JP2001210337A - Solid polymer electrolyte membrane and a solid polymer electrolyte type fuel cell - Google Patents

Solid polymer electrolyte membrane and a solid polymer electrolyte type fuel cell

Info

Publication number
JP2001210337A
JP2001210337A JP2000020644A JP2000020644A JP2001210337A JP 2001210337 A JP2001210337 A JP 2001210337A JP 2000020644 A JP2000020644 A JP 2000020644A JP 2000020644 A JP2000020644 A JP 2000020644A JP 2001210337 A JP2001210337 A JP 2001210337A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
solid polymer
electrolyte membrane
fuel cell
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000020644A
Other languages
Japanese (ja)
Inventor
Mitsuaki Kato
充明 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2000020644A priority Critical patent/JP2001210337A/en
Publication of JP2001210337A publication Critical patent/JP2001210337A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Conductive Materials (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To prepare a solid polymer electrolyte membrane and a solid polymer electrolyte type fuel cell which are inexpensive and has a high power generation performance. SOLUTION: In a homogeneous high polymer base material in a face, a solid polymer electrolyte membrane 2 in the membrane area which characterizes the introduction of an ion exchange group and a conjugate 10 of electrode 3a, 3b being with a catalyst with the solid polymer electrolyte membrane 2 are pinched and supported by a separator 4a, 4b to compose the solid polymer electrolyte type fuel cell.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は燃料電池に関する。[0001] The present invention relates to a fuel cell.

【0002】[0002]

【従来の技術】燃料電池は、一般的に多数のセルが積層
されており、該セルは、二つの電極(燃料極と空気極)
で電解質を挟んだ構造をしている。
2. Description of the Related Art A fuel cell generally has a large number of cells stacked, and the cell has two electrodes (a fuel electrode and an air electrode).
Has a structure sandwiching the electrolyte.

【0003】燃料極では水素ガスが触媒に接触すること
により下記の反応が生ずる。
At the fuel electrode, the following reaction occurs when hydrogen gas comes into contact with the catalyst.

【0004】 2H → 4H +4e ・・・・・・・・・(1) Hは、電解質中を移動し空気極触媒に達し空気中の酸
素と反応して水となる。
[0004] 2H 2 → 4H + + 4e - ········· (1) H + is a water migrate through the electrolyte to react with oxygen in the air reaching the air electrode catalyst.

【0005】 4H +4e +O → 2HO ・・・・(2) 上記の反応により水素と酸素を使用して電気分解の逆反
応で発電し、水以外の排出物がなくクリーンな発電装置
として注目されている。
[0005] 4H + + 4e + O 2 → 2H 2 O (2) Power is generated by the reverse reaction of electrolysis using hydrogen and oxygen by the above-mentioned reaction, and clean power generation is performed without discharge other than water. It is drawing attention as a device.

【0006】大気の汚染をできる限り減らすために自動
車の排ガス対策が重要になっており、その対策の一つと
して電気自動車が使用されているが、充電設備や走行距
離などの問題で普及に至っていない。燃料電池を使用し
た自動車が最も将来性のあるクリーンな自動車であると
見られている。
[0006] In order to reduce air pollution as much as possible, measures against exhaust gas from automobiles have become important, and as one of the measures, electric vehicles have been used. However, due to problems such as charging facilities and mileage, they have become widespread. Not in. Vehicles using fuel cells are seen as the most promising clean vehicles.

【0007】燃料電池の中でも固体高分子電解質型燃料
電池が低温で作動するため自動車用として最も有望であ
る。この固体高分子電解質型燃料電池の電解質は固体高
分子電解質膜である。
[0007] Among the fuel cells, solid polymer electrolyte fuel cells are most promising for automobiles because they operate at low temperatures. The electrolyte of the solid polymer electrolyte fuel cell is a solid polymer electrolyte membrane.

【0008】従来の燃料電池用固体高分子電解質膜には
パーフルオロカーボンスルホン酸が用いられていたが、
燃料電池の主要構成部品である固体高分子電解質膜が高
価であることが固体高分子電解質型燃料電池の大きな問
題点であった。燃料電池が広く普及するために、固体高
分子電解質膜を安価にすることが重要である。
Conventional solid polymer electrolyte membranes for fuel cells have used perfluorocarbon sulfonic acid.
The high cost of the solid polymer electrolyte membrane, which is a main component of the fuel cell, has been a major problem of the solid polymer electrolyte fuel cell. In order for fuel cells to be widely used, it is important to make solid polymer electrolyte membranes inexpensive.

【0009】固体高分子電解質膜を安価にするために安
価なポリエチレンやETFEなどの安価な膜状高分子基
材に放射線グラフト重合を用いてスルホン酸基などのア
ニオン基を導入して製造された固体高分子電解質膜が考
えられている。
In order to make the solid polymer electrolyte membrane inexpensive, it is manufactured by introducing an anionic group such as a sulfonic acid group using radiation graft polymerization into an inexpensive membrane-like polymer substrate such as inexpensive polyethylene or ETFE. Solid polymer electrolyte membranes have been considered.

【0010】従来技術1として、特開平7−05017
0号公報には、膜状高分子基材としてポリオレフィンを
用い、この膜状高分子基材にスルホン酸基を導入した固
体高分子電解質膜が開示されている。
As prior art 1, Japanese Patent Application Laid-Open No. 7-05017
No. 0 discloses a solid polymer electrolyte membrane in which a polyolefin is used as a membrane polymer substrate and a sulfonic acid group is introduced into the membrane polymer substrate.

