JP2001213392A - Internally driven flapping propeller drive mechanism and control method thereof - Google Patents
Internally driven flapping propeller drive mechanism and control method thereofInfo
- Publication number
- JP2001213392A JP2001213392A JP2000025370A JP2000025370A JP2001213392A JP 2001213392 A JP2001213392 A JP 2001213392A JP 2000025370 A JP2000025370 A JP 2000025370A JP 2000025370 A JP2000025370 A JP 2000025370A JP 2001213392 A JP2001213392 A JP 2001213392A
- Authority
- JP
- Japan
- Prior art keywords
- drive
- driving
- propulsion device
- airfoil
- flapping
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007246 mechanism Effects 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 16
- 238000005452 bending Methods 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 230000008602 contraction Effects 0.000 description 7
- 238000006073 displacement reaction Methods 0.000 description 4
- 238000009415 formwork Methods 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000012530 fluid Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000001141 propulsive effect Effects 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
Landscapes
- Toys (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、水中において船舶
や水中航走体を推進することを目的とした内部駆動型羽
ばたき式推進器の駆動機構とその制御方法に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive mechanism of an internally-driven fluttering type propulsion device for propelling a ship or an underwater vehicle underwater, and a control method thereof.
【0002】[0002]
【従来の技術】水中航走船舶の従来の推進器は回転式の
スクリュープロペラが主流である。これは機構が単純で
あり、効率も高いが、プロペラが船尾の乱れた流れの中
で、比較的高速で回転することによって生ずるキャビテ
ーションや流体変動力に起因する雑音及び振動が発生し
やすく低騒音を必要とする様な水中航走体には問題が多
い。2. Description of the Related Art A conventional type of propulsion device for an underwater vehicle is a rotary screw propeller. It has a simple mechanism and high efficiency, but is prone to noise and vibration caused by cavitation and fluid fluctuation caused by the propeller rotating at a relatively high speed in the turbulent stern flow, resulting in low noise. There are many problems with underwater vehicles that require a vehicle.
【0003】これに対し、水中を羽ばたいて推進するエ
イの一種の推進翼のように、体側にある大きな翼をゆっ
くりと動かすことにより推進力を発生する、図1に示す
ような羽ばたき式推進器が考えられる。本出願人は、こ
のような羽ばたき式推進器を出願し、特許されている
(特許第2920206号)。On the other hand, as shown in FIG. 1, a fluttering type propulsion device generates a propulsion force by slowly moving large wings on the body side, such as a kind of propulsion wing which propells by flapping underwater. Can be considered. The present applicant has filed and applied for such a fluttering type propulsion device (Japanese Patent No. 2920206).
【0004】[0004]
【発明が解決しようとする課題】このような推進器は、
プロペラに比べて格段に緩やかな周期運動をすることに
より、推進器の騒音を極めて低く保ちながら水中航走体
を比較的速い速度で効率よく推進することが可能であ
る。一方このような低騒音を期する推進器では、推進力
発生に関わらない不要な水の乱れを発生しないことが肝
要であるため、その複雑な駆動機構をすべて流線型断面
の翼の中に納める必要があり、かつ多数の駆動素子を独
立に駆動して、全体として効果的な羽ばたき運動を実現
しなければならない。しかしその駆動機構の実現が難し
いことと、多数の駆動素子の運動形態が複雑多岐にわた
っている。Such a propulsion device is
By making the periodic motion much slower than a propeller, it is possible to efficiently propel the underwater vehicle at a relatively high speed while keeping the noise of the propulsion unit extremely low. On the other hand, in such a low-noise propulsion device, it is important that unnecessary water turbulence not related to the generation of thrust is generated. And a large number of drive elements must be independently driven to achieve an effective flapping motion as a whole. However, it is difficult to realize such a driving mechanism, and the movement form of a large number of driving elements is complicated and various.
【0005】本発明は、以上のような点に鑑み、本出願
人による上記特許発明にかかる内部駆動型羽ばたき式推
進器の駆動機構とその制御方法を改良し、いっそう信頼
性にとみ合理的な作動が可能な上記駆動機構とその制御
方法を提供することを目的としている。In view of the above points, the present invention has improved the drive mechanism of the internally driven flapping type propulsion device and the control method thereof according to the above-mentioned patent invention by the present applicant, and has achieved a more reliable and rational operation. It is an object of the present invention to provide an actuating drive mechanism and a control method therefor.
【0006】[0006]
【課題を解決するための手段】次に、上記の課題を達成
するための手段を実施の形態にかかる図を参照して説明
する。すなわち、本発明は、潜水船等の水中航走体や十
分な喫水を持つ水上船舶を推進するために、湾曲機能を
有する駆動ユニットを複数個連結してなる駆動腕2を弾
性翼部1内に設け、該駆動腕2で該弾性翼部1を羽ばた
かせるようにした内部駆動型羽ばたき式推進器におい
て、前記弾性翼部1内に左右方向に所定間隔で設けた複
数の翼型枠3と、該複数の翼型枠3間にこれを連結する
ように夫々設けた複数個の骨格ユニット5であって、中
間部が前記隣接する翼型枠3、3の中間において関節8
を介して屈曲自在に結合された左右一対のユニット片5
A、5Aよりなる骨格ユニット5と、該各骨格ユニット
5に対応して前記複数の翼型枠3間にこれを連結するよ
うに夫々設けた複数個の伸縮構造の駆動素子9とを具備
し、前記駆動素子9を伸縮駆動させることにより前記骨
格ユニットを屈曲させて弾性翼部1を羽ばたかせるよう
にしたことを特徴とする内部駆動型羽ばたき式推進器駆
動機構にある。Next, means for achieving the above-mentioned objects will be described with reference to the drawings according to the embodiments. That is, in order to propell an underwater vehicle such as a submersible or a watercraft with a sufficient draft, the present invention includes a drive arm 2 formed by connecting a plurality of drive units having a bending function inside the elastic wing 1. And a plurality of airfoil forms 3 provided at predetermined intervals in the left and right direction within the elastic wing 1 in an internally driven fluttering type propulsion device in which the elastic wing 1 is made to flap by the driving arm 2. A plurality of skeletal units 5 provided between the plurality of airfoil forms 3 so as to connect the plurality of airfoil forms 3, wherein an intermediate portion is provided with a joint 8 in the middle of the adjacent airfoil forms 3.
