JP2001208622A - Displacement measuring instrument - Google Patents

Displacement measuring instrument

Info

Publication number
JP2001208622A
JP2001208622A JP2000019442A JP2000019442A JP2001208622A JP 2001208622 A JP2001208622 A JP 2001208622A JP 2000019442 A JP2000019442 A JP 2000019442A JP 2000019442 A JP2000019442 A JP 2000019442A JP 2001208622 A JP2001208622 A JP 2001208622A
Authority
JP
Japan
Prior art keywords
displacement
measurement
rock
pressure sensor
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000019442A
Other languages
Japanese (ja)
Inventor
Masayuki Kosugi
昌幸 小杉
Yuki Onodera
勇記 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TERA KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
TERA KK
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TERA KK, National Institute of Advanced Industrial Science and Technology AIST filed Critical TERA KK
Priority to JP2000019442A priority Critical patent/JP2001208622A/en
Publication of JP2001208622A publication Critical patent/JP2001208622A/en
Pending legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a displacement measuring instrument having a wide measurement range and capable of measuring displacement in the radial direction of a well even if it is a small well having a diameter of 50 mm or less in a rock bed. SOLUTION: A front structure 6 of this displacement measuring device has, on its rear end, three flat measurement surfaces 8 crossing each other at right angles, while a rear structure 7 thereof is provided, on its front end, with three displacement sensors 9 extending in three axis directions and perpendicularly confronting the respective measurement surfaces 8. The displacement sensors 9 are each provided with a pressure terminal 9c abutting on its corresponding measurement surface 8 and a loading rod 9b abutting on a pressure sensor 9a, and the two are held by a spring 9d. When any measurement surface 8 is displaced, its spring 9d is elastically deformed by means of its pressure terminal 9c, and this is transmitted as a load to its pressure sensor 9a by means of its loading rod 9b. The displacement of the measurement surface 8 is formed by using a change in the load and the spring constant of the used spring 9d.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、土木工学分野に
おいて、岩盤内構造物の安定設計施工を目的とした岩盤
補強工や岩盤改良工法のための効果検証計測、岩盤斜面
の破壊進展による崩落検知のための亀裂挙動監視に関連
した岩盤内不連続面の相対的変位を計測するための変位
計測装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to the field of civil engineering, and to the effect verification measurement for rock reinforcement and rock improvement methods for the stable design and construction of internal rock structures, and detection of collapse due to the progression of breakage of rock slopes. Measuring device for measuring relative displacement of discontinuous surface in rock mass related to crack behavior monitoring for earthquake.

【0002】[0002]

【従来の技術】岩盤内に存在する亀裂、ジョイントなど
の不連続面の挙動を的確に計測するためには、岩盤内の
空洞や坑道による緩み領域を回避した岩盤内計測と不連
続面挙動評価の三次元的な計測が不可欠とされている。
2. Description of the Related Art In order to accurately measure the behavior of a discontinuous surface such as a crack or a joint existing in a rock mass, it is necessary to measure the inside of the rock mass and avoid the loosened region due to a cavity or a tunnel and evaluate the behavior of the discontinuous surface. The three-dimensional measurement of is considered indispensable.

【0003】従来、岩盤孔井において唯一計測が可能な
「不連続面の三次元変位計」では、図4に示すように、
不連続面104を挟む岩盤102に夫々固定する前部構
造体106と後部構造体107とを有しており、前部構
造体106は互いに直交する3枚の計測面108を後端
に備え、後部構造体107は各計測面108に夫々対向
する3個の変位センサ110を前端に備えるもので、三
次元変位計101はこれら3組の計測面108と変位セ
ンサ110の組合せによって前部構造体106と後部構
造体107の相対的な変位を検出する構成であった。
Conventionally, a “three-dimensional displacement meter on a discontinuous surface” that can only measure at a rock drilling well, as shown in FIG.
The front structure 106 and the rear structure 107 are respectively fixed to the rock 102 sandwiching the discontinuous surface 104, and the front structure 106 includes three measurement surfaces 108 orthogonal to each other at the rear end, The rear structure 107 is provided with three displacement sensors 110 at the front end facing the respective measurement surfaces 108, and the three-dimensional displacement meter 101 is configured by a combination of the three sets of measurement surfaces 108 and the displacement sensors 110. In this configuration, the relative displacement between the rear structure 106 and the rear structure 107 is detected.