【0011】従来技術2として、特開平9−10232
2号公報には、膜状高分子基材として炭化フッ素系ビニ
ルモノマーと炭化水素系ビニルモノマーとの共重合体を
用い、この膜状高分子基材にスルホン酸基を導入した固
体高分子電解質膜が開示されている。
As prior art 2, Japanese Patent Application Laid-Open No. 9-10232
No. 2 discloses a solid polymer electrolyte in which a copolymer of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer is used as a film-like polymer substrate, and a sulfonic acid group is introduced into the film-like polymer substrate. A membrane is disclosed.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、燃料電
池を実用化するためには、従来技術1、従来技術2の固
体電解質高分子膜を用いた燃料電池の発電性能をさらに
向上させる必要がある。
However, in order to put the fuel cell to practical use, it is necessary to further improve the power generation performance of the fuel cell using the solid electrolyte polymer membrane of the prior art 1 and the prior art 2.

【0013】本発明は上記課題を解決したもので、安価
で、かつ高い発電性能を有する固体高分子電解質膜およ
び固体高分子電解質型燃料電池を提供する。
The present invention has solved the above-mentioned problems, and provides a solid polymer electrolyte membrane and a solid polymer electrolyte fuel cell which are inexpensive and have high power generation performance.

【0014】[0014]

【課題を解決するための手段】上記技術的課題を解決す
るために、本発明の請求項1において講じた技術的手段
(以下、第1の技術的手段と称する。)は、面内で均質
な膜状高分子基材に、イオン交換基を導入したことを特
徴とする固体高分子電解質膜である。
Means for Solving the Problems In order to solve the above technical problems, the technical means (hereinafter referred to as the first technical means) taken in claim 1 of the present invention is homogeneous in a plane. A solid polymer electrolyte membrane characterized by introducing an ion exchange group into a simple membrane-like polymer base material.

【0015】上記第1の技術的手段による効果は、以下
のようである。
The effects of the first technical means are as follows.

【0016】すなわち、得られた固体高分子電解質膜も
面内で均質なものとなるので、吸水速度が面内で均一で
かつ大きい固体高分子電解質膜となり、高い発電性能を
有し、耐久性に優れた燃料電池ができる。
That is, since the obtained solid polymer electrolyte membrane is also homogeneous in the plane, the solid polymer electrolyte membrane has a uniform and large water absorption rate in the plane, and has high power generation performance and durability. An excellent fuel cell can be obtained.

【0017】上記技術的課題を解決するために、本発明
の請求項2において講じた技術的手段(以下、第2の技
術的手段と称する。)は、前記膜状高分子基材の機械的
性質が、面内で均質であることを特徴とする請求項1記
載の固体高分子電解質膜である。
In order to solve the above technical problem, the technical means (hereinafter referred to as second technical means) taken in claim 2 of the present invention is a mechanical means of the film-like polymer substrate. 2. The solid polymer electrolyte membrane according to claim 1, wherein the properties are uniform in the plane.

【0018】上記第2の技術的手段による効果は、以下
のようである。
The effects of the second technical means are as follows.

【0019】すなわち、機械的性質が均質であること
は、膜状高分子基材の分子の配向性がないか低いことを
意味し、そのため吸水速度の大きい固体高分子電解質膜
が得られる。
That is, homogeneity of the mechanical properties means that there is no or low molecular orientation of the film-like polymer base material, and therefore a solid polymer electrolyte membrane having a high water absorption rate can be obtained.

【0020】上記技術的課題を解決するために、本発明
の請求項3において講じた技術的手段(以下、第3の技
術的手段と称する。)は、前記膜状高分子基材が炭化フ
ッ素系ビニルモノマーと炭化水素系ビニルモノマーとの
共重合体であることを特徴とする請求項1記載の固体高
分子電解質膜である。
In order to solve the above technical problem, the technical means (hereinafter referred to as the third technical means) taken in claim 3 of the present invention is that the film-like polymer substrate is made of fluorocarbon. 2. The solid polymer electrolyte membrane according to claim 1, which is a copolymer of a vinyl monomer and a hydrocarbon vinyl monomer.

【0021】上記第3の技術的手段による効果は、以下
のようである。
The effects of the third technical means are as follows.

【0022】すなわち、膜状高分子基材として、上記材
料を使用することにより、安価でかつ機械的強度が優れ
た固体高分子電解質膜が得られ、安価でかつ耐久性に優
れた燃料電池ができる。
That is, by using the above-mentioned material as the membrane polymer substrate, a solid polymer electrolyte membrane which is inexpensive and has excellent mechanical strength can be obtained, and a fuel cell which is inexpensive and has excellent durability can be obtained. it can.

【0023】上記技術的課題を解決するために、本発明
の請求項4において講じた技術的手段(以下、第4の技
術的手段と称する。)は、前記アニオン基がスチレンス
ルホン酸塩であることを特徴とする請求項1記載の固体
高分子電解質膜である。
In order to solve the above-mentioned technical problem, a technical measure taken in claim 4 of the present invention (hereinafter referred to as a fourth technical measure) is that the anionic group is a styrene sulfonate. The solid polymer electrolyte membrane according to claim 1, wherein:

【0024】上記第4の技術的手段による効果は、以下
のようである。
The effects of the fourth technical means are as follows.

