing a halogen element in the molecular structure. When the molecular structure has a substituent containing a halogen element, the halogen gas derived from the phosphazene derivative enables the self-extinguishing or flame-retardant effect to be more effectively exerted. Become. Therefore, the same effect as described above can be obtained with a smaller amount of addition. Specifically, when the phosphazene derivative has a substituent containing a halogen element in the molecular structure,
As said 1st addition amount, 10-90 volume% is preferable and 20-75 volume% is more preferable. In addition, the second
Is preferably 20 to 90% by volume, more preferably 30 to 60% by volume.

【0039】また、置換基にハロゲン元素を含む化合物
においてはハロゲンラジカルの発生が問題となることが
あるが、本発明における前記ホスファゼン誘導体は、分
子構造中のリン元素がハロゲンラジカルを捕促し、安定
なハロゲン化リンを形成するため、このような問題は発
生しない。
Further, in a compound containing a halogen element as a substituent, generation of a halogen radical may be a problem. In the phosphazene derivative of the present invention, however, the phosphorus element in the molecular structure promotes the halogen radical, and the compound is stable. Such a problem does not occur because phosphorus halide is formed.

【0040】前記ハロゲン元素のホスファゼン誘導体に
おける含有量としては、2〜80重量%が好ましく、2
〜60重量%がより好ましく、2〜50重量%が更に好
ましい。前記含有量が、2重量%未満では、前記ハロゲ
ン元素を含ませる効果が顕著に現れないことがある一
方、80重量%を超えると、粘度が高くなるため、非水
電解液に添加した際にその導電率が低下することがあ
る。前記ハロゲン元素としては、特に、フッ素、塩素、
臭素等が好適である。
The content of the halogen element in the phosphazene derivative is preferably from 2 to 80% by weight,
-60% by weight is more preferred, and 2-50% by weight is even more preferred. When the content is less than 2% by weight, the effect of including the halogen element may not be remarkably exhibited. On the other hand, when the content is more than 80% by weight, the viscosity increases. The conductivity may decrease. As the halogen element, in particular, fluorine, chlorine,
Bromine and the like are preferred.

【0041】前記ホスファゼン誘導体としては、非水電
解液の導電性の点から、常温(25℃)において液体で
あれば特に制限はないが、例えば、下記一般式(1)で
表される鎖状ホスファゼン誘導体、又は、下記一般式
(2)で表される環状ホスファゼン誘導体が好適に挙げ
られる。
The phosphazene derivative is not particularly limited as long as it is a liquid at ordinary temperature (25 ° C.) in view of the conductivity of the non-aqueous electrolyte, but for example, a chain represented by the following general formula (1): Preferable examples include a phosphazene derivative and a cyclic phosphazene derivative represented by the following general formula (2).

【0042】一般式(1)General formula (1)

【化1】 但し、一般式(1)において、R1、R2、及び、R
3は、一価の置換基又はハロゲン元素を表す。Xは、炭
素、ケイ素、ゲルマニウム、スズ、窒素、リン、ヒ素、
アンチモン、ビスマス、酸素、イオウ、セレン、テル
ル、及び、ポロニウムからなる群から選ばれる元素の少
なくとも1種を含む有機基を表す。Y1、Y2、及び、Y
3は、2価の連結基、2価の元素、又は、単結合を表
す。
Embedded image However, in the general formula (1), R 1 , R 2 , and R
3 represents a monovalent substituent or a halogen element. X is carbon, silicon, germanium, tin, nitrogen, phosphorus, arsenic,
Represents an organic group containing at least one element selected from the group consisting of antimony, bismuth, oxygen, sulfur, selenium, tellurium, and polonium. Y 1 , Y 2 and Y
3 represents a divalent linking group, a divalent element, or a single bond.

【0043】一般式(2) (PNR4 2n 但し、一般式(2)において、R4は、一価の置換基又
はハロゲン元素を表す。nは、3〜15を表す。
General formula (2) (PNR 4 2 ) n In the general formula (2), R 4 represents a monovalent substituent or a halogen element. n represents 3 to 15.

【0044】一般式(1)において、R1、R2、及び、
3としては、一価の置換基又はハロゲン元素であれば
特に制限はなく、一価の置換基としては、アルコキシ
基、アルキル基、カルボキシル基、アシル基、アリール
基等が挙げられる。又、ハロゲン元素としては、例えば
前述のハロゲン元素が好適に挙げられる。これらの中で
も、特に前記非水電解液を低粘度化し得る点で、アルコ
キシ基が好ましい。R1〜R3は、総て同一の種類の置換
基でもよく、それらのうちのいくつかが異なる種類の置
換基でもよい。
In the general formula (1), R 1 , R 2 , and
R 3 is not particularly limited as long as it is a monovalent substituent or a halogen element, and examples of the monovalent substituent include an alkoxy group, an alkyl group, a carboxyl group, an acyl group, and an aryl group. Further, as the halogen element, for example, the above-mentioned halogen elements are preferably exemplified. Among these, an alkoxy group is particularly preferred in that the viscosity of the non-aqueous electrolyte can be reduced. R 1 to R 3 may all be the same type of substituent, or some of them may be different types of substituents.

【0045】前記アルコキシ基としては、例えばメトキ
シ基、エトキシ基、プロポキシ基、ブトキシ基等や、メ
トキシエトキシ基、メトキシエトキシエトキシ基等のア
ルコキシ置換アルコキシ基等が挙げられる。これらの中
でも、R1〜R3としては、総てがメトキシ基、エトキシ
基、メトキシエトキシ基、又は、メトキシエトキシエト
キシ基が好適であり、低粘度・高誘電率の観点から、総
てがメトキシ基又はエトキシ基であるのが特に好適であ
る。
Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group and the like, and an alkoxy-substituted alkoxy group such as a methoxyethoxy group and a methoxyethoxyethoxy group. Among these, as R 1 to R 3 , all methoxy groups, ethoxy groups, methoxyethoxy groups, or methoxyethoxyethoxy groups are preferable, and from the viewpoints of low viscosity and high dielectric constant, all methoxy groups, ethoxyethoxy groups, or methoxyethoxyethoxy groups are preferable. Particularly preferred is a group or an ethoxy group.