A pair of left and right unit pieces 5 flexibly connected via
A, 5A, and a plurality of expandable and contractible drive elements 9 provided between the plurality of airfoil frames 3 corresponding to each of the skeleton units 5, respectively. An internal drive type fluttering propulsion drive mechanism characterized in that the skeletal unit is bent by causing the drive element 9 to expand and contract, thereby causing the elastic wing portion 1 to flutter.
【0007】前記一個の骨格ユニット5に対応して、そ
の前後に一対の前記伸縮構造の駆動素子9、9を平行に
設けることが望ましい。It is desirable to provide a pair of extendable and contractible drive elements 9 and 9 in front and behind the one skeleton unit 5 in parallel.
【0008】また、本発明は、前記複数個の骨格ユニッ
ト5とこれと対応する前記複数個の駆動素子9により構
成された駆動腕2を、前記弾性翼部1内に前後平行に少
なくとも二列設け、その前駆動腕2Aは前記翼型枠3の
前方に回動自在に連結され、その後駆動腕2Bは前記翼
型枠3の後方に回動自在且つ前後方向に移動自在に連結
されていることを特徴とする内部駆動型羽ばたき式推進
器駆動機構にある。In addition, the present invention provides at least two rows of driving arms 2 each composed of the plurality of skeleton units 5 and the corresponding plurality of driving elements 9 in the elastic wing portion 1 in the front-rear direction. The front drive arm 2A is rotatably connected to the front of the airfoil 3 and the drive arm 2B is connected to the rear of the airfoil 3 so as to be rotatable and movable in the front-rear direction. An internal drive type fluttering type propulsion device driving mechanism is characterized in that:
【0009】さらに、本発明は、上記の内部駆動型羽ば
たき式推進器駆動機構を用い、その前記複数個の各駆動
素子9を同時に且つ各別の駆動信号により駆動制御し
て、推進器全体として羽ばたき運動を行わせるようにし
たことを特徴とする内部駆動型羽ばたき式推進器の制御
方法にある。Further, the present invention uses the above-mentioned internally driven flapping type propulsion device driving mechanism, and controls the driving of each of the plurality of driving elements 9 simultaneously and by different driving signals, so that the entire propulsion device is provided. A method of controlling an internally driven flapping propulsion device, characterized in that a fluttering motion is performed.
【0010】[0010]
【発明の実施の形態】図は、本発明の実施の形態を示
す。図1に示す本推進器を実現するための片翼分の駆動
機構の全体構造を図2に示す。図1に見られる潜水船の
船体101両舷に羽ばたいている一対の推進器としての
翼部1は、一切の駆動機構をその翼部1の内部に持つ。
翼部1は、中空で断面が流線型であり、その外周面をな
す翼面皮膜4は、図2に示すように、その内部の翼型枠
3に取り付けられ、翼型枠3相互間に張られる。翼型枠
3は流線型の枠体であり、翼部1の左右方向に所定間隔
で複数個設けられている。翼面皮膜4は伸び縮みの容易
な弾性膜によって作られており、駆動機構の羽ばたき運
動により周りの水をあおり、その結果水が後方に加速さ
れ、その反動で本推進器が前向きの推進力を発生する。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an embodiment of the present invention. FIG. 2 shows the entire structure of a single-wing drive mechanism for realizing the propulsion unit shown in FIG. The wing 1 as a pair of propulsors that flies on both sides of the hull 101 of the submarine shown in FIG. 1 has all driving mechanisms inside the wing 1.
The wing portion 1 is hollow and has a streamlined cross section, and a wing surface coating 4 forming an outer peripheral surface thereof is attached to an inner wing form 3 as shown in FIG. Can be The airfoil frame 3 is a streamlined frame, and a plurality of airfoil frames 3 are provided at predetermined intervals in the left-right direction of the airfoil 1. The wing surface coating 4 is made of an elastic film that is easily stretched and contracted. The fluttering motion of the driving mechanism lifts the surrounding water. Occurs.