【0025】すなわち、容易にかつ安価に固体高分子電
解質膜を製造できる。また、スチレンスルホン酸塩の解
離定数が高いので、電気抵抗の低い固体高分子電解質膜
を製造できる。
That is, a solid polymer electrolyte membrane can be easily and inexpensively manufactured. Further, since the dissociation constant of styrene sulfonate is high, a solid polymer electrolyte membrane having low electric resistance can be manufactured.

【0026】上記技術的課題を解決するために、本発明
の請求項5において講じた技術的手段(以下、第5の技
術的手段と称する。)は、固体高分子電解質膜と触媒を
有する電極の接合体をセパレータで挟持したことを特徴
とする固体高分子電解質型燃料電池である。
In order to solve the above technical problems, the technical means (hereinafter referred to as fifth technical means) taken in claim 5 of the present invention is an electrode having a solid polymer electrolyte membrane and a catalyst. A solid polymer electrolyte fuel cell characterized in that the joined body is sandwiched between separators.

【0027】上記第5の技術的手段による効果は、以下
のようである。
The effects of the fifth technical means are as follows.

【0028】すなわち、安価で、吸水速度が大きい固体
高分子電解質膜を使用しているので、安価で、高い発電
性能を有する燃料電池ができる。
That is, since a solid polymer electrolyte membrane which is inexpensive and has a high water absorption rate is used, a fuel cell which is inexpensive and has high power generation performance can be obtained.

【0029】[0029]

【発明の実施の形態】高い発電性能の燃料電池を得るた
めには、発電時に高い低い電気抵抗を持つ固体高分子電
解質膜が必要である。本発明者は、膜状高分子基材にイ
オン交換基を導入した固体高分子電解質膜の電気抵抗を
決めている要因について考察と試験を実施し、本発明に
至った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to obtain a fuel cell having high power generation performance, a solid polymer electrolyte membrane having high and low electric resistance during power generation is required. The present inventor has conducted studies and studies on factors that determine the electric resistance of a solid polymer electrolyte membrane in which an ion exchange group has been introduced into a membrane-like polymer substrate, and reached the present invention.

【0030】固体高分子電解質膜の電気抵抗は、膜中の
含水量および膜厚方向の含水量分布によって決められ
る。このうち固体高分子電解質膜の吸水速度が、発電時
の固体高分子電解質膜の電気抵抗に影響していること、
この吸水速度を決めている要因として、固体高分子電解
質膜を製造する出発原料の膜状高分子基材の特性が重要
であることを発見した。すなわち、面方向に無配向であ
る膜状高分子基材を用いることにより固体高分子電解質
膜の吸水速度を向上でき、燃料電池の発電性能を向上で
きることを発見した。
The electric resistance of the solid polymer electrolyte membrane is determined by the water content in the membrane and the water content distribution in the film thickness direction. Among them, the water absorption rate of the solid polymer electrolyte membrane affects the electric resistance of the solid polymer electrolyte membrane during power generation,
As a factor that determines the water absorption rate, it has been found that the characteristics of the film-like polymer base material as a starting material for producing a solid polymer electrolyte membrane are important. That is, it has been discovered that the use of a film-like polymer base material that is non-oriented in the plane direction can improve the water absorption rate of the solid polymer electrolyte membrane, thereby improving the power generation performance of the fuel cell.

【0031】電解質が固体高分子電解質膜の場合は、電
解質の性能を維持するために一定以上の含水量が必要で
ある。式(1)および式(2)の燃料電池の発電反応に
おいて、燃料極からのHの移動に伴い水も固体高分子
電解質膜内を酸化剤極側へ移動する。このため燃料極側
の固体高分子電解質膜の含水量が低下するので、固体高
分子電解質膜の電気抵抗が増大し、発電性能が低下す
る。
When the electrolyte is a solid polymer electrolyte membrane, a certain water content is required to maintain the performance of the electrolyte. In the power generation reaction of the fuel cells of the formulas (1) and (2), water also moves to the oxidant electrode side in the solid polymer electrolyte membrane with the movement of H + from the fuel electrode. For this reason, the water content of the solid polymer electrolyte membrane on the fuel electrode side decreases, so that the electric resistance of the solid polymer electrolyte membrane increases and the power generation performance decreases.

【0032】これを防止するために、燃料極に供給する
燃料ガスに水分を含ませて供給している。固体高分子電
解質膜の吸水速度が大きいと、燃料ガスからの水の供
給、H の移動に伴う水の移動に対しても安定した含水
量を維持でき、燃料電池の発電性能を向上できる。
To prevent this, supply to the fuel electrode
The fuel gas is supplied with moisture. Solid polymer
If the water absorption rate of the degraded membrane is high,
Salary, H +Stable water content even with water movement accompanying the movement of water
The amount can be maintained, and the power generation performance of the fuel cell can be improved.

【0033】膜状高分子基材は、Tダイ法(スリットか
ら押し出した細長く扁平なシート状の素材を引張装置に
よって冷却浴中を強く牽伸しながら成形する方法)やイ
ンフレーション法(管状の押出物を最適の大気中に放冷
しながら管中に空気を吹き込んで大きい円筒状に膨らま
せるように成形した後、これを2本のロールの間に絞っ
て扁平なシート状になしその両縁をナイフで切断してフ
ィルムを作る方法)などで製造されている。
The film-like polymer substrate is formed by a T-die method (a method in which a thin and flat sheet-like material extruded from a slit is formed while being strongly stretched in a cooling bath by a tension device) or an inflation method (a tubular extrusion method). Air is blown into the tube while it is allowed to cool to the optimal atmosphere, and it is formed so as to expand into a large cylinder. Then, it is squeezed between two rolls to form a flat sheet. To make a film by cutting with a knife).