【0004】又この三次元変位計101は、変位センサ
110として差動トランス式変位センサを用い、計測面
108に当接するスピンドルの移動によりその変位を検
出していた。
Further, the three-dimensional displacement meter 101 uses a differential transformer type displacement sensor as the displacement sensor 110, and detects the displacement by moving a spindle in contact with the measurement surface 108.

【0005】[0005]

【発明が解決しようとする課題】しかし、差動トランス
式変位センサを孔井半径方向に配置する場合には、その
軸長から適用できる孔井103の直径に制限があった。
特にトンネル開削や空洞建設現場で多用される直径43
mm程度のロックボルト孔には適用不可能で、別にφ6
6mm程度の孔井を掘削する必要があった。又計測範囲
も制限され、従来の三次元変位計101では軸方向変位
±7mm、孔井半径方向変位±2.5mm程度が計測限
界であった。又3台の差動トランス式変位センサを用い
るため、コスト的にも問題があった。
However, when the differential transformer type displacement sensor is arranged in the borehole radial direction, there is a limit to the diameter of the borehole 103 that can be applied due to its axial length.
In particular, a diameter of 43 used frequently in tunnel excavation and cavity construction sites
Not applicable to lock bolt holes of about mm.
It was necessary to drill a borehole of about 6 mm. The measurement range is also limited, and the conventional three-dimensional displacement meter 101 has a measurement limit of about ± 7 mm in axial displacement and about ± 2.5 mm in borehole radial direction displacement. Further, since three differential transformer type displacement sensors are used, there is a problem in cost.

【0006】この発明は、上記課題を解決し、岩盤内の
直径50mm以下の小孔井であっても孔井半径方向の変
位が計測でき、しかも計測範囲が広い変位計測装置を提
供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and to provide a displacement measuring device capable of measuring displacement in a borehole radial direction even in a small well having a diameter of 50 mm or less in a rock, and having a wide measurement range. The purpose is.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、この発明の変位計測装置は、岩盤内の小孔井に設置
して亀裂など不連続面を挟む両岩盤の相対変化を三次元
的に計測するため、一方の岩盤孔井に固定する前部構造
体の互いに直交する三面の計測面と、他方の岩盤孔井に
固定する後部構造体にあって前記計測面に直交する三方
向の変位を計測する変位センサとを備える変位計測装置
において、前記変位センサは、圧力センサと、この圧力
センサに当接する載荷ロッドと、前記計測面に当接する
圧着端子と、一端にこの圧着端子を保持し他端に前記載
荷ロッドを保持する弾性部材とを有することを特徴とす
るものである。
Means for Solving the Problems In order to solve the above-mentioned problems, a displacement measuring apparatus according to the present invention is installed in a small borehole in a rock mass and three-dimensionally measures a relative change between the two rock masses sandwiching a discontinuous surface such as a crack. For measurement, three measurement surfaces perpendicular to each other of the front structure fixed to one rock well, and three directions orthogonal to the measurement surface in the rear structure fixed to the other rock well In a displacement measuring device including a displacement sensor that measures displacement, the displacement sensor holds a pressure sensor, a loading rod that contacts the pressure sensor, a crimp terminal that contacts the measurement surface, and one end of the crimp terminal. And an elastic member for holding the load rod described above at the other end.