【0011】駆動機構の構成 本駆動機構の主要構造は図2に示すように、2条の駆動
腕2すなわち前駆動腕2Aと後駆動腕2B及び6個の翼
型枠3を有しており、内端部の固定部翼型枠3Aにより
船体101に固定される。駆動腕2は本推進器の羽ばた
き運動を発生する役目を持つ。翼型枠3は翼面皮膜4に
翼型曲面を維持させるとともに、駆動腕3からの力を翼
面に伝える役目を持つ。固定部翼型枠3Aは本推進器を
船体101に堅固に固定する役目を持つ。Structure of the Drive Mechanism The main structure of the drive mechanism has two drive arms 2, ie, a front drive arm 2A, a rear drive arm 2B, and six airfoil frames 3, as shown in FIG. Is fixed to the hull 101 by the fixed portion airfoil 3A at the inner end. The driving arm 2 has a role of generating a fluttering motion of the propulsion device. The airfoil 3 serves to maintain the airfoil surface on the airfoil coating 4 and to transmit the force from the drive arm 3 to the airfoil. The fixed part wing formwork 3A has a role of firmly fixing the propulsion device to the hull 101.
【0012】駆動腕の構造 2条の駆動腕2(2A,2B)は、図3及び図4に示す
ように、隣接する翼型枠3間に設けられる屈曲可能な複
数の骨格ユニット5の連結により構成される。各骨格ユ
ニット5は、左右一対のユニット片5Aが中間の関節8
により、左右に隣接する翼型枠3、3の中間において屈
曲自在に結合されている。すなわち、各骨格ユニット5
はいずれも、1軸の回転(図3の正面図において紙面に
直角な軸回りの回転)のみ自由に行える関節8によって
互いに連結されている。骨格ユニット5を構成するユニ
ット片5Aの内中間部の中間ユニット片5A−1はその
両端に関節8を持ち、クランク状に折曲形成された中間
部が後述する連結部材11、12又は13を介して翼型
枠3に連結されている。また、基端部側の基端ユニット
片5A−2は一端に関節8を持つが他端は固定部翼型枠
3Aにしっかりと固着されており、先端部側の先端ユニ
ット片5A−3は一端に関節8を持ち他端は自由となっ
ているという点が異なっている。隣り合う骨格ユニット
は関節8による結合の他に、図3及び図4に示すよう
に、並列に配置された一対の駆動素子9と、駆動素子9
の両端のロッドエンド10及び骨格ユニットの両側に突
き出したシャフト6Aを介して連結されている。ただし
基端ユニット片5A−2にはシャフトは取り付けられて
いないが、これに代わるシャフト6Bが固定部翼型枠3
Aに設けられている(図3)。Structure of Drive Arm The two drive arms 2 (2A, 2B) are connected to a plurality of bendable skeletal units 5 provided between adjacent airfoil forms 3, as shown in FIGS. It consists of. Each skeletal unit 5 includes a pair of left and right unit pieces 5A having an intermediate joint 8.
As a result, the airfoil forms 3 and 3 are connected to each other at the middle between the airfoil forms 3 and 3 adjacent to each other. That is, each skeleton unit 5
Are connected to each other by a joint 8 that can freely rotate only one axis (rotation about an axis perpendicular to the paper surface in the front view of FIG. 3). The intermediate unit piece 5A-1, which is an inner intermediate part of the unit piece 5A constituting the skeleton unit 5, has joints 8 at both ends thereof, and the intermediate part bent into a crank shape serves as a connecting member 11, 12 or 13 described later. It is connected to the airfoil form 3 via The base unit piece 5A-2 on the base end side has a joint 8 at one end, but the other end is firmly fixed to the fixed part airframe 3A. The difference is that one end has a joint 8 and the other end is free. Adjacent skeletal units are connected by joints 8, and as shown in FIGS. 3 and 4, a pair of drive elements 9 arranged in parallel,
Are connected via rod ends 10 at both ends of the shaft and shafts 6A protruding from both sides of the skeleton unit. However, the shaft is not attached to the base end unit piece 5A-2, but the shaft 6B in place of the shaft is attached to the fixed part wing form 3
A (FIG. 3).
【0013】駆動腕の屈曲運動の発生方法 図5乃至図8には駆動腕2(2A,2B)の屈曲運動の
発生方法が示されている。駆動素子9は電気エネルギー
又は流体圧力エネルギー等により、シリンダから突き出
たロッド9Aがその軸方向に出入りして、駆動素子9全
体としては伸縮を起こして作動するもので、伸縮方向に
駆動力を発揮する機能を持っている。この伸縮により駆
動素子9はロッドエンド10により両端のシャフト6A
を伸縮方向に移動させる。一対の駆動素子9は等しい伸
縮を行う様に制御されるため、隣り合う骨格ユニット5
はその関節8を中心として、相互の角度を増減する運動
すなわち屈曲運動を生ずる。Method of Generating Bending Movement of Drive Arm FIGS. 5 to 8 show a method of generating a bending movement of the drive arm 2 (2A, 2B). The drive element 9 is a device in which the rod 9A protruding from the cylinder enters and exits in the axial direction due to electric energy or fluid pressure energy and the like, and the drive element 9 as a whole expands and contracts, and exhibits a driving force in the expansion and contraction direction. Have the ability to Due to the expansion and contraction, the drive element 9 is moved by the rod end 10 to the shaft 6A
Is moved in the direction of expansion and contraction. Since the pair of driving elements 9 are controlled to perform the same expansion and contraction, the adjacent skeleton units 5 are controlled.
Produces a movement centering on the joint 8 to increase or decrease the mutual angle, that is, a bending movement.