【0034】これらの方法で製造された膜状高分子基材
はその製造過程から基材に延伸がかかるため、膜面内で
延伸配向しやすい、延伸方向と垂直方向では機械的物
性、例えば引張破断強度や伸びなどが異なってしまう。
例えば高分子基材の延伸方向と延伸垂直方向の引張破断
伸びの比が0.8より小さいときは延伸配向の程度が大
きいことを意味し、この膜状高分子基材を用いたときに
は導入したイオン交換基を有する化合物も基材の配向方
向に配向する。できあがった固体高分子電解質膜は密な
分子構造をとることになるため、配向していない粗な膜
に比べ水を吸いにくい膜となる。このため固体高分子電
解質膜の吸水速度が低くなり発電性能の低い燃料電池と
なってしまう。一方、無配向の膜状高分子基材を用いる
ことによりイオン交換基を有する化合物も無配向となる
ことによって、固体高分子電解質膜の吸水速度が向上
し、燃料電池の発電性能が向上する。
The film-like polymer substrate produced by these methods is easily stretched in the film plane because the substrate is stretched during the production process, and has mechanical properties such as tensile strength in the direction perpendicular to the stretching direction. Breaking strength and elongation will be different.
For example, when the ratio of the tensile elongation at break in the stretching direction and the stretching perpendicular direction of the polymer substrate is smaller than 0.8, it means that the degree of the stretching orientation is large, and when this film-shaped polymer substrate was used, it was introduced. The compound having an ion exchange group is also oriented in the orientation direction of the substrate. Since the completed solid polymer electrolyte membrane has a dense molecular structure, it becomes a membrane that absorbs less water than a coarse membrane that is not oriented. For this reason, the water absorption rate of the solid polymer electrolyte membrane is reduced, resulting in a fuel cell with low power generation performance. On the other hand, by using a non-oriented membrane polymer substrate, the compound having an ion exchange group is also non-oriented, so that the water absorption rate of the solid polymer electrolyte membrane is improved and the power generation performance of the fuel cell is improved.

【0035】面内の分子の配向性は、膜面内方向で例え
ば引張破断強度や伸びなどの機械的性質が均質であるこ
とによりあらわすことができる。すなわち、用いる膜状
高分子基材で最も重要となるのは、膜面内方向で例えば
引張破断強度や伸びなどの機械的性質が著しく異ならな
いことであり、例えば引張破断伸びの最大と最小の比が
好ましくは0.8以上であることが望ましい。
The orientation of molecules in the plane can be expressed by the fact that mechanical properties such as tensile strength at break and elongation are uniform in the in-plane direction of the film. That is, the most important in the film-like polymer substrate used is that mechanical properties such as tensile strength at break and elongation do not significantly differ in the in-plane direction of the film, for example, the maximum and minimum tensile elongation at break. The ratio is preferably 0.8 or more.

【0036】膜面内で延伸配向しやすいTダイ法やイン
フレーション法では巻き取り速度を遅くすることによっ
て延伸配向を抑え、延伸方向と延伸垂直方向の引張破断
伸びの比が0.8以上になるようにすれば特に膜状高分
子基材を作製する方法は制限しない。その他にキャステ
ィング法(素材を溶剤に溶かした液状または粘ちょうな
溶液を平坦な容器に入れ、加熱かつあるいは減圧下で溶
剤を蒸発させて成膜する方法)やプレス法(素材の成形
温度以上に加熱した平板で加圧することによって成膜す
る方法)で製造する方法がある。
In the T-die method or the inflation method, in which the film is easily stretched and oriented in the film plane, the stretching orientation is suppressed by reducing the winding speed, and the ratio of the tensile elongation at break in the stretching direction to the stretching perpendicular direction becomes 0.8 or more. In this case, there is no particular limitation on the method for producing the film-like polymer substrate. In addition, a casting method (a method in which a liquid or viscous solution obtained by dissolving a material in a solvent is placed in a flat container and the solvent is evaporated under heating or under reduced pressure to form a film) and a pressing method (a temperature higher than the forming temperature of the material) (A method of forming a film by pressing with a heated flat plate).

【0037】用いる膜状高分子基材としては、ポリエチ
レン、ポリプロピレンなどのポリオレフィン、ポリ(エ
チレン−テトラフルオロエチレン)、ポリ(テトラフル
オロエチレン−ヘキサフルオロプロピレン)、ポリフッ
化ビニリデンなどのハロゲン化ポリオレフィンなどがあ
る。これらはパーフルオロカーボンスルホン酸の膜に比
べて非常に安価である。好ましくは炭化フッ素系ビニル
モノマーと炭化水素系ビニルモノマーとの共重合体であ
る膜状高分子として使用すると、安価で、かつ耐久性に
優れ、高性能な固体高分子電解質型燃料電池ができる。
Examples of the film-like polymer substrate used include polyolefins such as polyethylene and polypropylene, and halogenated polyolefins such as poly (ethylene-tetrafluoroethylene), poly (tetrafluoroethylene-hexafluoropropylene), and polyvinylidene fluoride. is there. These are much cheaper than perfluorocarbon sulfonic acid membranes. When used as a film-like polymer which is preferably a copolymer of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer, a solid polymer electrolyte fuel cell which is inexpensive, has excellent durability, and has high performance can be obtained.