【0008】計測面の変位により圧着端子と載荷ロッド
の距離が変化する。両者の相対変化に応じて変化した弾
性部材のたわみを載荷ロッドを介して後段に配置する圧
力センサに荷重として伝達する。この圧力センサによっ
て検出した圧力を弾性部材のたわみ変位に換算する。
The distance between the crimp terminal and the loading rod changes due to the displacement of the measurement surface. The deflection of the elastic member, which has been changed in accordance with the relative change between the two, is transmitted as a load to a pressure sensor disposed at a subsequent stage via a loading rod. The pressure detected by the pressure sensor is converted into a deflection displacement of the elastic member.

【0009】[0009]

【発明の実施の形態】次にこの発明の実施の形態を添付
図面に基づき詳細に説明する。図1は岩盤内不連続面の
三次元変形を計測するために設置する変位計測装置の断
面図である。変位計測装置1は、岩盤2内に直径50m
m以下の小孔井3(例えばφ43mm又はφ46mm)を
削孔し、亀裂などの不連続面4を挟む両岩盤に固定す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a cross-sectional view of a displacement measuring device installed for measuring three-dimensional deformation of a discontinuous surface in a rock. The displacement measuring device 1 has a diameter of 50 m in the rock 2.
A small borehole 3 (for example, φ43 mm or φ46 mm) having a diameter of m or less is drilled and fixed to both rocks sandwiching a discontinuous surface 4 such as a crack.

【0010】変位計測装置1は、不連続面4を挟んだ一
方の岩盤2a内に固定手段5によって固定設置された前
部構造体6と、他方の岩盤2b内に同様な固定手段5に
よって固定設置された後部構造体7を有する。この後部
構造体7は前部構造体6とは分離した部材であるが相互
に接触した状態で設置される。
The displacement measuring device 1 has a front structure 6 fixedly installed by a fixing means 5 in one rock 2a sandwiching a discontinuous surface 4 and a similar fixing means 5 in the other rock 2b. It has a rear structure 7 installed. The rear structure 7 is a member separate from the front structure 6, but is installed in a state of being in contact with each other.

【0011】前部構造体6は、先端が縮径する筒状部材
であって、その後端に平坦で互いに直角に交差する三面
の計測面8を有する。一方後部構造体7も筒状部材であ
ってその先端には各計測面8に垂直に対向する三軸方向
に三台の変位センサ9を設ける。
The front structure 6 is a cylindrical member whose front end is reduced in diameter, and has three measurement surfaces 8 at its rear end which are flat and intersect at right angles to each other. On the other hand, the rear structural body 7 is also a cylindrical member, and three displacement sensors 9 are provided at the tip of the rear structural body 7 in three axial directions perpendicular to the measurement surfaces 8.

【0012】固定手段5は、各構造体6,7の径方向を
横断する固定ピン5aと、筒状部材の外面に設ける固定
ガイド5bからなり、固定ピン5aに圧力ライン5cを
介して油圧力を供給し、各構造体6,7を一体化した変
位計測装置1として孔井3内に挿入固定する。なお、各
構造体6,7の間隙部分に孔井3内の地下水が浸入しな
いよう、自在に変形する耐水部材としての防水シール1
0が取付けられ計測面8や変位センサ9を防護してい
る。
The fixing means 5 comprises a fixing pin 5a which traverses the radial direction of each of the structures 6, 7 and a fixing guide 5b provided on the outer surface of the cylindrical member, and the hydraulic pressure is applied to the fixing pin 5a via a pressure line 5c. Is supplied and inserted into the well 3 as the displacement measuring device 1 in which the structures 6 and 7 are integrated. In addition, a waterproof seal 1 as a water-resistant member that is freely deformed so that groundwater in the well 3 does not enter the gaps between the structures 6 and 7.
0 protects the measurement surface 8 and the displacement sensor 9.

【0013】次に変位センサの詳細を図2及び図3に基
づき説明する。図2は変位計測装置の中心部拡大断面
図、図3は図2のIII−III断面を示す断面図である。前
部構造体6の計測面8は孔井軸直交面8aと、これの後
方垂直方向に延長固定した互いに直角に交差する2枚の
孔井軸平行面8b,8cからなる。
Next, the displacement sensor will be described in detail with reference to FIGS. FIG. 2 is an enlarged sectional view of a central portion of the displacement measuring device, and FIG. 3 is a sectional view showing a section taken along line III-III of FIG. The measurement surface 8 of the front structure 6 is composed of a well axis orthogonal surface 8a and two well axis parallel surfaces 8b and 8c extending perpendicularly to the rear and intersecting at right angles to each other.

【0014】一方後部構造体7の支持基台11に配置す
る変位センサ9は、夫々圧力センサ9aと、この圧力セ
ンサ9aに当接する載荷ロッド9bと、各計測面に当接
する圧着端子9cと、一端にこの圧着端子9cを保持し
他端に載荷ロッド9bを保持するスプリング9dを有す
る。
On the other hand, the displacement sensors 9 disposed on the support base 11 of the rear structure 7 are pressure sensors 9a, loading rods 9b that contact the pressure sensors 9a, and crimp terminals 9c that contact each measurement surface. A spring 9d for holding the crimp terminal 9c at one end and the loading rod 9b at the other end is provided.

【0015】計測面8が変位すると圧着端子9cを介し
てスプリング9dが弾性変形し、載荷ロッド9bを介し
て圧力センサ9aに荷重として伝達する。圧力センサ9
aとしては例えばダイアフラム圧力センサを用いる。ダ
イアフラムに生じた微小な変位は電気抵抗の変化などに
よって測定され、接続ライン12及びリレー制御スイッ
チ13を介して増幅器14に接続し、信号ライン15に
より検出した圧力値を図示しない外部の制御装置に送
り、ここでスプリング9dのたわみ変位に換算する。即
ち荷重変化と使用するスプリング9dのバネ定数を使用
して計測面8の変位量を求める。
When the measuring surface 8 is displaced, the spring 9d is elastically deformed via the crimp terminal 9c and transmitted as a load to the pressure sensor 9a via the loading rod 9b. Pressure sensor 9
As a, for example, a diaphragm pressure sensor is used. The minute displacement generated in the diaphragm is measured by a change in electric resistance or the like, connected to the amplifier 14 via the connection line 12 and the relay control switch 13, and the pressure value detected by the signal line 15 is transmitted to an external control device (not shown). The spring 9d is converted into a deflection displacement of the spring 9d. That is, the displacement amount of the measurement surface 8 is obtained using the load change and the spring constant of the spring 9d to be used.

【0016】このような圧力センサ9aを用いると計測
範囲が孔井軸方向±10mm、孔井半径方向±7mm程
度まで拡大され、従来の約2倍の変位量まで計測可能と
なる。又圧力センサ9aはゲージ式の簡易シール形状の
ものが使用でき、かつ3台の変位センサ9の計測値を1
台のアンプでリレー切替するので、構造が簡易になりコ
スト低減にも寄与する。
When such a pressure sensor 9a is used, the measurement range is expanded to about ± 10 mm in the borehole axial direction and about ± 7 mm in the borehole radial direction, and it is possible to measure the displacement amount to about twice the conventional amount. The pressure sensor 9a may be of a simple seal type of a gauge type, and the measured values of the three displacement sensors 9 may be one.
Since the relay is switched by one amplifier, the structure is simplified and the cost is reduced.

【0017】[0017]

【発明の効果】以上説明したように、この発明の変位計
測装置は、計測面に当接する圧着端子と圧力センサに当
接する載荷ロッドを設け、両者を弾性部材で保持する構
成とするので、圧力センサによって検出した圧力を弾性
部材のたわみ変位に換算し、これにより計測面の変位量
を求めることができる。このとき圧力センサとしてはゲ
ージ式のものを利用することができるので、計測装置の
小径化・低廉化が実現できる。又圧力センサを用いるこ
とで従来の変位計測装置に比べて計測範囲を拡大するこ
とも可能となる。
As described above, the displacement measuring apparatus according to the present invention is provided with the crimp terminal which comes into contact with the measuring surface and the loading rod which comes into contact with the pressure sensor, and the two are held by the elastic member. The pressure detected by the sensor is converted into a flexural displacement of the elastic member, whereby the displacement of the measurement surface can be obtained. At this time, a gauge sensor can be used as the pressure sensor, so that the diameter and cost of the measuring device can be reduced. Further, by using the pressure sensor, the measurement range can be expanded as compared with the conventional displacement measuring device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】変位計測装置の断面図である。FIG. 1 is a sectional view of a displacement measuring device.

【図2】変位計測装置の中心部拡大断面図である。FIG. 2 is an enlarged sectional view of a central portion of the displacement measuring device.

【図3】図2のIII−III断面を示す断面図である。FIG. 3 is a sectional view showing a section taken along line III-III of FIG. 2;

【図4】従来の変位計測装置の断面図である。FIG. 4 is a cross-sectional view of a conventional displacement measuring device.

【符号の説明】[Explanation of symbols]

1 変位計測装置 2 岩盤 3 小孔井 4 不連続面 6 前部構造体 7 後部構造体 8 計測面 9 変位センサ 9a 圧力センサ 9b 載荷ロッド 9c 圧着端子 9d スプリング DESCRIPTION OF SYMBOLS 1 Displacement measuring device 2 Rock 3 Small borehole 4 Discontinuous surface 6 Front structure 7 Rear structure 8 Measurement surface 9 Displacement sensor 9a Pressure sensor 9b Loading rod 9c Crimping terminal 9d Spring

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01V 9/00 G01V 9/00 B (72)発明者 小杉 昌幸 茨城県つくば市小野川16番3 工業技術院 資源環境技術総合研究所内 (72)発明者 小野寺 勇記 埼玉県春日部市大沼3丁目103番地 株式 会社テラ内 Fターム(参考) 2D043 AA02 AA03 AB00 BA10 BB00 2F051 AA06 AB01 AB06 AC01 BA07 2F069 AA06 BB40 DD20 DD27 GG02 GG06 GG11 GG20 GG39 GG51 GG56 GG58 GG64 HH02 JJ02 JJ19 JJ25 MM04 MM11 MM17 PP04 QQ05 2F076 BB09 BD02 BD10 BD11 BD17──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G01V 9/00 G01V 9/00 B (72) Inventor Masayuki Kosugi 16-3 Onogawa Tsukuba, Ibaraki Pref. (72) Inventor Yuki Onodera 3-103 Onuma, Kasukabe-shi, Saitama F-term in Terra Co., Ltd. (reference) 2D043 AA02 AA03 AB00 BA10 BB00 2F051 AA06 AB01 AB06 AC01 BA07 2F069 AA06 BB40 DD20 DD27 GG02GG06 GG11 GG20 GG39 GG51 GG56 GG58 GG64 HH02 JJ02 JJ19 JJ25 MM04 MM11 MM17 PP04 QQ05 2F076 BB09 BD02 BD10 BD11 BD17

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 岩盤内の小孔井に設置して亀裂など不連
続面を挟む両岩盤の相対変化を三次元的に計測するた
め、一方の岩盤孔井に固定する前部構造体の互いに直交
する三面の計測面と、他方の岩盤孔井に固定する後部構
造体にあって前記計測面に直交する三方向の変位を計測
する変位センサとを備える変位計測装置において、前記
変位センサは、圧力センサと、この圧力センサに当接す
る載荷ロッドと、前記計測面に当接する圧着端子と、一
端にこの圧着端子を保持し他端に前記載荷ロッドを保持
する弾性部材を有することを特徴とする変位計測装置。
In order to three-dimensionally measure the relative change between two rocks sandwiching a discontinuous surface such as a crack by being installed in a small well in a rock, the front structures fixed to one rock well are mutually connected. In a displacement measurement device including three orthogonal measurement surfaces and a displacement sensor that measures displacement in three directions orthogonal to the measurement surface in a rear structure fixed to the other rock well, the displacement sensor includes: A pressure sensor, a loading rod that abuts the pressure sensor, a crimp terminal that abuts the measurement surface, and an elastic member that holds the crimp terminal at one end and the load rod at the other end. Displacement measuring device.
JP2000019442A 2000-01-28 2000-01-28 Displacement measuring instrument Pending JP2001208622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000019442A JP2001208622A (en) 2000-01-28 2000-01-28 Displacement measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000019442A JP2001208622A (en) 2000-01-28 2000-01-28 Displacement measuring instrument

Publications (1)

Publication Number Publication Date
JP2001208622A true JP2001208622A (en) 2001-08-03

Family

ID=18546136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000019442A Pending JP2001208622A (en) 2000-01-28 2000-01-28 Displacement measuring instrument

Country Status (1)

Country Link
JP (1) JP2001208622A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103015389A (en) * 2012-12-12 2013-04-03 同济大学 Multi-layer telescopic multi-point displacement meter anchor head for water-rich soft stratum
CN103033304A (en) * 2012-12-19 2013-04-10 山东大学 Steel spring and tension sensor based dangerous rock collapse detection device and steel spring and tension sensor based dangerous rock collapse detection method
CN103115713A (en) * 2013-01-28 2013-05-22 浙江省钱塘江管理局勘测设计院 Method for testing uplift-resistant bearing capacity of building blocks in building block structure
KR101317635B1 (en) * 2013-02-25 2013-10-10 한국지질자원연구원 Displacement monitoring device of discontinuities in the rock masses and method thereof
CN103821125A (en) * 2012-11-19 2014-05-28 同济大学 Multifunctional multi-point displacement meter anchor head
CN103850237A (en) * 2012-12-03 2014-06-11 同济大学 Blade-cut-in type soft soil multi-point displacement meter anchor head
CN104482960A (en) * 2014-11-19 2015-04-01 上海应用技术学院 Displacement and force test integrated sensor
CN104499511A (en) * 2014-11-27 2015-04-08 同济大学 Spring-arm-type multi-point displacement meter anchor head for soft soil ground layer
CN106092583A (en) * 2016-08-12 2016-11-09 浙江万向精工有限公司 Hub bearing unit torque rigidity test system and method
CN107588717A (en) * 2017-07-31 2018-01-16 中国农业大学 A kind of detection means, the system and method in plant strain footpath
CN109489600A (en) * 2018-11-16 2019-03-19 慈溪迅蕾轴承有限公司 Bearing sealed ring height detection machine
JP2020187824A (en) * 2019-05-09 2020-11-19 三菱自動車工業株式会社 Abnormality detection device for battery pack
CN112525119A (en) * 2020-11-20 2021-03-19 湖北大学 Bracelet size automatic measuring device
CN113218295A (en) * 2021-05-10 2021-08-06 上海海事大学 Swing angle and rope length measuring device and method for double-lifting bridge crane

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103821125A (en) * 2012-11-19 2014-05-28 同济大学 Multifunctional multi-point displacement meter anchor head
CN103850237A (en) * 2012-12-03 2014-06-11 同济大学 Blade-cut-in type soft soil multi-point displacement meter anchor head
CN103015389A (en) * 2012-12-12 2013-04-03 同济大学 Multi-layer telescopic multi-point displacement meter anchor head for water-rich soft stratum
CN103033304A (en) * 2012-12-19 2013-04-10 山东大学 Steel spring and tension sensor based dangerous rock collapse detection device and steel spring and tension sensor based dangerous rock collapse detection method
CN103033304B (en) * 2012-12-19 2014-10-15 山东大学 Steel spring and tension sensor based dangerous rock collapse detection device and steel spring and tension sensor based dangerous rock collapse detection method
CN103115713A (en) * 2013-01-28 2013-05-22 浙江省钱塘江管理局勘测设计院 Method for testing uplift-resistant bearing capacity of building blocks in building block structure
CN103115713B (en) * 2013-01-28 2014-11-12 浙江省钱塘江管理局勘测设计院 Method for testing uplift-resistant bearing capacity of building blocks in building block structure
KR101317635B1 (en) * 2013-02-25 2013-10-10 한국지질자원연구원 Displacement monitoring device of discontinuities in the rock masses and method thereof
WO2014129741A1 (en) * 2013-02-25 2014-08-28 한국지질자원연구원 Apparatus for automatically monitoring displacement on surface of discontinuity and monitoring method using same
CN104482960A (en) * 2014-11-19 2015-04-01 上海应用技术学院 Displacement and force test integrated sensor
CN104499511A (en) * 2014-11-27 2015-04-08 同济大学 Spring-arm-type multi-point displacement meter anchor head for soft soil ground layer
CN104499511B (en) * 2014-11-27 2016-04-20 同济大学 The arm-type multiple position extensometer anchor head of a kind of spring for soft soil layer
CN106092583A (en) * 2016-08-12 2016-11-09 浙江万向精工有限公司 Hub bearing unit torque rigidity test system and method
CN107588717A (en) * 2017-07-31 2018-01-16 中国农业大学 A kind of detection means, the system and method in plant strain footpath
CN109489600A (en) * 2018-11-16 2019-03-19 慈溪迅蕾轴承有限公司 Bearing sealed ring height detection machine
CN109489600B (en) * 2018-11-16 2024-03-12 慈溪迅蕾轴承有限公司 Bearing seal ring height detector
JP2020187824A (en) * 2019-05-09 2020-11-19 三菱自動車工業株式会社 Abnormality detection device for battery pack
JP7323860B2 (en) 2019-05-09 2023-08-09 三菱自動車工業株式会社 Abnormality detection device for battery pack
CN112525119A (en) * 2020-11-20 2021-03-19 湖北大学 Bracelet size automatic measuring device
CN112525119B (en) * 2020-11-20 2022-05-24 湖北大学 Bracelet size automatic measuring device
CN113218295A (en) * 2021-05-10 2021-08-06 上海海事大学 Swing angle and rope length measuring device and method for double-lifting bridge crane

Similar Documents

Publication Publication Date Title
JP2001208622A (en) Displacement measuring instrument
CA2200834C (en) Stress measuring rock support device
CN107387059B (en) Underground engineering parameter measuring instrument
CN107882011B (en) miniature probe with temperature compensation function
CA2015184A1 (en) Method of instrumenting an already erected concrete structure and the so instrumented structure
JP2961607B1 (en) Penetration sensor for cone penetration test
JP2001201334A (en) Displacement measuring device
CN210268626U (en) High-precision inclination measuring rod based on fiber bragg grating all-dimensional monitoring pile body
JPH10185633A (en) Underground displacement measuring device
JP2001348856A (en) Method of evaluating reinforcing effect on discontinuous face of bedrock
JPH09304126A (en) Ring-type multistage rock-bed change measuring apparatus
JP2001241045A (en) Method of detecting bedrock collapse and method of evaluating stability of crack in bedrock
KR102619047B1 (en) Sensing module for underground inclinometer and multi-function underground inclinometer including same
KR100553221B1 (en) Vibration expression displacement measuring instrument
CN207366760U (en) Probe and its wave velocity testing instrument with the probe
Ding et al. Geotechnical instruments in structural monitoring
Sun et al. Stress self-monitoring performance of grouted sleeves with smart grout in fabricated reinforced concrete beams
JP2981585B2 (en) Discontinuous surface displacement measurement method and discontinuous surface displacement meter
JPS62220823A (en) Base rock pressure detector
JP3815789B1 (en) Displacement transmission device
RU2312213C1 (en) System to measure mechanical drilling loads (variants)
Pariseau A note on monitoring stress changes in situ
SI20086A (en) Cell for measurement of three-dimensional stress state within rock
CN212180145U (en) Sensor for measuring tearing test force of geotextile
JP3263737B2 (en) Fault vibration displacement measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020