【0014】1条の駆動腕2(2A,2B)の6対の駆
動素子9は、それぞれ独自の動きをすることができる。
この6対の駆動素子9の動きが合成されて、駆動腕は全
体として図9に示すように曲線的に屈曲し、固定部骨格
ユニットの関節8を中心とする扇形状のしなやかな上下
運動を可能とする。この屈曲の形状は、6対の駆動素子
9の動きを独立に且つ任意に与えることにより、任意性
に富んだものとなる。Each of the six pairs of drive elements 9 of one drive arm 2 (2A, 2B) can move independently.
The movements of the six pairs of drive elements 9 are combined, and the drive arm as a whole is curved in a curved manner as shown in FIG. 9, and performs a fan-shaped supple vertical movement centering on the joint 8 of the fixed part skeleton unit. Make it possible. The shape of this bend is rich in arbitrariness by giving the movements of the six pairs of drive elements 9 independently and arbitrarily.
【0015】駆動腕による翼型枠の駆動 2条の駆動腕2(2A,2B)は前記のような機構にな
っているので、それぞれの駆動素子9を独立に伸縮させ
ることにより、各々の駆動腕は別々の屈曲運動をするこ
とができる。2条の駆動腕のうち前駆動腕2Aは、図1
0、図11及び図14に示すように骨格ユニット5の上
下の翼型枠連結部材11,13において一つの翼型枠3
と接続される。また後駆動腕2Bは上部の翼型枠連結部
材12により翼型枠3に接続される。すなわち、各翼型
枠3は、その3点において、前駆動腕2A及び後駆動腕
2Bと連結されている。したがって1及び2の屈曲形状
が決まれば、各翼型枠3はこの3個の連結部材11、1
2、13によりその位置と姿勢を与えられる。各翼型枠
3と駆動腕2の各骨格ユニット5とのこのような連結に
より、図2乃至図4に示すような形状輪郭を持つ羽ばた
き型駆動機構の片翼全体が構成される。Driving of Airfoil Formwork by Driving Arms Since the two driving arms 2 (2A, 2B) have the above-described mechanism, each of the driving elements 9 is independently expanded and contracted so that each driving The arms can perform different flexion movements. The front drive arm 2A of the two drive arms is shown in FIG.
As shown in FIGS. 11 and 12, one airfoil form 3 is connected to upper and lower airfoil form connecting members 11 and 13 of the skeleton unit 5.
Connected to The rear drive arm 2B is connected to the wing form 3 by the upper wing form connecting member 12. That is, each airfoil 3 is connected to the front drive arm 2A and the rear drive arm 2B at three points. Therefore, if the bent shapes of 1 and 2 are determined, each of the airfoil forms 3 is connected to the three connecting members 11, 1, and 1.
The position and orientation are given by 2, 13. Such a connection between each wing form 3 and each skeletal unit 5 of the drive arm 2 constitutes an entire wing of the fluttering drive mechanism having the shape contours as shown in FIGS.
【0016】駆動腕と翼型枠の連結部材 連結部材11は、図10乃至図16に示すように前駆動
腕2Aの骨格ユニットの駆動軸14のA点を中心に3軸
の角度変位可能な球面軸受けを持つ車輪であり、車輪の
外側面が翼型枠3の穴15に固定されている。この連結
構造により、連結部材11は前駆動腕1の屈曲による上
下方向の力を翼型枠3に伝える働きをする。連結部材1
2もまた後駆動腕2Bの骨格ユニットの駆動軸16のB
点を中心に同様の球面軸受けを持つ車輪であるが、車輪
の外側面は翼型枠3のスリット17にはめられており、
車輪はスリット内をスライドするよう拘束されている。
このスライドの自由度は、翼型枠3に俯仰角が付くとき
にA点とB点の距離が変化するのに対処するために与え
られている。この連結構造により、連結部材12は後駆
動腕2Bによる上下方向の力を翼型枠3に伝えるととも
に、翼型枠3に俯仰角変位を生じさせるモーメントを与
える働きをする。連結部材13は前駆動腕1の骨格ユニ
ットの駆動軸18を中心に円筒軸受け(車輪の回転の自
由度のみを持つ通常の軸受け)を持つ車輪であり、翼型
枠3に設けられた2枚の平行な案内板19,20によっ
て挟まれており、翼型枠3の俯仰角変化を自由にしたま
ま、翼型枠の下端部に横向きに力を伝えることができ
る。The connecting member of the driving arm and the airfoil form The connecting member 11 is capable of three-axis angular displacement around the point A of the driving shaft 14 of the skeletal unit of the front driving arm 2A as shown in FIGS. The wheel has a spherical bearing, and an outer surface of the wheel is fixed to a hole 15 of the airfoil form 3. With this connection structure, the connection member 11 functions to transmit the vertical force due to the bending of the front drive arm 1 to the airfoil form 3. Connecting member 1
2 is also the B of the drive shaft 16 of the skeleton unit of the rear drive arm 2B.
A wheel having a similar spherical bearing around a point, but the outer surface of the wheel is fitted in a slit 17 of the airfoil 3,
The wheels are constrained to slide within the slit.
The degree of freedom of the slide is given in order to cope with a change in the distance between the points A and B when the airfoil form 3 has an elevation angle. With this connection structure, the connection member 12 functions to transmit the vertical force of the rear drive arm 2B to the airfoil frame 3 and to give a moment to the airfoil frame 3 to cause a displacement of the elevation angle. The connecting member 13 is a wheel having a cylindrical bearing (a normal bearing having only a degree of freedom of rotation of the wheel) around the drive shaft 18 of the skeleton unit of the front drive arm 1. The guide plates 19 and 20 are parallel to each other, and a force can be laterally transmitted to the lower end portion of the airframe while the elevation angle of the airframe 3 is freely changed.