【0038】膜状高分子基材の膜厚には特に制限はない
が10〜150μmが好ましい。膜厚が10μmより薄
いとできあがった固体高分子電解質膜が破れやすく耐久
性がなくなり、150μmより厚いと固体高分子電解質
膜の電気抵抗が増加して発電性能が低下する。
The thickness of the film-like polymer substrate is not particularly limited, but is preferably from 10 to 150 μm. When the thickness is less than 10 μm, the completed solid polymer electrolyte membrane is easily broken and loses durability. When the thickness is more than 150 μm, the electric resistance of the solid polymer electrolyte membrane increases and the power generation performance decreases.

【0039】膜状高分子基材にイオン交換基を導入する
方法には特に制限はないが、膜状高分子基材の高分子に
グラフト鎖を結合した後、そのグラフト鎖にアニオン基
を結合する方法や、膜状高分子基材の高分子にアニオン
基を有するグラフト鎖を結合する方法などがある。膜状
高分子基材の高分子にグラフト鎖やアニオン基を有する
グラフト鎖を結合する方法として、電子線やγ線などに
よる放射線グラフト重合法が優れている。
There is no particular limitation on the method of introducing an ion-exchange group into the film-like polymer substrate, but after the graft chain is bonded to the polymer of the film-like polymer substrate, an anion group is bonded to the graft chain. And a method of bonding a graft chain having an anionic group to the polymer of the film-like polymer substrate. As a method of bonding a graft chain or a graft chain having an anionic group to a polymer of a film-like polymer substrate, a radiation graft polymerization method using an electron beam, γ-ray, or the like is excellent.

【0040】アニオン基としてはスルホン酸基があり、
スルホン酸基を有するビニル化合物、例えばスチレンス
ルホン酸、エチレンスルホン酸などを放射線照射した高
分子基材と接触させることによりスルホン酸基を導入す
ることができる。また、例えばスチレンを高分子基材中
に導入した後にスルホン化反応によりスルホン酸基を導
入する方法でもよい。
As the anionic group, there is a sulfonic acid group,
A sulfonic acid group can be introduced by bringing a vinyl compound having a sulfonic acid group, for example, styrene sulfonic acid, ethylene sulfonic acid, or the like, into contact with a polymer substrate irradiated with radiation. Further, for example, a method of introducing styrene into a polymer substrate and then introducing a sulfonic acid group by a sulfonation reaction may be used.

【0041】以下、実施例に基づいて詳細に説明する。Hereinafter, a detailed description will be given based on embodiments.

【0042】(実施例1)膜状高分子基材として、Tダ
イ法で作製された膜厚50μmのポリ(エチレン−テト
ラフルオロエチレン)フィルムを使用した。このフィル
ムの膜面内の縦横方向の引張破断伸び比を測定したとこ
ろ、0.85である。膜面内の縦横方向は、Tダイ法の
延伸方向とその垂直方向にあたり、その引張破断伸びの
差が最大となる方向である。
Example 1 A 50 μm-thick poly (ethylene-tetrafluoroethylene) film produced by a T-die method was used as a film-like polymer substrate. The tensile elongation at break in the longitudinal and lateral directions in the film plane of the film was measured to be 0.85. The longitudinal and transverse directions in the film plane correspond to the stretching direction of the T-die method and the perpendicular direction thereof, and are the directions in which the difference in tensile elongation at break is maximized.

【0043】このフィルムに20kGyのγ線を窒素
中、常温下で照射した後、スチレンモノマー:ジビニル
ベンゼン:キシレン=95:5:30(容積比)の混合
溶液中に60℃で2時間浸すことにより、ポリ(エチレ
ン−テトラフルオロエチレン)にスチレン鎖をグラフト
した。このフィルムを乾燥後、クロルスルホン酸30容
積部と1,2−ジクロロエタン100容積部の混合液中
に、50℃、1時間浸した。このフィルムを乾燥後、9
0℃の脱イオン水中に1時間浸漬した。さらに90℃の
新しい脱イオン水で2時間洗浄した。
After irradiating the film with 20 kGy γ-rays in nitrogen at room temperature, it is immersed in a mixed solution of styrene monomer: divinylbenzene: xylene = 95: 5: 30 (volume ratio) at 60 ° C. for 2 hours. Thus, a styrene chain was grafted on poly (ethylene-tetrafluoroethylene). After drying, the film was immersed in a mixed solution of 30 parts by volume of chlorosulfonic acid and 100 parts by volume of 1,2-dichloroethane at 50 ° C. for 1 hour. After drying this film, 9
Dipped in deionized water at 0 ° C. for 1 hour. Further washing with fresh deionized water at 90 ° C. for 2 hours.

【0044】このようにして得られた固体高分子電解質
膜の膜物性値(イオン交換容量、飽和含水率、吸水速
度)を測定した。イオン交換容量は滴定法により測定し
た。飽和含水率は、固体高分子電解質膜を80℃、真空
中で乾燥した乾燥膜の乾燥重量と90℃熱水中に、2h
以上浸漬のしたのち測定した飽和含水重量の差より求め
た。また吸水速度は、前記乾燥膜を25℃の脱イオン水
中に5秒間浸したときの含水率を測定して求めた。
The physical properties (ion exchange capacity, saturated water content, water absorption rate) of the solid polymer electrolyte membrane thus obtained were measured. The ion exchange capacity was measured by a titration method. The saturated water content was determined by drying the solid polymer electrolyte membrane at 80 ° C. in a vacuum at a dry weight of 90 ° C. hot water for 2 hours.
After immersion as described above, it was determined from the difference between the measured saturated water contents. The water absorption rate was determined by measuring the water content when the dried film was immersed in deionized water at 25 ° C. for 5 seconds.

【0045】図1は、燃料電池の出力特性の測定に用い
た固体高分子電解質型燃料電池の断面図である。この固
体高分子電解質型燃料電池1は一つのセル(単セル)で
構成されている。一般的には、この単セルを多数積層し
て用途に応じた出力を得られるように設計される。
FIG. 1 is a sectional view of a solid polymer electrolyte fuel cell used for measuring the output characteristics of the fuel cell. This solid polymer electrolyte fuel cell 1 is composed of one cell (single cell). In general, a design is made such that a large number of such single cells are stacked to obtain an output according to the application.

【0046】固体高分子電解質膜2を燃料極3aと酸化
剤極3bで挟んで、160℃、8MPaの圧力で60秒
間ホットプレスして接合した。この接合体10を、燃料
ガス通流溝5aを備えたセパレータ4aと、酸化剤ガス
通流溝5bとOリング6を備えたセパレータ4bで挟ん
で、固体高分子電解質型燃料電池1を作製した。燃料電
池の出力特性は、燃料ガスに水素、酸化剤ガスに空気を
いずれも0.2MPaで供給し、セル温度75℃に維持
して、電流密度0.7A/cmでの出力電圧で評価し
た。
The solid polymer electrolyte membrane 2 was sandwiched between the fuel electrode 3a and the oxidant electrode 3b and joined by hot pressing at 160 ° C. and a pressure of 8 MPa for 60 seconds. The assembly 10 was sandwiched between a separator 4 a having a fuel gas flow groove 5 a and a separator 4 b having an oxidizing gas flow groove 5 b and an O-ring 6, thereby producing a polymer electrolyte fuel cell 1. . The output characteristics of the fuel cell were evaluated by the output voltage at a current density of 0.7 A / cm 2 while hydrogen was supplied to the fuel gas and air was supplied to the oxidizing gas at 0.2 MPa, and the cell temperature was maintained at 75 ° C. did.

【0047】(実施例2)膜状高分子基材の膜面内の縦
横方向の引張破断伸び比が0.82であること以外の条
件は実施例1と同じとして固体高分子電解質膜を得た。
このようにして得られた固体高分子電解質膜の膜物性値
および燃料電池の出力特性を実施例と同じ方法で評価し
た。
Example 2 A solid polymer electrolyte membrane was obtained in the same manner as in Example 1 except that the tensile elongation at break in the longitudinal and transverse directions in the film plane of the film-like polymer substrate was 0.82. Was.
The membrane physical properties of the solid polymer electrolyte membrane thus obtained and the output characteristics of the fuel cell were evaluated in the same manner as in the examples.

【0048】(実施例3)ポリ(エチレン−テトラフル
オロエチレン)ペレットを300℃に温調したホットプ
レス機を用いて膜厚65μmにフィルム化し、膜状高分
子基材とした。膜状高分子基材の膜面内の縦横方向の引
張破断伸び比は0.99であった。この膜状高分子基材
を用いて、実施例1と同じ方法で固体高分子電解質膜を
得た。このようにして得られた固体高分子電解質膜の膜
物性値および燃料電池の出力特性を実施例と同じ方法で
評価した。
Example 3 A poly (ethylene-tetrafluoroethylene) pellet was formed into a film having a thickness of 65 μm using a hot press controlled at 300 ° C. to obtain a film-like polymer substrate. The tensile elongation at break in the longitudinal and transverse directions in the film plane of the film-like polymer substrate was 0.99. A solid polymer electrolyte membrane was obtained in the same manner as in Example 1 using this film-like polymer base material. The membrane physical properties of the solid polymer electrolyte membrane thus obtained and the output characteristics of the fuel cell were evaluated in the same manner as in the examples.

【0049】(比較例)膜状高分子基材の膜面内の縦横
方向の引張破断伸び比が0.72であること以外の条件
は実施例1と同じとして固体高分子電解質膜を得た。こ
のようにして得られた固体高分子電解質膜の膜物性値お
よび燃料電池の出力特性を実施例と同じ方法で評価し
た。
Comparative Example A solid polymer electrolyte membrane was obtained in the same manner as in Example 1 except that the tensile elongation at break in the longitudinal and transverse directions in the film plane of the membrane polymer substrate was 0.72. . The membrane physical properties of the solid polymer electrolyte membrane thus obtained and the output characteristics of the fuel cell were evaluated in the same manner as in the examples.