【0046】前記アルキル基としては、メチル基、エチ
ル基、プロピル基、ブチル基、ペンチル基等が挙げられ
る。前記アシル基としては、ホルミル基、アセチル基、
プロピオニル基、ブチリル基、イソブチリル基、バレリ
ル基等が挙げられる。前記アリール基としては、フェニ
ル基、トリル基、ナフチル基等が挙げられる。
Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group and a pentyl group. As the acyl group, a formyl group, an acetyl group,
Examples include a propionyl group, a butyryl group, an isobutyryl group, and a valeryl group. Examples of the aryl group include a phenyl group, a tolyl group, and a naphthyl group.

【0047】これらの置換基中の水素元素は、前述のよ
うにハロゲン元素で置換されているのが好ましい。
The hydrogen element in these substituents is preferably substituted by a halogen element as described above.

【0048】一般式(1)において、Y1、Y2、及び、
3で表される基としては、例えば、CH2基のほか、酸
素、硫黄、セレン、窒素、ホウ素、アルミニウム、スカ
ンジウム、ガリウム、イットリウム、インジウム、ラン
タン、タリウム、炭素、ケイ素、チタン、スズ、ゲルマ
ニウム、ジルコニウム、鉛、リン、バナジウム、ヒ素、
ニオブ、アンチモン、タンタル、ビスマス、クロム、モ
リブデン、テルル、ポロニウム、タングステン、鉄、コ
バルト、ニッケル等の元素を含む基が挙げられ、これら
の中でも、CH2基、及び、酸素、硫黄、セレン、窒素
の元素を含む基等が好ましい。特に、Y1、Y2、及び、
3が、硫黄、セレンの元素を含む場合には、非水電解
液の難燃性が格段に向上するため好ましい。Y1〜Y
3は、総て同一種類でもよく、いくつかが互いに異なる
基でもよい。
In the general formula (1), Y 1 , Y 2 , and
The group represented by Y 3, for example, addition of CH 2 group, oxygen, sulfur, selenium, nitrogen, boron, aluminum, scandium, gallium, yttrium, indium, lanthanum, thallium, carbon, silicon, titanium, tin, Germanium, zirconium, lead, phosphorus, vanadium, arsenic,
Groups containing elements such as niobium, antimony, tantalum, bismuth, chromium, molybdenum, tellurium, polonium, tungsten, iron, cobalt, nickel, etc., among these, a CH 2 group, and oxygen, sulfur, selenium, nitrogen And the like are preferred. In particular, Y 1 , Y 2 , and
It is preferable that Y 3 contains elements of sulfur and selenium because the flame retardancy of the non-aqueous electrolyte is significantly improved. Y 1 to Y
3 may be all the same type or some may be different groups.

【0049】一般式(1)において、Xとしては、有害
性、環境等への配慮の観点からは、炭素、ケイ素、窒
素、リン、酸素、及び、イオウからなる群から選ばれる
元素の少なくとも1種を含む有機基が好ましく、以下の
一般式(3)で表される構造を有する有機基がより好ま
しい。
In the general formula (1), X represents at least one of elements selected from the group consisting of carbon, silicon, nitrogen, phosphorus, oxygen, and sulfur from the viewpoint of harmfulness, environment, and the like. An organic group containing a seed is preferable, and an organic group having a structure represented by the following general formula (3) is more preferable.

【0050】一般式(3)General formula (3)

【化2】 但し、一般式(3)において、R5〜R9は、一価の置換
基又はハロゲン元素を表す。Y5〜Y9は、2価の連結
基、2価の元素、又は単結合を表し、Zは2価の基又は
2価の元素を表す。
Embedded image However, in the general formula (3), R 5 to R 9 represent a monovalent substituent or a halogen element. Y 5 to Y 9 represent a divalent linking group, a divalent element, or a single bond, and Z represents a divalent group or a divalent element.

【0051】一般式(3)において、R5〜R9として
は、一般式(1)におけるR1〜R3で述べたのと同様の
一価の置換基又はハロゲン元素がいずれも好適に挙げら
れる。又、これらは、同一有機基内において、それぞれ
同一の種類でもよく、いくつかが互いに異なる種類でも
よい。R5とR6とは、及び、R8とR9とは、互いに結合
して環を形成していてもよい。一般式(3)において、
5〜Y9で表される基としては、一般式(1)における
1〜Y3で述べたのと同様の2価の連結基又は2価の基
等が挙げられ、同様に、硫黄、セレンの元素の場合に
は、非水電解液の難燃性が格段に向上するため特に好ま
しい。これらは、同一有機基内において、それぞれ同一
の種類でもよく、いくつかが互いに異なる種類でもよ
い。一般式(3)において、Zとしては、例えば、CH
2基、CHR(Rは、アルキル基、アルコキシル基、フ
ェニル基等を表す。以下同様。)基、NR基のほか、酸
素、硫黄、セレン、ホウ素、アルミニウム、スカンジウ
ム、ガリウム、イットリウム、インジウム、ランタン、
タリウム、炭素、ケイ素、チタン、スズ、ゲルマニウ
ム、ジルコニウム、鉛、リン、バナジウム、ヒ素、ニオ
ブ、アンチモン、タンタル、ビスマス、クロム、モリブ
デン、テルル、ポロニウム、タングステン、鉄、コバル
ト、ニッケル等の元素を含むものが挙げられ、これらの
中でも、CH2基、CHR基、NR基のほか、酸素、硫
黄、セレンの元素が好ましい。特に、硫黄、セレンの元
素である場合には、非水電解液の難燃性が格段に向上す
るため好ましい。
In the general formula (3), R 5 to R 9 are preferably the same monovalent substituents or halogen elements as described for R 1 to R 3 in the general formula (1). Can be Further, these may be of the same type within the same organic group, or some may be of different types. R 5 and R 6 , and R 8 and R 9 may combine with each other to form a ring. In the general formula (3),
Examples of the group represented by Y 5 to Y 9 include the same divalent linking group or divalent group as described for Y 1 to Y 3 in the general formula (1). The element of selenium is particularly preferable because the flame retardancy of the nonaqueous electrolyte is remarkably improved. These may be of the same type or different from each other in the same organic group. In the general formula (3), Z is, for example, CH
2 groups, CHR (R represents an alkyl group, an alkoxyl group, a phenyl group, etc .; the same applies hereinafter), an NR group, oxygen, sulfur, selenium, boron, aluminum, scandium, gallium, yttrium, indium, lanthanum ,
Including elements such as thallium, carbon, silicon, titanium, tin, germanium, zirconium, lead, phosphorus, vanadium, arsenic, niobium, antimony, tantalum, bismuth, chromium, molybdenum, tellurium, polonium, tungsten, iron, cobalt, nickel, etc. Of these, in addition to the CH 2 group, CHR group, and NR group, the elements of oxygen, sulfur, and selenium are preferable. In particular, when the element is sulfur or selenium, the flame retardancy of the non-aqueous electrolyte is remarkably improved, which is preferable.

【0052】一般式(3)において、有機基としては、
特に効果的に自己消火性ないし難燃性を付与し得る点
で、有機基(A)で表されるようなリンを含む有機基が
特に好ましい。また、有機基が、有機基(B)で表され
るようなイオウを含む有機基である場合には、非水電解
液の小界面抵抗化の点で特に好ましい。
In the general formula (3), the organic group includes
An organic group containing phosphorus as represented by the organic group (A) is particularly preferable because it can provide self-extinguishing property or flame retardancy particularly effectively. Further, when the organic group is an organic group containing sulfur as represented by the organic group (B), it is particularly preferable in terms of reducing the interface resistance of the non-aqueous electrolyte.

【0053】前記一般式(2)において、R4として
は、一価の置換基又はハロゲン元素であれば特に制限は
なく、一価の置換基としては、アルコキシ基、アルキル
基、カルボキシル基、アシル基、アリール基等が挙げら
れる。又、ハロゲン元素としては、例えば、前述のハロ
ゲン元素が好適に挙げられる。これらの中でも、特に前
記非水電解液を低粘度化し得る点で、アルコキシ基が好
ましい。該アルコキシ基としては、例えば、メトキシ
基、エトキシ基、メトキシエトキシ基、プロポキシ基、
フェノキシ基等が挙げられる。これらの中でも、メトキ
シ基、エトキシ基、メトキシエトキシ基が特に好まし
い。これらの置換基中の水素元素は、前述のようにハロ
ゲン元素で置換されているのが好ましい。
In the general formula (2), R 4 is not particularly limited as long as it is a monovalent substituent or a halogen element. Examples of the monovalent substituent include an alkoxy group, an alkyl group, a carboxyl group and an acyl group. Group, aryl group and the like. Further, as the halogen element, for example, the above-mentioned halogen elements are preferably exemplified. Among these, an alkoxy group is particularly preferred in that the viscosity of the non-aqueous electrolyte can be reduced. Examples of the alkoxy group include a methoxy group, an ethoxy group, a methoxyethoxy group, a propoxy group,
Phenoxy groups and the like. Among these, a methoxy group, an ethoxy group and a methoxyethoxy group are particularly preferred. The hydrogen element in these substituents is preferably substituted with a halogen element as described above.

【0054】前記一般式(1)〜(3)におけるR1
9、Y1〜Y3、Y5〜Y9、Zを適宜選択することによ
り、より好適な粘度、添加・混合に適する溶解性等を有
する非水電解液二次電池用添加剤の合成が可能となる。
これらのホスファゼン誘導体は、1種単独で使用しても
よく、2種以上を併用してもよい。
In the general formulas (1) to (3), R 1 to
Synthesis of additives for non-aqueous electrolyte secondary batteries having more suitable viscosity, solubility suitable for addition and mixing, and the like by appropriately selecting R 9 , Y 1 to Y 3 , Y 5 to Y 9 , and Z Becomes possible.
These phosphazene derivatives may be used alone or in combination of two or more.

【0055】前記ホスファゼン誘導体の引火点として
は、特に制限はないが、発火の抑制等の点から、100
℃以上が好ましく、150℃以上がより好ましい。
The flash point of the phosphazene derivative is not particularly limited.
C. or higher, and more preferably 150 C. or higher.

【0056】以上説明した本発明の非水電解液二次電池
用添加剤によれば、非水電解液に添加することによっ
て、該非水電解液に、優れた自己消火性ないし難燃性、
低温放電特性を付与し得、該非水電解液の小界面抵抗化
が可能である。また、従来の非水電解液に添加するた
め、安全性の高い非水電解液二次電池を容易に製造可能
である。更に、得られる非水電解液二次電池は、通常の
電池と同等の優れた電池特性をも有する。
According to the additive for a non-aqueous electrolyte secondary battery of the present invention described above, by adding it to the non-aqueous electrolyte, the non-aqueous electrolyte has excellent self-extinguishing properties or flame retardancy,
Low-temperature discharge characteristics can be imparted, and the interface resistance of the non-aqueous electrolyte can be reduced. Further, since the nonaqueous electrolyte secondary battery is added to the conventional nonaqueous electrolyte, a highly safe nonaqueous electrolyte secondary battery can be easily manufactured. Further, the obtained non-aqueous electrolyte secondary battery also has excellent battery characteristics equivalent to ordinary batteries.

【0057】[0057]

【実施例】以下、実施例と比較例を示し、本発明を具体
的に説明するが、本発明は下記の実施例に何ら限定され
るものではない。 (実施例1) [非水電解液の調製]エチレンカーボネートとジエチル
カーボネートとの混合溶媒(混合比(体積比):エチレ
ンカーボネート/ジエチルカーボネート=1/1)(非
プロトン性有機溶媒)80mlに、ホスファゼン誘導体
(鎖状EO型ホスファゼン誘導体(前記一般式(1)に
おいて、Xが、一般式(3)で表される有機基(A)の
構造であり、Y1〜Y3、及び、Y5〜Y6が総て単結合で
あり、R1〜R3、及び、R5〜R6が、総てエトキシ基で
あり、Zが酸素である化合物))(非水電解液二次電池
用添加剤)の20mlを添加(20体積%)し、更に、
LiBF4(支持塩)を0.5モル/kgの濃度で溶解
させ、非水電解液を調製した。
EXAMPLES The present invention will be described below in detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples. (Example 1) [Preparation of non-aqueous electrolyte] A mixed solvent of ethylene carbonate and diethyl carbonate (mixing ratio (volume ratio): ethylene carbonate / diethyl carbonate = 1/1) (aprotic organic solvent) in 80 ml, The phosphazene derivative (chain EO-type phosphazene derivative (in the general formula (1), X is a structure of the organic group (A) represented by the general formula (3)), and Y 1 to Y 3 and Y 5化合物 Y 6 are all single bonds, R 1 to R 3 and R 5 to R 6 are all ethoxy groups and Z is oxygen)) (for non-aqueous electrolyte secondary batteries (Additive) (20% by volume).
LiBF 4 (supporting salt) was dissolved at a concentration of 0.5 mol / kg to prepare a non-aqueous electrolyte.

【0058】<自己消火性ないし難燃性の評価>得られ
た非水電解液について、前述の「自己消火性・難燃性の
評価方法」と同様にして、下記に示すように評価を行っ
た。結果を表1に示す。
<Evaluation of Self-extinguishing Property or Flame Retardancy> The obtained non-aqueous electrolyte was evaluated as described below in the same manner as in the above-mentioned “Method for evaluating self-extinguishing property and flame retardancy”. Was. Table 1 shows the results.

【0059】−難燃性の評価− 着火した炎が、装置の25mmラインまで到達せず、か
つ網からの落下物にも着火が認められなかった場合を難
燃性ありと評価した。 −自己消火性の評価− 着火した炎が、25〜100mmラインの間で消火し、
かつ、網落下からの落下物にも着火が認められなかった
場合を自己消火性ありと評価した。 −燃焼性の評価− 着火した炎が、100mmラインを超えた場合を燃焼性
ありと評価した。
-Evaluation of Flame Retardancy- The case where the ignited flame did not reach the 25 mm line of the apparatus and no ignition was observed even on a falling object from the net was evaluated as having flame retardancy. -Evaluation of self-extinguishing property-The ignited flame extinguishes between 25 to 100 mm line,
In addition, a case where ignition was not recognized even on a falling object from the net fall was evaluated as having self-extinguishing properties. -Evaluation of flammability- The case where the ignited flame exceeded the 100 mm line was evaluated as having flammability.

【0060】[非水電解液二次電池の作製]化学式Li
CoO2で表されるコバルト酸化物を正極活物質として
用い、LiCoO2100部に対して、アセチレンブラ
ック(導電助剤)を10部、テフロンバインダー(結着
樹脂)を10部添加し、有機溶媒(酢酸エチルとエタノ
ールとの50/50体積%混合溶媒)で混練した後、ロ
ール圧延により厚さ100μm、幅40mmの薄層状の
正極シートを作製した。その後、得られた正極シート2
枚を用いて、表面に導電性接着剤を塗布した、厚さ25
μmのアルミニウム箔(集電体)を挟み込み、これに厚
さ25μmのセパレーター(微孔性フィルム:ポリプロ
ピレン性)を介在させ、厚さ150μmのリチウム金属
箔を重ね合わせて巻き上げ、円筒型電極を作製した。該
円筒型電極の正極長さは約260mmであった。
[Preparation of Non-Aqueous Electrolyte Secondary Battery] Chemical Formula Li
Cobalt oxide represented by CoO 2 was used as a positive electrode active material, and 10 parts of acetylene black (conductive additive) and 10 parts of Teflon binder (binder resin) were added to 100 parts of LiCoO 2 , and an organic solvent was added. (50/50 volume% mixed solvent of ethyl acetate and ethanol), and then roll-rolled to produce a thin layered positive electrode sheet having a thickness of 100 μm and a width of 40 mm. Then, the obtained positive electrode sheet 2
Using a sheet, conductive adhesive was applied to the surface, thickness 25
A 150-μm thick lithium metal foil is overlapped and wound up with a 25-μm-thick separator (microporous film: polypropylene) interposed between the aluminum foil (current collector) with a thickness of 25 μm. did. The length of the positive electrode of the cylindrical electrode was about 260 mm.

【0061】前記円筒型電極に、前記非水電解液を注入
して封口し、単三型リチウム電池を作製した。
The non-aqueous electrolyte was injected into the cylindrical electrode and sealed to prepare an AA lithium battery.

【0062】<電池特性等の測定・評価>得られた電池
について、20℃において、初期の電池特性(電圧、内
部抵抗)を測定・評価した後、下記評価の方法により、
充放電サイクル性能を測定・評価した。これらの結果を
表1に示す。
<Measurement / Evaluation of Battery Characteristics, etc.> For the obtained batteries, the initial battery characteristics (voltage, internal resistance) were measured and evaluated at 20 ° C., and then the following evaluation methods were used.
The charge / discharge cycle performance was measured and evaluated. Table 1 shows the results.

【0063】−充放電サイクル性能の評価− 上限電圧4.5V、下限電圧3.0V、放電電流100
mA、充電電流50mAの条件で、50サイクルまで充
放電を繰り返した。この時の充放電の容量を、初期にお
ける充放電の容量と比較し、50サイクル後の容量減少
率を算出した。合計3本の電池について、同様に測定・
算出し、これらの平均値をとり、充放電サイクル性能の
評価とした。
-Evaluation of charge / discharge cycle performance- Upper limit voltage 4.5V, lower limit voltage 3.0V, discharge current 100
Charge and discharge were repeated up to 50 cycles under the conditions of mA and a charging current of 50 mA. The charge / discharge capacity at this time was compared with the charge / discharge capacity at the initial stage, and the capacity reduction rate after 50 cycles was calculated. The same measurement and measurement were performed for a total of three batteries.
The calculated values were averaged, and the results were used to evaluate the charge / discharge cycle performance.

【0064】<低温放電特性の評価(低温放電容量の測
定)>得られた電池について、放電時の温度を、低温
(−10℃、−20℃)とした外は、前記「充放電サイ
クル性能の評価」と同様の条件で、50サイクルまで充
放電を繰り返した。この時の低温における放電容量を、
20℃において測定した放電容量と比較し、下記式より
放電容量減少率を算出した。合計3本の電池について、
同様に測定・算出し、これらの平均値をとり、低温放電
特性の評価とした。結果を表1に示す。 式:放電容量減少率=100−(低温放電容量/放電容
量(20℃))×100(%)
<Evaluation of Low-Temperature Discharge Characteristics (Measurement of Low-Temperature Discharge Capacity)> Regarding the obtained battery, except that the temperature at the time of discharging was set to low temperature (−10 ° C., −20 ° C.), The charge and discharge were repeated up to 50 cycles under the same conditions as in “Evaluation of”. The discharge capacity at low temperature at this time is
The discharge capacity reduction rate was calculated from the following equation by comparing with the discharge capacity measured at 20 ° C. For a total of three batteries,
In the same manner, measurement and calculation were performed, and the average value was taken to evaluate the low-temperature discharge characteristics. Table 1 shows the results. Formula: discharge capacity reduction rate = 100− (low temperature discharge capacity / discharge capacity (20 ° C.)) × 100 (%)

【0065】(実施例2)実施例1の「非水電解液の調
製」において、ホスファゼン誘導体(鎖状EO型ホスフ
ァゼン誘導体(前記一般式(1)において、Xが、一般
式(3)で表される有機基(A)の構造であり、Y1
3、及び、Y5〜Y6が総て単結合であり、R1〜R3
及び、R5〜R6が、総てエトキシ基であり、Zが酸素で
ある化合物))(非水電解液二次電池用添加剤)の非水
電解液における添加量を、80体積%となるように変え
たほかは、実施例1と同様に非水電解液を調製し、自己
消火性ないし難燃性の評価を行った。また、実施例1と
同様にして非水電解液二次電池を作製し、初期の電池特
性(電圧、内部抵抗)、充放電サイクル性能、低温放電
特性をそれぞれ測定・評価した。結果を表1に示す。
(Example 2) In "Preparation of non-aqueous electrolyte" in Example 1, the phosphazene derivative (chain EO-type phosphazene derivative (in the above formula (1), X is represented by the formula (3)) a structure of the organic group (a) is, Y 1 ~
Y 3 and Y 5 to Y 6 are all single bonds, and R 1 to R 3 ,
And the compound in which R 5 to R 6 are all ethoxy groups and Z is oxygen)) (the additive for the non-aqueous electrolyte secondary battery) in the non-aqueous electrolyte is 80% by volume. A non-aqueous electrolyte was prepared and evaluated for self-extinguishing or flame retardancy in the same manner as in Example 1, except for the change. A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial battery characteristics (voltage and internal resistance), charge / discharge cycle performance, and low-temperature discharge characteristics were measured and evaluated. Table 1 shows the results.

【0066】(実施例3)実施例1の「非水電解液の調
製」において、非水電解液二次電池用添加剤を、ホスフ
ァゼン誘導体(鎖状EO型ホスファゼン誘導体(前記一
般式(1)において、Xが、一般式(3)で表される有
機基(A)の構造であり、Y1〜Y3、及び、Y5〜Y6
総て単結合であり、R1〜R3、及び、R5〜R6が、総て
エトキシ基であり、Zが酸素である化合物))(非水電
解液二次電池用添加剤)におけるエトキシ基中の水素元
素をフッ素元素で置換(フッ素元素のホスファゼン誘導
体における含有量:15重量%)した化合物に代えたほ
かは、実施例1と同様に非水電解液を調製し、自己消火
性ないし難燃性の評価を行った。また、実施例1と同様
にして非水電解液二次電池を作製し、初期の電池特性
(電圧、内部抵抗)、充放電サイクル性能、低温放電特
性をそれぞれ測定・評価した。結果を表1に示す。
Example 3 In “Preparation of Nonaqueous Electrolyte” in Example 1, the additive for a nonaqueous electrolyte secondary battery was a phosphazene derivative (a chain EO-type phosphazene derivative (the above-described general formula (1))). In the above, X is the structure of the organic group (A) represented by the general formula (3), Y 1 to Y 3 and Y 5 to Y 6 are all single bonds, and R 1 to R 3 , And R 5 to R 6 are all ethoxy groups, and Z is oxygen.)) (Additive for non-aqueous electrolyte secondary battery) Replaces hydrogen element in ethoxy group with fluorine element ( A non-aqueous electrolyte was prepared and evaluated for self-extinguishing or flame retardancy in the same manner as in Example 1, except that the compound was replaced with a compound containing 15% by weight of a fluorine element in a phosphazene derivative. A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial battery characteristics (voltage and internal resistance), charge / discharge cycle performance, and low-temperature discharge characteristics were measured and evaluated. Table 1 shows the results.

【0067】(実施例4)実施例1の「非水電解液の調
製」において、エチレンカーボネートとジエチルカーボ
ネートとの混合溶媒(混合比(体積比):エチレンカー
ボネート/ジエチルカーボネート=1/1)(非プロト
ン性有機溶媒)の80mlを97mlに変え、ホスファ
ゼン誘導体(鎖状EO型ホスファゼン誘導体(前記一般
式(1)において、Xが、一般式(3)で表される有機
基(A)の構造であり、Y1〜Y3、及び、Y5〜Y6が総
て単結合であり、R1〜R3、及び、R5〜R6が、総てエ
トキシ基であり、Zが酸素である化合物))(非水電解
液二次電池用添加剤)の添加量20ml(20体積%)
を3ml(3体積%)に代え、LiBF4(支持塩)を
LiPF6(支持塩)に代えた外は、実施例1と同様に
非水電解液を調製し、自己消火性ないし難燃性の評価を
行った。また、実施例1と同様にして非水電解液二次電
池を作製し、初期の電池特性(電圧、内部抵抗)、充放
電サイクル性能、低温放電特性をそれぞれ測定・評価し
た。結果を表1に示す。
Example 4 In “Preparation of Nonaqueous Electrolyte” in Example 1, a mixed solvent of ethylene carbonate and diethyl carbonate (mixing ratio (volume ratio): ethylene carbonate / diethyl carbonate = 1/1) ( 80 ml of the aprotic organic solvent was changed to 97 ml, and the phosphazene derivative (chain EO-type phosphazene derivative (in the above general formula (1), X represents the structure of the organic group (A) represented by the general formula (3)) Wherein Y 1 to Y 3 and Y 5 to Y 6 are all single bonds, R 1 to R 3 and R 5 to R 6 are all ethoxy groups, and Z is oxygen Certain compound)) (additive for non-aqueous electrolyte secondary battery) 20 ml (20% by volume)
Was replaced with 3 ml (3% by volume) and LiBF 4 (supporting salt) was replaced with LiPF 6 (supporting salt), except that a non-aqueous electrolyte solution was prepared in the same manner as in Example 1 and self-extinguishing or flame retardant. Was evaluated. A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial battery characteristics (voltage and internal resistance), charge / discharge cycle performance, and low-temperature discharge characteristics were measured and evaluated. Table 1 shows the results.

【0068】(比較例1)実施例1の「非水電解液の調
製」において、ホスファゼン誘導体(鎖状EO型ホスフ
ァゼン誘導体(前記一般式(1)において、Xが、一般
式(3)で表される有機基(A)の構造であり、Y1
3、及び、Y5〜Y6が総て単結合であり、R1〜R3
及び、R5〜R6が、総てエトキシ基であり、Zが酸素で
ある化合物))(非水電解液二次電池用添加剤)を用い
ず、エチレンカーボネートとジエチルカーボネートとの
混合溶媒(非プロトン性有機溶媒)の添加量を100m
lに変えた外は、実施例1と同様に非水電解液を調製
し、自己消火性ないし難燃性の評価を行った。また、実
施例1と同様にして非水電解液二次電池を作製し、初期
の電池特性(電圧、内部抵抗)、充放電サイクル性能、
低温放電特性をそれぞれ測定・評価した。結果を表1に
示す。
(Comparative Example 1) In “Preparation of Nonaqueous Electrolyte Solution” of Example 1, a phosphazene derivative (a chain EO-type phosphazene derivative (in the above general formula (1), X is represented by the general formula (3)) a structure of the organic group (a) is, Y 1 ~
Y 3 and Y 5 to Y 6 are all single bonds, and R 1 to R 3 ,
And a compound in which R 5 to R 6 are all ethoxy groups and Z is oxygen)) (a non-aqueous electrolyte secondary battery additive) and a mixed solvent of ethylene carbonate and diethyl carbonate ( Aprotic organic solvent) is 100 m
A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that the amount was changed to 1, and the self-extinguishing property or the flame retardancy was evaluated. Further, a non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1, and the initial battery characteristics (voltage, internal resistance), charge / discharge cycle performance,
The low-temperature discharge characteristics were measured and evaluated. Table 1 shows the results.

【0069】[0069]

【表1】 [Table 1]

【0070】実施例1〜3では、非水電解液の自己消火
性ないし難燃性が優れており、本発明の非水電解液二次
電池用添加剤を用いた場合には、安全性に優れているこ
とがわかる。特に実施例3、4においては、非水電解液
二次電池用添加剤の添加量が少量であっても、優れた難
燃性を付与し得ることがわかる。
In Examples 1 to 3, the non-aqueous electrolyte has excellent self-extinguishing properties and flame retardancy. When the additive for a non-aqueous electrolyte secondary battery of the present invention is used, safety is improved. It turns out that it is excellent. In particular, in Examples 3 and 4, it can be seen that excellent flame retardancy can be imparted even when the amount of the additive for a non-aqueous electrolyte secondary battery is small.

【0071】[0071]

【発明の効果】本発明によれば、非水電解液二次電池に
おける非水電解液に添加することによって、電池として
必要な電池特性等を維持させつつ、非水電解液に優れた
自己消火性ないし難燃性、優れた低温放電特性を付与す
ることが可能で、非水電解液の小界面抵抗化が可能な非
水電解液二次電池用添加剤を提供することができる。
According to the present invention, by adding to a non-aqueous electrolyte in a non-aqueous electrolyte secondary battery, self-extinguishing excellent in a non-aqueous electrolyte can be maintained while maintaining battery characteristics required for the battery. It is possible to provide an additive for a non-aqueous electrolyte secondary battery, which can impart non-aqueous electrolyte with excellent low-temperature discharge characteristics and a low interface resistance.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ02 AJ12 AK02 AK03 AK05 AK16 AL06 AL07 AL12 AM03 AM04 AM05 AM07 BJ02 BJ04 BJ14 DJ09  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H029 AJ02 AJ12 AK02 AK03 AK05 AK16 AL06 AL07 AL12 AM03 AM04 AM05 AM07 BJ02 BJ04 BJ14 DJ09

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 支持塩及び有機溶媒を含有する非水電解
液を有する非水電解液二次電池における、非水電解液に
添加され、ホスファゼン誘導体を少なくとも含有するこ
とを特徴とする非水電解液二次電池用添加剤。
1. A non-aqueous electrolyte secondary battery having a non-aqueous electrolyte containing a supporting salt and an organic solvent, wherein the non-aqueous electrolyte is added to the non-aqueous electrolyte and contains at least a phosphazene derivative. Additive for liquid secondary batteries.
【請求項2】 有機溶媒が、非プロトン性有機溶媒であ
る請求項1に記載の非水電解液二次電池用添加剤。
2. The additive for a non-aqueous electrolyte secondary battery according to claim 1, wherein the organic solvent is an aprotic organic solvent.
【請求項3】 非プロトン性有機溶媒が、環状又は鎖状
のエステル化合物を含有する請求項2に記載の非水電解
液二次電池用添加剤。
3. The additive for a non-aqueous electrolyte secondary battery according to claim 2, wherein the aprotic organic solvent contains a cyclic or chain ester compound.
【請求項4】 非水電解液における添加量が、20〜9
0体積%である請求項1から3のいずれかに記載の非水
電解液二次電池用添加剤。
4. The amount of addition in the non-aqueous electrolyte is 20 to 9
The additive for a non-aqueous electrolyte secondary battery according to claim 1, wherein the additive is 0% by volume.
【請求項5】 非水電解液における添加量が、30〜9
0体積%である請求項1から3のいずれかに記載の非水
電解液二次電池用添加剤。
5. The amount of the non-aqueous electrolyte solution added is 30 to 9
The additive for a non-aqueous electrolyte secondary battery according to claim 1, wherein the additive is 0% by volume.
【請求項6】 支持塩がLiPF6を含み、有機溶媒が
エチレンカーボネートを含み、非水電解液における添加
量が、1.5〜2.5体積%である請求項1から3のい
ずれかに記載の非水電解液二次電池用添加剤。
6. The method according to claim 1, wherein the supporting salt contains LiPF 6 , the organic solvent contains ethylene carbonate, and the amount added in the non-aqueous electrolyte is 1.5 to 2.5% by volume. The additive for a non-aqueous electrolyte secondary battery according to the above.
【請求項7】 支持塩がLiPF6を含み、有機溶媒が
エチレンカーボネートを含み、非水電解液における添加
量が、2.5体積%を超え、90体積%以下である請求
項1から3のいずれかに記載の非水電解液二次電池用添
加剤。
7. The method according to claim 1, wherein the supporting salt contains LiPF 6 , the organic solvent contains ethylene carbonate, and the amount added in the non-aqueous electrolyte is more than 2.5% by volume and 90% by volume or less. The additive for a non-aqueous electrolyte secondary battery according to any one of the above.
【請求項8】 ホスファゼン誘導体が、分子構造中にハ
ロゲン元素を含む置換基を有する請求項1から7のいず
れかに記載の非水電解液二次電池用添加剤。
8. The additive for a non-aqueous electrolyte secondary battery according to claim 1, wherein the phosphazene derivative has a substituent containing a halogen element in a molecular structure.
【請求項9】 ハロゲン元素のホスファゼン誘導体にお
ける含有量が、2〜80重量%である請求項8に記載の
非水電解液二次電池添加剤。
9. The additive for a non-aqueous electrolyte secondary battery according to claim 8, wherein the content of the halogen element in the phosphazene derivative is 2 to 80% by weight.
JP2000126568A 1999-11-25 2000-04-26 Additive for non-aqueous electrolyte secondary battery Pending JP2001217001A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000126568A JP2001217001A (en) 1999-11-25 2000-04-26 Additive for non-aqueous electrolyte secondary battery
EP00976252A EP1253662B1 (en) 1999-11-25 2000-11-15 Non-aqueous electrolyte secondary cell and, deterioration-preventing agent for non-aqueous electrolyte secondary cell and additive for non-aqueous electrolyte secondary cell for use therein
KR1020027006644A KR100775566B1 (en) 1999-11-25 2000-11-15 Non-aqueous electrolyte secondary cell and, deterioration-preventing agent for non-aqueous electrolyte secondary cell and additive for non-aqueous electrolyte secondary cell for use therein
DE60043266T DE60043266D1 (en) 1999-11-25 2000-11-15 NON-WATER ELECTROLYTE SECONDARY CELL, AGING-PREVENTING AGENT AND ADDITIVE FOR USE IN SUCH A CELL
US10/130,069 US6955867B1 (en) 1999-11-25 2000-11-15 Non-aqueous electrolyte secondary cell and, deterioration-preventing agent for non-aqueous electrolyte secondary cell and additive for non-aqueous electrolyte secondary cell for use therein
PCT/JP2000/008041 WO2001039314A1 (en) 1999-11-25 2000-11-15 Non-aqueous electrolyte secondary cell and, deterioration-preventing agent for non-aqueous electrolyte secondary cell and additive for non-aqueous electrolyte secondary cell for use therein

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-334953 1999-11-25
JP33495399 1999-11-25
JP2000126568A JP2001217001A (en) 1999-11-25 2000-04-26 Additive for non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2001217001A true JP2001217001A (en) 2001-08-10

Family

ID=26575006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000126568A Pending JP2001217001A (en) 1999-11-25 2000-04-26 Additive for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2001217001A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002021628A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
WO2002021631A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for non-aqueous liquid electrolyte secondary cell, non-aqueous liquid electrolyte secondary cell, additive for non-aqueous liquid electrolyte electric double layer capacitor and non-aqueous liquid electrolyte electric double layer capacitor
WO2002021630A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for nonaqueous-electrolyte secondary battery
WO2002021629A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
WO2003005479A1 (en) * 2001-07-05 2003-01-16 Bridgestone Corporation Non-aqueous electrolyte cell, electrolyte stabilizing agent, and phosphazene derivative and method for preparation thereof
EP1376732A1 (en) * 2001-03-30 2004-01-02 Bridgestone Corporation Additive for cell and electric double-layered capacitor
JP2006185829A (en) * 2004-12-28 2006-07-13 Bridgestone Corp Non-aqueous electrolyte secondary battery
US7217480B2 (en) 2003-01-14 2007-05-15 Samsung Sdi Co., Ltd. Organic electrolytic solution and lithium battery using the same
JP2009016107A (en) * 2007-07-03 2009-01-22 Ntt Facilities Inc Nonaqueous electrolyte battery
US7695862B2 (en) 2002-12-26 2010-04-13 Bridgestone Corporation Additive for non-aqueous electrolyte solution of secondary battery and non-aqueous electrolyte secondary battery
US8053108B2 (en) 2002-08-31 2011-11-08 Samsung Sdi Co., Ltd. Organic electrolytic solution and lithium battery employing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613108A (en) * 1992-04-09 1994-01-21 Bridgestone Corp Nonaqueous electrolyte battery
US5830600A (en) * 1996-05-24 1998-11-03 Sri International Nonflammable/self-extinguishing electrolytes for batteries
JPH11144757A (en) * 1992-04-09 1999-05-28 Bridgestone Corp Nonaqueous electrolyte battery
JPH11191431A (en) * 1997-12-26 1999-07-13 Sony Corp Nonaqueous electrolyte battery
JP2000030740A (en) * 1998-07-15 2000-01-28 Toyota Central Res & Dev Lab Inc Lithium secondary battery
WO2000033410A1 (en) * 1998-11-30 2000-06-08 Nippon Chemical Industrial Co., Ltd. Non-aqueous electrolyte secondary cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613108A (en) * 1992-04-09 1994-01-21 Bridgestone Corp Nonaqueous electrolyte battery
JPH11144757A (en) * 1992-04-09 1999-05-28 Bridgestone Corp Nonaqueous electrolyte battery
US5830600A (en) * 1996-05-24 1998-11-03 Sri International Nonflammable/self-extinguishing electrolytes for batteries
JPH11191431A (en) * 1997-12-26 1999-07-13 Sony Corp Nonaqueous electrolyte battery
JP2000030740A (en) * 1998-07-15 2000-01-28 Toyota Central Res & Dev Lab Inc Lithium secondary battery
WO2000033410A1 (en) * 1998-11-30 2000-06-08 Nippon Chemical Industrial Co., Ltd. Non-aqueous electrolyte secondary cell

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7099142B2 (en) 2000-09-07 2006-08-29 Bridgestone Corporation Additive for non-aqueous liquid electrolyte secondary cell, non-aqueous liquid electrolyte secondary cell, additive for non-aqueous liquid electrolyte electric double layer capacitor and non-aqueous liquid electrolyte electric double layer capacitor
WO2002021631A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for non-aqueous liquid electrolyte secondary cell, non-aqueous liquid electrolyte secondary cell, additive for non-aqueous liquid electrolyte electric double layer capacitor and non-aqueous liquid electrolyte electric double layer capacitor
WO2002021630A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for nonaqueous-electrolyte secondary battery
WO2002021629A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
WO2002021628A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
US7067219B2 (en) 2000-09-07 2006-06-27 Bridgestone Corporation Additive for nonaqueous-electrolyte secondary battery
EP1376732A1 (en) * 2001-03-30 2004-01-02 Bridgestone Corporation Additive for cell and electric double-layered capacitor
EP1376732A4 (en) * 2001-03-30 2007-10-10 Bridgestone Corp Additive for cell and electric double-layered capacitor
WO2003005479A1 (en) * 2001-07-05 2003-01-16 Bridgestone Corporation Non-aqueous electrolyte cell, electrolyte stabilizing agent, and phosphazene derivative and method for preparation thereof
US7560595B2 (en) 2001-07-05 2009-07-14 Bridgestone Corporation Non-aqueous electrolyte cell, electrolyte stabilizing agent, and phosphazene derivative and method for preparation thereof
US8168831B2 (en) 2001-07-05 2012-05-01 Bridgestone Corporation Non-aqueous electrolyte cell, electrode stabilizing agent, phosphazene derivative and method of producing the same
US8053108B2 (en) 2002-08-31 2011-11-08 Samsung Sdi Co., Ltd. Organic electrolytic solution and lithium battery employing the same
US7695862B2 (en) 2002-12-26 2010-04-13 Bridgestone Corporation Additive for non-aqueous electrolyte solution of secondary battery and non-aqueous electrolyte secondary battery
US7217480B2 (en) 2003-01-14 2007-05-15 Samsung Sdi Co., Ltd. Organic electrolytic solution and lithium battery using the same
JP2006185829A (en) * 2004-12-28 2006-07-13 Bridgestone Corp Non-aqueous electrolyte secondary battery
JP2009016107A (en) * 2007-07-03 2009-01-22 Ntt Facilities Inc Nonaqueous electrolyte battery

Similar Documents

Publication Publication Date Title
JP4588319B2 (en) Non-aqueous electrolyte battery and electrode stabilizer for non-aqueous electrolyte battery
JP3055358B2 (en) Non-aqueous electrolyte battery
JP5738011B2 (en) Non-aqueous electrolyte additive for secondary battery, non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
US6955867B1 (en) Non-aqueous electrolyte secondary cell and, deterioration-preventing agent for non-aqueous electrolyte secondary cell and additive for non-aqueous electrolyte secondary cell for use therein
JPWO2002021628A1 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte secondary battery and non-aqueous electrolyte electric double layer capacitor
JP2008053212A (en) Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it
US20040126658A1 (en) Additive for cell and electric double-layered capacitor
JP3055536B2 (en) Non-aqueous electrolyte battery
JPWO2002021630A1 (en) Additives for non-aqueous electrolyte secondary batteries
US7229719B2 (en) Non-aqueous electrolyte secondary battery
WO2001009973A1 (en) Nonaqueous electrolyte secondary cell
JP2001102088A (en) Non-aqueous electrolyte cell
JP5738010B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
KR100647052B1 (en) Positive electrode for nonaqueous electrolyte battery, process for producing the same and nonaqueous electrolyte battery
JP2010015719A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP5095883B2 (en) Non-aqueous electrolyte secondary battery additive and non-aqueous electrolyte secondary battery
JP2001217001A (en) Additive for non-aqueous electrolyte secondary battery
JP4785735B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
JP2004006301A (en) Positive electrode for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery having the same
JP2010015717A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JPWO2003005478A1 (en) Polymer battery and polymer electrolyte
JP2010050026A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same
JP4666540B2 (en) Non-aqueous electrolyte secondary battery
JP2001217007A (en) Non-aqueous electrolyte secondary battery
JP2009021040A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte battery equipped with it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110105