【0017】羽ばたき運動の実現 前駆動腕2A及び後駆動腕2Bに取り付けられたそれぞ
れ6対の駆動素子9の伸縮を正弦関数状に周期的に行う
ことにより、前駆動腕2A及び後駆動腕2Bは互いに少
しずれた屈曲変形を示し、扇型状の上下運動を行う。こ
れに取り付けられた各翼型枠3は、駆動腕との接続点で
ある連結部材11及び連結部材12の上下位置関係によ
り、その上下位置変位と俯仰角変位を生ずる。各翼型枠
3がこのような運動を生ずる結果、翼全体は適当な俯仰
角変化を示しながら上下に周期的に羽ばたくことができ
る。Realization of flapping motion The front drive arm 2A and the rear drive arm 2B are periodically extended and contracted in a sinusoidal manner by the six pairs of drive elements 9 attached to the front drive arm 2A and the rear drive arm 2B. Indicate bending deformation slightly shifted from each other, and perform a sector-shaped vertical motion. Each of the airfoil frames 3 attached thereto has a vertical position displacement and an elevation angle displacement due to the vertical position relationship of the connecting members 11 and 12 which are connection points with the drive arm. As a result of such a movement of each airfoil 3, the entire wing can periodically flap up and down while exhibiting an appropriate elevation angle change.
【0018】翼型枠による翼面被膜の駆動 本推進器の翼面を形成する翼面皮膜4は、このこのよう
な翼型枠3に取り付けられて被覆しているので、翼面形
状を健全に保ったまま羽ばたき運動をする事が出来る。Driving of Wing Surface Coating by Airfoil Form The wing surface coating 4 forming the wing surface of the present propulsion device is attached to and covers such an airfoil form 3 so that the wing surface shape is sound. You can do a flapping exercise while keeping the
【0019】多数の駆動素子の制御方法 図17に羽ばたき運動を行わせるための各駆動素子対の
伸縮の制御方式を示す。各駆動素子対の名称を図4のよ
うに名付ける。すなわち、Ac11、Ac12、・・・
Ac16は前駆動腕2Aに取り付けられた駆動素子の対
を示しており、翼の根本側から翼先端に向かって順に
1,2,・・・6と番号をつけている。またAc21,
Ac22、・・・Ac26は後駆動腕2Bに取り付けら
れた駆動素子の対を示しており、前駆動腕2Aと同様に
翼の根本側から翼先端に向かって番号をつけている。各
駆動素子の動きは図17のグラフで示している様な運動
の繰り返しである。縦軸は駆動素子のロッドの伸び、横
軸は時間の経過を示している。Acijの伸び長さをε
ijと表すと、FIG. 17 shows a control method of expansion and contraction of each drive element pair for performing a fluttering motion. Each drive element pair is named as shown in FIG. That is, Ac11, Ac12,...
Ac16 indicates a pair of drive elements attached to the front drive arm 2A, and is numbered 1, 2, ... 6 in order from the root side of the wing to the tip of the wing. Ac21,
Ac22,... Ac26 indicate a pair of drive elements attached to the rear drive arm 2B, and are numbered from the root side of the blade toward the blade tip similarly to the front drive arm 2A. The movement of each drive element is a repetition of the movement as shown in the graph of FIG. The vertical axis shows the elongation of the rod of the driving element, and the horizontal axis shows the passage of time. The elongation length of Acij is ε
When expressed as ij,
【0020】ε1j=ε0 K{ωt+δj } ;
δj =(j−1)α ε2j=ε0 K{ωt+δj +β} (j=1,2,・・・,6)Ε 1j = ε 0 K {ωt + δ j };
δ j = (j−1) α ε 2j = ε 0 K {ωt + δ j + β} (j = 1, 2,..., 6)
【0021】により各駆動素子の伸び運動が制御され
る。ここにtは時間を示す変数、ωは周期運動の角周波
数である。Kは周期2π/ωの周期関数で、 最大値;Kmax = 1 最小値;Kmin = −k , k>0 なる性質を持つ任意の関数である。関数Kの具体的な1
例は K(t) = sin (ωt) (この場合、自動的に
k=1) である。なお伸び長さ0は、図3及び図4のように各駆
動腕がまっすぐ伸びている状態の駆動素子の伸びとして
定義している。この制御方法では、関数Kと角周波数ω
を決めれば、羽ばたき運動の大きさと形態は、3つのパ
ラメータεO 、α及びβの数値で記述される。αは駆動
素子間の翼端方向の位相差、βは駆動腕間の位相差を示
している。Thus, the extension movement of each drive element is controlled. Here, t is a variable indicating time, and ω is an angular frequency of the periodic motion. K is a periodic function having a period of 2π / ω, and is an arbitrary function having the following characteristics: maximum value; Kmax = 1 minimum value; Kmin = −k, k> 0. Concrete 1 of function K
An example is K (t) = sin (ωt) (in this case, automatically
k = 1). The extension length 0 is defined as the extension of the drive element in a state where each drive arm extends straight as shown in FIGS. In this control method, the function K and the angular frequency ω
Is determined, the magnitude and form of the fluttering motion are described by numerical values of three parameters ε O , α and β. α indicates the phase difference between the driving elements in the blade tip direction, and β indicates the phase difference between the driving arms.