【0050】(評価結果)表1に実施例1〜3、比較例
の膜物性値および燃料電池の出力特性の評価結果を示
す。実施例1〜3の燃料電池のセル出力電圧は、比較例
に比べて向上している。実施例1〜3と比較例の膜物性
値を比べると、イオン交換容量および飽和含水率に大き
な差は見られないが、吸水速度が大きく違っている。実
施例1〜3の固体高分子電解質膜の吸水速度は、比較例
の約2倍の大きさがある。
(Evaluation Results) Table 1 shows the evaluation results of the membrane physical property values and the output characteristics of the fuel cell of Examples 1 to 3 and Comparative Example. The cell output voltages of the fuel cells of Examples 1 to 3 are higher than those of Comparative Examples. When the physical properties of the membranes of Examples 1 to 3 and Comparative Example were compared, no significant difference was observed in the ion exchange capacity and the saturated water content, but the water absorption rates were greatly different. The water absorption rates of the solid polymer electrolyte membranes of Examples 1 to 3 are about twice as large as those of Comparative Examples.

【0051】[0051]

【表1】 実施例1〜3と比較例の吸水速度の差は、用いた膜状高
分子基材の膜面内の縦横方向の引張破断伸び比に差があ
るため、得られた固体高分子電解質膜構造の粗密度に差
により生じている。これにより、 燃料電池運転時に起
こる燃料極側の膜乾燥が防止できるため、固体高分子電
解質膜の電気抵抗が低下して出力特性の大きな燃料電池
が得られる。
[Table 1] The difference in the water absorption rate between Examples 1 to 3 and Comparative Example is due to the difference in the tensile breaking elongation ratio in the longitudinal and transverse directions in the film plane of the used film-like polymer base material. This is caused by the difference in the coarse density. As a result, membrane drying on the fuel electrode side, which occurs during operation of the fuel cell, can be prevented, so that the electric resistance of the solid polymer electrolyte membrane is reduced, and a fuel cell having large output characteristics can be obtained.

【0052】なお、本発明の固体高分子電解質膜の用途
は、固体高分子電解質型燃料電池に限らず海水から水酸
化ナトリウム、水素、塩素を製造する食塩電解膜などに
利用できる。
The solid polymer electrolyte membrane of the present invention can be used not only for a solid polymer electrolyte fuel cell but also for a salt electrolyte membrane for producing sodium hydroxide, hydrogen and chlorine from seawater.

【0053】[0053]

【発明の効果】以上のように、本発明は、面内で均質な
膜状高分子基材に、イオン交換基を導入したことを特徴
とする固体高分子電解質膜およびこの固体高分子電解質
膜と触媒を有する電極の接合体をセパレータで挟持した
ことを特徴とする固体高分子電解質型燃料電池であるの
で、安価で、かつ高い発電性能を有する固体高分子電解
質膜および固体高分子電解質型燃料電池ができる。
As described above, the present invention provides a solid polymer electrolyte membrane characterized in that an ion exchange group is introduced into an in-plane homogeneous film polymer base material and this solid polymer electrolyte membrane. A solid polymer electrolyte fuel cell characterized in that an assembly of an electrode having a catalyst and a catalyst is sandwiched between separators, so that it is inexpensive and has high power generation performance. Battery is made.

【図面の簡単な説明】[Brief description of the drawings]

【図1】燃料電池の出力特性の測定に用いた固体高分子
電解質型燃料電池の断面図
FIG. 1 is a cross-sectional view of a solid polymer electrolyte fuel cell used for measuring output characteristics of a fuel cell.

【符号の説明】[Explanation of symbols]

1…固体高分子電解質型燃料電池 2…固体高分子電解質膜 3a…燃料極(電極) 3b…酸化剤極(電極) 4a、4b…セパレータ 10…接合体 DESCRIPTION OF SYMBOLS 1 ... Solid polymer electrolyte fuel cell 2 ... Solid polymer electrolyte membrane 3a ... Fuel electrode (electrode) 3b ... Oxidizer electrode (electrode) 4a, 4b ... Separator 10 ... Joint

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08J 5/22 106 C08J 5/22 106 H01B 1/06 H01B 1/06 A 1/12 1/12 Z H01M 8/10 H01M 8/10 // C08L 27:12 C08L 27:12 Fターム(参考) 4F071 AA15 AA15X AA20 AA26 AA26X AA27 AA27X AA77 AA78 AH12 AH15 FA01 FA04 FA05 FB01 FC01 FD04 4J026 AC06 AC25 BA06 CA02 DB36 EA09 GA08 4J100 AA02P AC26Q BA56H CA04 HA55 HC71 JA16 JA43 5G301 CA30 CD01 5H026 AA06 BB10 CX05 EE19 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08J 5/22 106 C08J 5/22 106 H01B 1/06 H01B 1/06 A 1/12 1/12 Z H01M 8/10 H01M 8/10 // C08L 27:12 C08L 27:12 F term (reference) 4F071 AA15 AA15X AA20 AA26 AA26X AA27 AA27X AA77 AA78 AH12 AH15 FA01 FA04 FA05 FB01 FC01 FD04 4J026 AC06 AC25 BA09 CA02 DB02 AC26Q BA56H CA04 HA55 HC71 JA16 JA43 5G301 CA30 CD01 5H026 AA06 BB10 CX05 EE19