【0022】羽ばたき機構の運動及び駆動素子の制御の
実施例 図18に上記制御方法により実現される本件駆動機構及
びその羽ばたき運動を示す。この運動においては、 K(t)= sin (ωt) で、 εO 10=5mm α=10・π/180 β=5・π/180 と指定している。この場合の図3及び図4に示す機構の
大きさは、図中に描いた単位長さを100mmとしたと
きのものである。εO はこの寸法において駆動機構の各
部材が翼面皮膜から突き出さないように選択している。Embodiment of Motion of Flap Mechanism and Control of Driving Element FIG. 18 shows the present drive mechanism and its flapping motion realized by the above control method. In this motion, K (t) = sin (ωt) and ε O 10 = 5 mm α = 10 · π / 180 β = 5 · π / 180 In this case, the size of the mechanism shown in FIGS. 3 and 4 is obtained when the unit length drawn in the figures is 100 mm. ε O is selected such that the components of the drive mechanism do not protrude from the blade coating at this dimension.
【0023】駆動素子はコンピュータ及びその関連機器
と接続することにより、任意の伸縮運動を精密に実現さ
せることができる。したがって、上記の制御法における
関数Kの形状や角周波数ωの値はかなり広範に実現する
ことができる。特にωの小さい値については実現が容易
である。したがってこのような駆動機構と制御方法を使
用することにより、非常に緩やかでかつ滑らかな羽ばた
き運動を推進翼において実現することができる。By connecting the drive element to a computer and its related equipment, it is possible to precisely realize an arbitrary expansion and contraction movement. Therefore, the shape of the function K and the value of the angular frequency ω in the above-described control method can be realized in a considerably wide range. In particular, it is easy to realize a small value of ω. Therefore, by using such a driving mechanism and a control method, a very gentle and smooth flapping motion can be realized in the propulsion wing.
【0024】以上、本発明の実施の形態について説明し
てきたが、本発明はこれに限定されることなく、請求項
の記載の範囲内において各種の変形、変更が可能なこと
は当業者には自明であろう。The embodiments of the present invention have been described above. However, the present invention is not limited to these embodiments, and it is obvious to those skilled in the art that various modifications and changes can be made within the scope of the claims. It would be obvious.
【0025】[0025]
【発明の効果】以上に述べたように、本発明に係る駆動
機構とその駆動制御法は、内部駆動型羽ばたき式推進器
を安定した状態で非常に緩やかに、滑らかに且つしなや
かに運動させることができ、しかも効果的に水を掻いて
推進力を発生するように動かすことができ、その動作の
信頼性を向上させることができる。その結果、本発明は
従来のプロペラに比べて振動雑音及びキャビテーション
の発生の少ない静粛な水中船舶用推進器を実現すること
ができる。As described above, the drive mechanism and the drive control method according to the present invention allow the internal drive type fluttering propulsion unit to move very slowly, smoothly and supplely in a stable state. In addition, it can be moved to generate a propulsive force by effectively scraping water, and the reliability of the operation can be improved. As a result, the present invention can realize a quiet underwater marine propulsion device that generates less vibration noise and cavitation than the conventional propeller.
【図1】本発明の実施の形態に係る羽ばたき式推進器を
装備した潜水船の概念図である。FIG. 1 is a conceptual diagram of a submarine equipped with a fluttering type propulsion device according to an embodiment of the present invention.
【図2】同推進器の機械的構成を示す内部透視図であ
る。FIG. 2 is an internal perspective view showing a mechanical configuration of the thruster.
【図3】同推進器の駆動機構を示す正面図である。FIG. 3 is a front view showing a driving mechanism of the propulsion device.
【図4】同推進器の駆動機構を示す平面図である。FIG. 4 is a plan view showing a driving mechanism of the propulsion device.
【図5】同駆動機構の基本単位の平面図である。FIG. 5 is a plan view of a basic unit of the drive mechanism.
【図6】同駆動機構の基本単位の正面図である。FIG. 6 is a front view of a basic unit of the drive mechanism.
【図7】同駆動機構を構成する駆動素子の動作を示す正
面図である。FIG. 7 is a front view showing an operation of a drive element constituting the drive mechanism.
【図8】同駆動機構の基本単位の伸長時(A)及び収縮
時(B)の動作を示す正面図である。FIG. 8 is a front view showing the operation of the drive mechanism when the basic unit is extended (A) and contracted (B).
【図9】同駆動機構を構成する前駆動腕の動作を示す正
面図である。FIG. 9 is a front view showing an operation of a front drive arm constituting the drive mechanism.
【図10】同駆動機構を構成する翼型枠部分の平面図で
ある。FIG. 10 is a plan view of an airfoil form part constituting the drive mechanism.
【図11】同駆動機構を構成する翼型枠部分の側面図で
ある。FIG. 11 is a side view of an airfoil form part constituting the drive mechanism.
【図12】図11中のE−E線断面図(A)及び該断面
部分の正面図(B)である。12 is a sectional view taken along line EE in FIG. 11 (A) and a front view of the sectional portion (B).
【図13】図11中のF−F線断面図(A)及び該断面
部分の正面図(B)である。13 is a cross-sectional view (A) along line FF in FIG. 11 and a front view (B) of the cross-sectional portion.
【図14】同駆動機構を構成する翼型枠部分の俯仰角運
動時の側面図である。FIG. 14 is a side view at the time of the elevation angle movement of the airfoil forming part constituting the drive mechanism.
【図15】図14中のG−G線断面図である。FIG. 15 is a sectional view taken along line GG in FIG. 14;
【図16】図14中のH−H線断面図である。FIG. 16 is a sectional view taken along line HH in FIG. 14;
【図17】本発明に係る羽ばたき式推進器として有効な
羽ばたき運動を実現するための駆動素子の伸縮制御の方
法を示すグラフ図である。FIG. 17 is a graph showing a method of controlling expansion and contraction of a driving element for realizing a fluttering motion effective as a fluttering type propulsion device according to the present invention.
【図18】本発明に係る羽ばたき式推進器の羽ばたき運
動を1周期間の形態の変化で示す図である。FIG. 18 is a view showing a fluttering motion of the fluttering type propulsion device according to the present invention by a change in form during one cycle.
1 翼部 2 駆動腕、2A 前駆動腕、2B 後駆動腕 3 翼型枠、3A 固定部翼型枠 4 翼面皮膜 5 骨格ユニット、5A ユニット片、5A−1
中間ユニット片、 5A−2 基端ユニット片、5A−3 先端ユニッ
ト片 6A シャフト、6B シャフト 8 関節 9 駆動素子、9A ロッド 10 ロッドエンド 11 連結部材(前駆動腕上部用) 12 連結部材(後駆動腕用) 13 連結部材(前駆動腕下部用) 14 前駆動腕用骨格ユニットの翼型枠駆動軸 15 翼型枠連結部材固定用穴 16 後駆動腕用骨格ユニットの翼型枠駆動軸 17 スリット 18 前駆動腕用骨格ユニットの下部翼型枠駆動軸 19、20 案内板Reference Signs List 1 wing part 2 drive arm, 2A front drive arm, 2B rear drive arm 3 wing formwork, 3A fixed part wing formwork 4 wing surface coating 5 skeleton unit, 5A unit piece, 5A-1
Intermediate unit piece, 5A-2 Base end unit piece, 5A-3 Tip unit piece 6A shaft, 6B shaft 8 Joint 9 Drive element, 9A Rod 10 Rod end 11 Connecting member (for upper front driving arm) 12 Connecting member (for rear driving) 13) Connection member (for lower front drive arm) 14 Wing form shaft drive shaft of skeleton unit for front drive arm 15 Hole for fixing wing form connection member 16 Wing form shaft drive shaft of skeleton unit for rear drive arm 17 Slit 18 Lower wing form drive shaft of skeleton unit for front drive arm 19, 20 Guide plate
Claims (4)
つ水上船舶を推進するために、湾曲機能を有する駆動ユ
ニットを複数個連結してなる駆動腕を弾性翼部内に設
け、該駆動腕で該弾性翼部を羽ばたかせるようにした内
部駆動型羽ばたき式推進器において、 前記弾性翼部内に左右方向に所定間隔で設けた複数の翼
型枠と、 該複数の翼型枠間にこれを連結するように設けた複数個
の骨格ユニットであって、中間部が前記複数の翼型枠の
中間において関節を介して屈曲自在に結合された左右一
対のユニット片よりなる骨格ユニットと、 該各骨格ユニットに対応して前記複数の翼型枠間にこれ
を連結するように夫々設けた複数個の伸縮構造の駆動素
子とを具備し、 前記駆動素子を伸縮駆動させることにより前記骨格ユニ
ットを屈曲させて弾性翼部を羽ばたかせるようにしたこ
とを特徴とする内部駆動型羽ばたき式推進器駆動機構。In order to propel an underwater vehicle such as a submersible or a watercraft having a sufficient draft, a drive arm formed by connecting a plurality of drive units having a bending function is provided in an elastic wing portion. An internally driven fluttering propulsion device in which the elastic wings are fluttered by a driving arm, wherein a plurality of wing forms provided in the elastic wings at predetermined intervals in the left-right direction, and between the plurality of wing forms. A plurality of skeletal units provided so as to connect them, a skeletal unit comprising a pair of left and right unit pieces whose intermediate portion is flexibly coupled via a joint in the middle of the plurality of airfoil frames, A plurality of telescopic drive elements each provided between the plurality of airfoil frames so as to connect the airframes to the respective skeleton units, and the skeleton unit is driven by expanding and contracting the drive elements. Bend the elastic wings Internal driven flapping propulsion device drive mechanism, characterized in that the as flapping.
の前後に一対の前記伸縮構造の駆動素子を設けたことを
特徴とする請求項1に記載の内部駆動型羽ばたき式推進
器駆動機構。2. The internal drive type fluttering type propulsion device driving mechanism according to claim 1, wherein a pair of driving elements of the telescopic structure are provided before and after the one frame unit.
する前記複数個の駆動素子により構成された駆動腕を、
前記弾性翼部内に前後平行に少なくとも二列設け、その
前駆動腕は前記翼型枠の前方に連結され、その後駆動腕
は前記翼型枠の後方に連結されていることを特徴とする
請求項1又は2に記載の内部駆動型羽ばたき式推進器駆
動機構。3. A driving arm comprising the plurality of skeleton units and the plurality of driving elements corresponding thereto,
At least two rows are provided in the elastic wing portion in a front-rear parallel manner, a front drive arm thereof is connected to a front of the airfoil, and a drive arm is thereafter connected to a rear of the airfoil. 3. The internal drive type fluttering type propulsion device driving mechanism according to 1 or 2.