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 面内で均質な膜状高分子基材に、イオン
交換基を導入したことを特徴とする固体高分子電解質
膜。
1. A solid polymer electrolyte membrane wherein an ion-exchange group is introduced into an in-plane homogeneous film-like polymer base material.
【請求項2】 前記膜状高分子基材の機械的性質が、面
内で均質であることを特徴とする請求項1記載の固体高
分子電解質膜。
2. The solid polymer electrolyte membrane according to claim 1, wherein the mechanical properties of the film-like polymer substrate are uniform in a plane.
【請求項3】 前記膜状高分子基材が炭化フッ素系ビニ
ルモノマーと炭化水素系ビニルモノマーとの共重合体で
あることを特徴とする請求項1記載の固体高分子電解質
膜。
3. The solid polymer electrolyte membrane according to claim 1, wherein the film-like polymer substrate is a copolymer of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer.
【請求項4】 前記アニオン基がスチレンスルホン酸塩
であることを特徴とする請求項1記載の固体高分子電解
質膜。
4. The solid polymer electrolyte membrane according to claim 1, wherein the anion group is a styrene sulfonate.
【請求項5】 固体高分子電解質膜と触媒を有する電極
の接合体をセパレータで挟持したことを特徴とする固体
高分子電解質型燃料電池。
5. A solid polymer electrolyte fuel cell characterized in that a joined body of a solid polymer electrolyte membrane and an electrode having a catalyst is sandwiched between separators.
JP2000020644A 2000-01-28 2000-01-28 Solid polymer electrolyte membrane and a solid polymer electrolyte type fuel cell Pending JP2001210337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000020644A JP2001210337A (en) 2000-01-28 2000-01-28 Solid polymer electrolyte membrane and a solid polymer electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000020644A JP2001210337A (en) 2000-01-28 2000-01-28 Solid polymer electrolyte membrane and a solid polymer electrolyte type fuel cell

Publications (1)

Publication Number Publication Date
JP2001210337A true JP2001210337A (en) 2001-08-03

Family

ID=18547172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000020644A Pending JP2001210337A (en) 2000-01-28 2000-01-28 Solid polymer electrolyte membrane and a solid polymer electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JP2001210337A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003020308A (en) * 2001-07-10 2003-01-24 Toyota Central Res & Dev Lab Inc Method for producing solid polymeric electrolyte
JP2005078849A (en) * 2003-08-28 2005-03-24 Japan Atom Energy Res Inst Forming method for nano structure control polymer ion-exchange membrane
JP2008518424A (en) * 2004-11-01 2008-05-29 ゼネラル・モーターズ・コーポレーション Method for stabilizing polymer electrolyte membrane films used in fuel cells

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003020308A (en) * 2001-07-10 2003-01-24 Toyota Central Res & Dev Lab Inc Method for producing solid polymeric electrolyte
JP2005078849A (en) * 2003-08-28 2005-03-24 Japan Atom Energy Res Inst Forming method for nano structure control polymer ion-exchange membrane
JP4576620B2 (en) * 2003-08-28 2010-11-10 独立行政法人 日本原子力研究開発機構 Method for producing nanostructure control polymer ion exchange membrane
JP2008518424A (en) * 2004-11-01 2008-05-29 ゼネラル・モーターズ・コーポレーション Method for stabilizing polymer electrolyte membrane films used in fuel cells

Similar Documents

Publication Publication Date Title
Nasef et al. Radiation-grafted materials for energy conversion and energy storage applications
JP4231110B2 (en) Novel polymer electrolyte membrane for fuel cells
US20070087245A1 (en) Multilayer polyelectrolyte membranes for fuel cells
US20050186461A1 (en) Electrolyte membrane, process for its production and polymer electrolyte fuel cell
JPH09102322A (en) Solid polymeric electrolyte film for fuel cell and its manufacture
EP1444748A1 (en) Solid polymer membrane for fuel cell with polyamine imbibed therein for reducing methanol permeability
JP2002537428A (en) Polymer film and method for producing the same
JP5331122B2 (en) Reinforcing electrolyte membrane for fuel cell, membrane-electrode assembly for fuel cell, and polymer electrolyte fuel cell including the same
JPH0768377B2 (en) Electrolyte thin film
KR102036766B1 (en) Pore filling amphoteric membrane for low vanadium ion permeation and method for preparing thereof
MXPA01001600A (en) Blend membranes based on sulfonated poly(phenylene oxide) for enhanced polymer electrochemical cells.
US20090169952A1 (en) Direct organic fuel cell proton exchange membrane and method of manufacturing the same
US20020001742A1 (en) Solid polyelectrolyte-type fuel cell having a solid polyelectrolyte membrane with varying water content
JP2004059752A (en) Electrolyte membrane for fuel cell comprising crosslinked fluororesin base
JP4854284B2 (en) Method for producing polymer electrolyte membrane
EP1662594A1 (en) Polymer electrolyte composite film, method for production thereof and use thereof
JP5189394B2 (en) Polymer electrolyte membrane
Horsfall et al. Comparison of fuel cell performance of selected fluoropolymer and hydrocarbon based grafted copolymers incorporating acrylic acid and styrene sulfonic acid
Jiang et al. Finely controlled swelling: A shortcut to construct ion-selective channels in polymer membranes
JP4062755B2 (en) Method for producing solid polymer electrolyte membrane
JPH11354140A (en) Thin film electrolyte having high strength
JP2001210337A (en) Solid polymer electrolyte membrane and a solid polymer electrolyte type fuel cell
JP2004234931A (en) Polyphenylene sulfide film and its forming method
JP2000090945A (en) Solid polymer electrolyte film, manufacture thereof and solid polymer electrolyte fuel cell
JP2014110232A (en) Fluorine-based polymer electrolyte film