羽ばたき式推進器駆動機構を用い、その前記複数個の各
駆動素子を同時に且つ各別に駆動制御して、推進器全体
として羽ばたき運動を行わせるようにしたことを特徴と
する内部駆動型羽ばたき式推進器の制御方法。4. The flapping of the plurality of driving elements simultaneously and individually by using the internally driven flapping type propulsion device driving mechanism according to claim 1, and flapping as a whole of the propulsion device. A method of controlling an internally-driven fluttering type propulsion device, wherein a motion is performed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000025370A JP3385463B2 (en) | 2000-02-02 | 2000-02-02 | Internal drive type fluttering propulsion drive mechanism and control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000025370A JP3385463B2 (en) | 2000-02-02 | 2000-02-02 | Internal drive type fluttering propulsion drive mechanism and control method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001213392A true JP2001213392A (en) | 2001-08-07 |
JP3385463B2 JP3385463B2 (en) | 2003-03-10 |
Family
ID=18551236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000025370A Expired - Lifetime JP3385463B2 (en) | 2000-02-02 | 2000-02-02 | Internal drive type fluttering propulsion drive mechanism and control method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3385463B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007186046A (en) * | 2006-01-12 | 2007-07-26 | Tatsuro Yokoi | Rocking type lateral fillet propulsion human power ship |
CN103384957A (en) * | 2011-01-10 | 2013-11-06 | 本亚明·彼得罗·菲拉尔多 | Mechanisms for creating undulating motion such as for propulsion and for harnessing the energy of moving fluid |
CN110027692A (en) * | 2019-05-14 | 2019-07-19 | 西南石油大学 | A kind of amphibious robot promoted using fluctuation fin |
CN110329473A (en) * | 2019-07-09 | 2019-10-15 | 北京机电工程研究所 | A kind of bionic pectoral fin motion mechanism design |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104309788A (en) * | 2014-10-27 | 2015-01-28 | 哈尔滨工业大学 | Double-fluctuation pectoral-fin cooperative-propel ray-imitated underwater vehicle |
CN109367744A (en) * | 2018-09-01 | 2019-02-22 | 冯亿坤 | Bionical object flapping wing robot |
CN111152904B (en) * | 2020-01-06 | 2020-12-11 | 张尚丽 | Multistage-driving bionic underwater robot driving system and driving method |
-
2000
- 2000-02-02 JP JP2000025370A patent/JP3385463B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007186046A (en) * | 2006-01-12 | 2007-07-26 | Tatsuro Yokoi | Rocking type lateral fillet propulsion human power ship |
CN103384957A (en) * | 2011-01-10 | 2013-11-06 | 本亚明·彼得罗·菲拉尔多 | Mechanisms for creating undulating motion such as for propulsion and for harnessing the energy of moving fluid |
CN110027692A (en) * | 2019-05-14 | 2019-07-19 | 西南石油大学 | A kind of amphibious robot promoted using fluctuation fin |
CN110329473A (en) * | 2019-07-09 | 2019-10-15 | 北京机电工程研究所 | A kind of bionic pectoral fin motion mechanism design |
Also Published As
Publication number | Publication date |
---|---|
JP3385463B2 (en) | 2003-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7204731B2 (en) | Linear propulsor with radial motion | |
US7357684B2 (en) | Control system for a linear propulsor array | |
US6250585B1 (en) | Impellers with bladelike elements and compliant tuned transmission shafts and vehicles including same | |
US7244151B2 (en) | Linear propulsor with linear motion | |
JP4814692B2 (en) | Navigation system | |
RU2482012C2 (en) | Fin propulsor | |
US7090548B1 (en) | Method of using a linear propulsor array for propulsion and navigation | |
US20200149555A1 (en) | Vehicle with traveling wave thrust module apparatuses, methods and systems | |
JP2001213392A (en) | Internally driven flapping propeller drive mechanism and control method thereof | |
US20220170438A1 (en) | Vehicle with traveling wave thrust module apparatuses, methods and systems | |
BR112016012895B1 (en) | FINN-BASED VESSEL PROPULSION SYSTEM | |
JP2013123988A (en) | Underwater propeller | |
CN109319072B (en) | Underwater glider | |
CN114212228A (en) | Bionic fish tail and bionic robot fish | |
JP6032647B2 (en) | Flexible wing and ship | |
RU2482010C2 (en) | Method of producing flapping motion and flapping screw to this end | |
US7090550B2 (en) | Propeller with variable geometry and method for varying geometry of a propeller | |
JP2920206B2 (en) | Internally driven flapping thruster | |
CN104670449B (en) | Bionical pair of tail-rotor of swing cover type | |
CN115432154A (en) | Variable-stiffness simulated bat flexible flapping wing propulsion device with span-chord-direction movement function | |
Cai et al. | Posture analysis and application of a bionic pectoral foil | |
CN211000799U (en) | Frog-wheel-paddle-leg-imitating integrated amphibious propeller | |
CN115066550A (en) | Vehicle, method and system with traveling wave thrust module apparatus | |
Low et al. | Initial prototype design and development of hybrid modular underwater vehicles | |
CN115195368B (en) | Amphibious propeller for 4D printing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
R150 | Certificate of patent or registration of utility model |
Ref document number: 3385463 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |