JP2001205330A - Method and device for cooling inside surface of hollow extruded shape - Google Patents

Method and device for cooling inside surface of hollow extruded shape

Info

Publication number
JP2001205330A
JP2001205330A JP2000011121A JP2000011121A JP2001205330A JP 2001205330 A JP2001205330 A JP 2001205330A JP 2000011121 A JP2000011121 A JP 2000011121A JP 2000011121 A JP2000011121 A JP 2000011121A JP 2001205330 A JP2001205330 A JP 2001205330A
Authority
JP
Japan
Prior art keywords
hollow extruded
cold air
die
air supply
injection nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000011121A
Other languages
Japanese (ja)
Other versions
JP4277149B2 (en
Inventor
Takeshi Komatsu
健 小松
Nobuyasu Hagisawa
亘保 萩沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2000011121A priority Critical patent/JP4277149B2/en
Publication of JP2001205330A publication Critical patent/JP2001205330A/en
Application granted granted Critical
Publication of JP4277149B2 publication Critical patent/JP4277149B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To maintain the state of solid solution where the precipitation of alloy component is suppressed to room temperature and to secure precipitation quantity which is effective to impart strength by aging treatment by cooling a hollow extruded shape M just after extrusion from the inside surface. SOLUTION: A chill supply pipe (chill supply hose 11) is inserted into the hollow extruded shape M which is extruded from a die 1 from an opening on the outlet side of the hollow extruded shape M and a distance d from a chill jetting nozzle 12 attached at the tip of the chill supply pipe to the end face on the outlet side of the die 1 is maintained constant. By jetting the chill from the chill jetting nozzle 12 toward the opening on the outlet side from the radial direction of the hollow extruded shape M, the inside surface of the hollow extruded shape M is cooled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、押出直後の中空押出形
材の内部に冷気を吹き込み、内部からも冷却する方法及
び冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and a cooling device for blowing cold air into a hollow extruded member immediately after extrusion to cool the hollow extruded member.

【0002】[0002]

【従来の技術】析出硬化型アルミニウム合金の押出成形
では、押出直後にダイス端で押出形材を冷却することに
より溶体化処理を施し、後工程の時効処理でMg2
i,CuAl2等を析出させ必要強度を付与する方法が
採用されることもある。押出直後の冷却では、マトリッ
クスに固溶している合金成分が冷却段階で析出・粗大化
して時効処理後に必要強度が得られなくなることを防止
するため、合金成分の析出が防止されるように冷却速度
を大きくすることが必要である。形材外面側の冷却速度
を大きくすることは容易である。しかし、押出形材に
は、単数又は複数の中空部のある断面構造をもつホロー
材や、中空部の一部が開放されたセミオープン材等があ
る(以下、これらを中空押出形材で総称する)。このよ
うな中空押出形材を外面から冷却する際に冷却速度を大
きくすると、形材内部の熱応力が大きくなって形状変形
が生じる。そのため、外面からの冷却のみで変形を生じ
させることなく、後工程の時効処理で必要強度を出せる
中空押出形材は、一定肉厚以下の形材に限られる(特願
平11−285292号公報)。
2. Description of the Related Art In extrusion molding of a precipitation hardening type aluminum alloy, a solution treatment is performed by cooling an extruded material at a die end immediately after extrusion, and Mg 2 S is subjected to aging treatment in a later step.
In some cases, a method of precipitating i, CuAl 2 or the like to impart necessary strength is adopted. Cooling immediately after extrusion prevents the alloy components dissolved in the matrix from being precipitated and coarsened in the cooling stage and preventing the required strength from being obtained after aging treatment. It is necessary to increase the speed. It is easy to increase the cooling rate on the outer surface of the profile. However, extruded shapes include hollow materials having a cross-sectional structure having one or more hollow portions, semi-open materials in which a part of the hollow portion is opened, and the like (hereinafter, these are collectively referred to as hollow extruded shapes). Do). If the cooling rate is increased when cooling such a hollow extruded profile from the outer surface, the thermal stress inside the profile increases, causing shape deformation. For this reason, hollow extruded profiles capable of providing the required strength by aging treatment in the subsequent step without causing deformation only by cooling from the outer surface are limited to those having a certain thickness or less (Japanese Patent Application No. 11-285292). ).

【0003】しかし、中空押出形材としては、肉厚の形
材も広く使用されている。このような肉厚の中空押出形
材を押出直後に冷却して溶体化処理するため、形材内部
からの冷却も必要になる。断面の一部を肉厚化した中空
押出形材についても、肉厚部の冷却遅れを防止する上で
内部からの冷却を併用することが望まれる。押出直後に
中空押出形材を内部から冷却する方法としては、ダイの
マンドレルに穿設した冷気吐出口から押出直後の中空押
出形材内部に冷気を噴出する方法(特開平8−2067
29号),中空押出形材の側壁にレーザビームを照射し
て冷気導入孔を穿設し、冷気導入孔から中空押出形材の
内部に冷気を吹き込む方法(特開平5−200431号
公報)等が知られている。
[0003] However, thick hollow sections are also widely used as hollow extruded sections. Since such a thick hollow extruded section is cooled immediately after extrusion and subjected to a solution treatment, cooling from the inside of the section is also required. Even for a hollow extruded profile having a part of the cross section thickened, it is desired to use cooling from the inside together in order to prevent cooling delay of the thick part. As a method of cooling the hollow extruded shape from the inside immediately after the extrusion, a method of injecting cold air into the inside of the hollow extruded shape immediately after the extrusion from a cool air discharge port formed in a mandrel of a die (Japanese Patent Laid-Open No. Hei 8-2067)
No. 29), a method of irradiating a laser beam on the side wall of a hollow extruded profile to form a cool air introduction hole, and blowing cold air into the hollow extruded profile from the cool air introduction hole (Japanese Patent Laid-Open No. 5-200431), etc. It has been known.

【0004】[0004]

【発明が解決しようとする課題】冷気吐出口をマンドレ
ルに形成することは、ダイスの製作を困難にし、加工負
荷やコスト上昇の原因となる。しかも、冷気吐出口の穿
設による強度低下でダイスが破損しやすくなるため、冷
気吐出口の穿設個所に制約を受け、必要部分の内部冷却
が十分できないことにもなる。他方、中空押出形材の側
壁に冷気導入孔をあけると、製品の商品価値を大きく損
ねることになりかねない。また、押出直後から冷気導入
孔の穿設までに時間がかかり、この間の冷却過程で合金
成分が析出し、時効処理による強度付与に必要な固溶量
が確保できなくなる虞がある。
Forming a cold air discharge port in a mandrel makes it difficult to manufacture a die, and causes an increase in processing load and cost. In addition, since the die is easily damaged due to a decrease in strength due to the perforation of the cool air discharge port, the location of the perforation of the cool air discharge port is restricted, and the internal cooling of a necessary portion cannot be sufficiently performed. On the other hand, if a cold air introduction hole is formed in the side wall of the hollow extruded profile, the commercial value of the product may be greatly impaired. Also, it takes time from immediately after the extrusion to the perforation of the cool air introduction hole, and during the cooling process during this period, the alloy component may precipitate, and the amount of solid solution required for imparting strength by aging treatment may not be secured.

【0005】[0005]

【課題を解決するための手段】本発明は、このような問
題を解消すべく案出されたものであり、押出機出側から
挿入した冷気供給管の先端に取り付けた冷気噴出ノズル
を押出機直後の中空押出形材内部に位置させることによ
り、押出直後の中空押出形材を内部から確実に冷却する
ことを目的とする。本発明の冷却方法は、その目的を達
成するため、ダイスから押し出される中空押出形材に、
該中空押出形材の出側開口から冷気供給管を挿し込み、
該冷気供給管の先端に取り付けた冷気噴射ノズルから前
記ダイスの出側端面までの距離を一定に維持し、前記冷
気噴射ノズルから前記中空押出形材の半径方向から出側
開口に向けて冷気を噴き出すことを特徴とする。
SUMMARY OF THE INVENTION The present invention has been devised in order to solve such a problem. A cold air jet nozzle attached to the tip of a cold air supply pipe inserted from the outlet side of the extruder is used in the extruder. An object of the present invention is to reliably cool the hollow extruded shape immediately after extrusion from the inside by being positioned inside the hollow extruded shape immediately after. The cooling method of the present invention, in order to achieve the object, to a hollow extruded shape extruded from a die,
Insert a cold air supply pipe from the outlet opening of the hollow extruded profile,
The distance from the cool air injection nozzle attached to the tip of the cool air supply pipe to the outlet end face of the die is kept constant, and the cool air is supplied from the cool air injection nozzle toward the outlet opening from the radial direction of the hollow extruded profile. It is characterized by spouting.

【0006】冷気供給管として冷気供給ホースを使用す
る冷却装置では、先端に冷気噴射ノズルが装着された冷
気供給ホースを巻き付けたホースリールをプラーに搭載
し、ホースガイドにより冷気供給ホースを押出成形中の
中空押出形材の内部に案内する。このとき、押出方向に
沿ったプラーの移動速度と等速で且つ押出方向と逆方向
に冷気供給ホースを送り出すことにより、ダイスの出側
端面から一定距離だけ離れた位置に冷気噴射ノズルを維
持する。送出し機構としては、たとえばプラーが走行す
るレールに回転可能に接触するホース送りローラが使用
される。
In a cooling apparatus using a cold air supply hose as a cold air supply pipe, a hose reel wound around a cold air supply hose having a cold air injection nozzle attached to the tip is mounted on a puller, and the cold air supply hose is being extruded by a hose guide. To the inside of the hollow extruded profile. At this time, the cool air injection nozzle is maintained at a position separated by a certain distance from the exit side end surface of the die by sending out the cool air supply hose at the same speed as the moving speed of the puller along the extrusion direction and in the direction opposite to the extrusion direction. . As the delivery mechanism, for example, a hose feed roller that rotatably contacts a rail on which a puller travels is used.

【0007】伸縮管を用いた冷却装置では、押出機の出
側に配置されたイニシャルテーブルに沿ったレールにハ
ウジングを走行可能に配置し、ダイス側に片持ち状態で
延び、先端に冷気噴射ノズルが装着された伸縮管の基端
をハウジングに取り付ける。押出成形中にプラーと同期
してハウジングを押出方向に走行させる際、ダイスの出
側端面から一定距離だけ離れた位置で中空押出形材の内
部に冷気噴射ノズルが維持されるように、押出方向とは
逆方向で且つハウジングの走行速度と等速で伸縮管を伸
張させる。
In a cooling device using a telescopic tube, a housing is movably arranged on a rail along an initial table arranged on the exit side of an extruder, extends in a cantilever state on a die side, and has a cold air injection nozzle at a tip. Attach the base end of the telescopic tube with the attached to the housing. When running the housing in the extrusion direction in synchronization with the puller during extrusion molding, the extrusion direction is such that the cold air injection nozzle is maintained inside the hollow extruded shape at a position away from the exit end face of the die by a certain distance. The telescopic tube is extended in the opposite direction and at the same speed as the traveling speed of the housing.

【0008】何れの冷却装置でも、噴き出された冷気が
ダイスに直接吹き付けられることを防止する傘状プレー
トを冷気噴射ノズルのダイス側端部に設けることが好ま
しい。冷気供給ホース又は伸縮管を中空押出形材の中心
に維持する支持具を所定間隔で冷気供給ホース又は伸縮
管に装着しながら、冷気供給ホース又は伸縮管をダイス
側に送り出すこともできる。
In any of the cooling devices, it is preferable to provide an umbrella-shaped plate at the die side end of the cool air injection nozzle for preventing the blown cool air from being directly blown to the die. The cold air supply hose or the telescopic tube can be sent out to the die side while the support member for maintaining the cold air supply hose or the telescopic tube at the center of the hollow extruded section is attached to the cold air supply hose or the telescopic tube at predetermined intervals.

【0009】[0009]

【実施の形態】押出直後の中空押出形材を内部から冷却
するためには、ダイス出側近傍の位置で中空押出形材の
内部に存在する高温気体を排出し、冷気に置き換えるこ
とが必要である。当該位置にある中空押出形材内部に冷
気を噴出させることにより、高温気体が排出され、中空
押出形材が内部から冷却される。しかし、冷気吐出口を
マンドレルに穿設することや中空押出形材に冷気導入孔
を穿設することは前述したような問題があるため、本発
明では押出機出側から冷気供給管を中空押出形材に挿し
込み、冷気供給管の先端に取り付けた冷気噴出ノズルを
押出機直後の中空押出形材内部に位置させる方式を採用
した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to cool a hollow extruded profile immediately after extrusion from the inside, it is necessary to discharge hot gas existing inside the hollow extruded profile at a position near a die exit side and replace it with cool air. is there. By blowing cool air into the hollow extruded profile at the position, the hot gas is discharged, and the hollow extruded profile is cooled from the inside. However, since the cold air discharge port is formed in the mandrel and the cold air introduction hole is formed in the hollow extruded section, there is a problem as described above. A method was adopted in which a cold air jet nozzle attached to the end of a cold air supply pipe was inserted into the profile and positioned inside the hollow extruded profile immediately after the extruder.

【0010】押出機は、たとえば図1に示すように、ダ
イス1からプラテン2を経て押出方向Dに押し出される
中空押出形材Mの先端をプラー3で引っ張り、プラー3
をレール4に沿って走行させながら、中空押出形材Mを
イニシャルテーブル5上に送り出す。このとき、冷気供
給管として冷気供給ホース11を中空押出形材Mの出側
開口から内部に送り込み、冷気供給ホース11の先端に
装着した冷気噴射ノズル12をダイス1の出側近傍に位
置させる内部冷却機構10を付設している。冷気供給ホ
ース11は、ホースリール13から繰り出され、ホース
ガイド14によって中空押出形材Mの出側開口に送り出
される。冷気供給ホース11の先端に取り付けられた冷
気噴射ノズル12には、噴射方向が押出方向Dに向けて
傾斜したノズル孔15(図2a)が穿設されている。ま
た、ノズル孔15から噴出された冷気がダイス1に直接
接触してダイス1を冷却しないように、冷気噴射ノズル
12のダイス1側に傘状プレート16が設けられてい
る。
The extruder pulls the tip of a hollow extruded material M extruded from a die 1 through a platen 2 in an extrusion direction D with a puller 3 as shown in FIG.
While traveling along the rails 4, the hollow extruded section M is sent out onto the initial table 5. At this time, a cool air supply hose 11 is fed into the inside of the hollow extruded section M through the outlet opening as a cool air supply pipe, and a cool air injection nozzle 12 attached to the tip of the cool air supply hose 11 is positioned near the outlet side of the die 1. A cooling mechanism 10 is additionally provided. The cold air supply hose 11 is fed out from a hose reel 13 and is sent out to an outlet side opening of the hollow extruded shape M by a hose guide 14. A nozzle hole 15 (FIG. 2a) whose injection direction is inclined in the extrusion direction D is formed in the cool air injection nozzle 12 attached to the tip of the cool air supply hose 11. An umbrella plate 16 is provided on the die 1 side of the cool air jet nozzle 12 so that the cool air ejected from the nozzle hole 15 does not directly contact the die 1 to cool the die 1.

【0011】冷気供給ホース11には、高温の中空押出
形材M中に挿入されるため耐熱性及び断熱性に優れた材
質で、長尺の中空押出形材Mに宙吊り状態で挿し込むこ
とから曲がりにくい材質のホースが好ましい。或いは、
中空押出形材M内の冷気供給ホース11を適宜の間隔で
支持する支持具17をプラー3側から適宜の間隔で送り
出すこともできる。支持具17としては、冷気供給ホー
ス11が挿通されるリング17aから少なくとも3方に
アーム17bが延び、中空押出形材Mの内面に接触して
回転するローラ17cが各アーム17bの先端に取り付
けられたもの(図2b)が使用される。摩擦係数の高い
材質や弾性力,バネ弾性等で冷気供給ホース11を挟み
込むリング17aを使用すると、冷気供給ホース11と
リング17aとの間のスリップが防止され、冷気供給ホ
ース11の送出しに伴ってリング17aも中空押出形材
M内に送り込まれる。
Since the cold air supply hose 11 is inserted into the high-temperature hollow extruded profile M, it is made of a material having excellent heat resistance and heat insulation properties. A hose that is difficult to bend is preferable. Or,
The support 17 for supporting the cold air supply hose 11 in the hollow extruded section M at an appropriate interval may be sent out from the puller 3 side at an appropriate interval. As the support 17, an arm 17 b extends at least in three directions from a ring 17 a through which the cold air supply hose 11 is inserted, and a roller 17 c that rotates in contact with the inner surface of the hollow extruded shape M is attached to the tip of each arm 17 b. Used (FIG. 2b). The use of the ring 17a which sandwiches the cold air supply hose 11 with a material having a high coefficient of friction, elastic force, spring elasticity or the like prevents slippage between the cold air supply hose 11 and the ring 17a, and is accompanied by the delivery of the cold air supply hose 11. The ring 17a is also fed into the hollow extruded profile M.

【0012】冷気供給ホース11の送出しには、たとえ
ばレール4に接離可能なホース送りローラ18が使用さ
れる。押出開始時点では、レール4からホース送りロー
ラ18を離し、ホースリール13から冷気供給ホース1
1を予め所定長さだけ繰り出し、ダイス1の出側端面か
ら冷気噴射ノズル12までの距離を一定値dに設定す
る。次いで、レール4にホース送りローラ18を接触さ
せ、押出方向Dに向かったプラー3の走行速度vに等し
い周速で図1では反時計方向にホース送りローラ18を
回転する。ホース送りローラ18に接触している冷気供
給ホース11は、ホース送りローラ18の周速に等しい
速度でホースリール13から送り出される。そのため、
プラー3を基準として冷気供給ホース11が送出し速度
vで図1では左方向に送り出され、冷気噴射ノズル12
の絶対位置がダイス1の出側から距離d離れた一定位置
に維持される。
For sending out the cold air supply hose 11, for example, a hose feed roller 18 that can be brought into contact with and separated from the rail 4 is used. At the start of extrusion, the hose feed roller 18 is separated from the rail 4 and the cold air supply hose 1 is removed from the hose reel 13.
1 is previously extended by a predetermined length, and the distance from the exit side end surface of the die 1 to the cool air injection nozzle 12 is set to a constant value d. Next, the hose feed roller 18 is brought into contact with the rail 4 to rotate the hose feed roller 18 counterclockwise in FIG. 1 at a peripheral speed equal to the running speed v of the puller 3 in the extrusion direction D. The cold air supply hose 11 in contact with the hose feed roller 18 is sent from the hose reel 13 at a speed equal to the peripheral speed of the hose feed roller 18. for that reason,
The cold air supply hose 11 is sent out to the left in FIG.
Is maintained at a constant position at a distance d from the exit side of the die 1.

【0013】プラー3の走行速度vと冷気供給ホース1
1の送出し速度を一致させる上で、レール4とホース送
りローラ18及び冷気供給ホース11とホース送りロー
ラ18との間でのスリップを防止することが必要であ
る。スリップ防止には、各材質の摩擦抵抗を高め、或い
はギア等で各部材を噛み合わせることが有効である。
The traveling speed v of the puller 3 and the cold air supply hose 1
In order to make the delivery speeds of 1 coincide, it is necessary to prevent slippage between the rail 4 and the hose feed roller 18 and between the cold air supply hose 11 and the hose feed roller 18. For slip prevention, it is effective to increase the frictional resistance of each material or to engage each member with a gear or the like.

【0014】冷気供給ホース11の先端部には、ノズル
孔15が押出方向D方向に傾斜しているため、ノズル孔
15から噴出される冷気によって図1で左方向に向かっ
た推進力が付与される。また、ノズル孔15から噴出さ
れた冷気が中空押出形材Mの内壁に衝突することによっ
て反力が生じる。その結果、中空押出形材Mの内部ほぼ
中央位置でダイス1の中心に向けて冷気供給ホース11
の先端部が自己支持される。冷気噴射による推進力で冷
気供給ホース11をダイス1側に送ることも可能である
が、そのためには極めて大きなガス圧を必要とし、ダイ
ス1の周辺温度を不安定にしかねない。この点、冷気供
給ホース11の先端部を自己支持するだけの推進力であ
れば、押出条件に悪影響を与えない程度にガス圧を抑え
ることができる。
Since the nozzle hole 15 is inclined at the tip end of the cold air supply hose 11 in the extrusion direction D, the propulsive force directed leftward in FIG. You. Further, a reaction force is generated when the cool air blown out from the nozzle hole 15 collides with the inner wall of the hollow extruded shape member M. As a result, the cold air supply hose 11 is moved toward the center of the die 1 at a substantially central position inside the hollow extruded profile M.
Is self-supported. Although it is possible to send the cold air supply hose 11 to the die 1 side by the propulsion force of the cold air injection, an extremely large gas pressure is required for that, and the temperature around the die 1 may become unstable. In this regard, if the propulsion is such that the distal end of the cold air supply hose 11 is self-supporting, the gas pressure can be suppressed to such an extent that the extrusion conditions are not adversely affected.

【0015】ダイス1の出側端面から一定距離dだけ離
れた位置に冷気噴射ノズル12を維持し、中空押出形材
Mの半径方向から出側開口に向けて冷気を冷気噴射ノズ
ル12から噴き出すとき、中空押出形材M内部の高温気
体が冷気の流れに乗って中空押出形材Mの内部から排気
され、中空押出形材Mの内部が冷気に置き換わる。その
結果、中空押出形材Mが内面側から冷却される。冷気に
は、低温の空気,液体窒素,ミスト等が使用される。こ
のように中空押出形材Mを内面から冷却するとき、厚肉
の中空押出形材Mであっても、冷却過程で合金成分の析
出や熱応力に起因した変形を生じさせることなく冷却す
ることが可能になる。内面からの冷却は、15mmを超
える厚肉部をもつ中空押出形材Mを押出成形するときに
特に有効である。しかも、一定条件下での冷却であるた
め、冷却された中空押出形材Mの品質も安定化する。
When the cool air injection nozzle 12 is maintained at a position separated by a fixed distance d from the outlet end face of the die 1 and cool air is injected from the cold air injection nozzle 12 from the radial direction of the hollow extruded shape M toward the outlet opening. The hot gas inside the hollow extruded profile M rides on the flow of cool air and is exhausted from the inside of the hollow extruded profile M, and the inside of the hollow extruded profile M is replaced with cold air. As a result, the hollow extruded section M is cooled from the inner side. As the cold air, low-temperature air, liquid nitrogen, mist, or the like is used. As described above, when the hollow extruded shape M is cooled from the inner surface, even if the hollow extruded shape M is thick, it is cooled without causing deformation due to precipitation of alloy components and thermal stress during the cooling process. Becomes possible. Cooling from the inner surface is particularly effective when extruding a hollow extruded shape M having a thick portion exceeding 15 mm. In addition, since the cooling is performed under a certain condition, the quality of the cooled hollow extruded shape material M is also stabilized.

【0016】冷気供給ホース11に代え、伸縮管22を
冷気供給管として使用する内部冷却機構20も使用可能
である。或いは、イニシャルテーブル5に沿った定位置
に内部冷却機構を配置し、該内部冷却機構から中空押出
形材Mの内部に延びる一定長さの冷気供給管の使用も可
能である。ただし、この場合には、押出成形が終了した
後の中空押出形材Mから冷気供給管を抜くために押出方
向Dに沿った長いスペースが必要となる。伸縮管22を
備えた内部冷却機構20は、プラー3と等速で押出方向
Dに移動させるため、図3に示すようにイニシャルテー
ブル5の側部に設けたレール21に沿って走行可能に配
置されている。伸縮管22は、内部冷却機構20のダイ
ス1側に片持ち状態で設けられている。
Instead of the cold air supply hose 11, an internal cooling mechanism 20 using the telescopic tube 22 as a cold air supply tube can also be used. Alternatively, it is also possible to arrange an internal cooling mechanism at a fixed position along the initial table 5 and use a cold air supply pipe of a fixed length extending from the internal cooling mechanism to the inside of the hollow extruded section M. However, in this case, a long space along the extrusion direction D is required to remove the cold air supply pipe from the hollow extruded shape material M after the completion of the extrusion molding. The internal cooling mechanism 20 having the telescopic tube 22 is arranged so as to be able to travel along the rail 21 provided on the side of the initial table 5 as shown in FIG. Have been. The telescopic tube 22 is provided on the die 1 side of the internal cooling mechanism 20 in a cantilever state.

【0017】伸縮管22は、外管22aに複数の内管2
2bを内挿した多重管である。外管22aは、クランク
状に屈曲し、内部冷却機構20のハウジング23に回転
可能に装着されている。最内管22cの先端に、図1と
同様な冷気噴射ノズル24が取り付けられる。伸縮管2
2は、外管22aから内管22b、最内管22cを順次
送り出すことによって長さを変えることができる。伸縮
管22の剛性が十分であれば、ダイス1から押し出され
た中空押出形材Mの全長にわたって伸縮管22を片持ち
状態で支持できるが、図2と同様な支持具17を適宜の
間隔で送り出して伸縮管22に嵌め込むことによって中
空押出形材Mの内部ほぼ中央に冷気噴射ノズル24を維
持することが容易になる。支持具17は、外管22a,
内管22b,最内管22cのダイス1側先端部に付ける
ことが好ましい。伸縮管22を構成する外管22a,内
管22b,最内管22cとしてある程度の剛性をもつパ
イプを使用する場合には、3方に突出するアーム17b
にローラ17cを装着した支持具17(図2)に代え、
下方一方向に突出するアームにローラを回転可能に装着
した支持具も使用可能である。外管22aのa−a方向
の回転及び外管22aから内管22b、更には最内管2
2cの送出しは、ハウジング23に内蔵した駆動機構
(図示せず)で行われる。内管22b及び最内管22c
は、押出方向D方向に走行する中空押出形材Mの走行速
度vと等しく、押出方向Dとは逆方向の繰出し速度で外
管22aから順次繰り出される。
The telescopic tube 22 has a plurality of inner tubes 2 attached to the outer tube 22a.
This is a multi-tube in which 2b is inserted. The outer tube 22 a is bent in a crank shape and is rotatably mounted on the housing 23 of the internal cooling mechanism 20. A cold air injection nozzle 24 similar to that shown in FIG. 1 is attached to the tip of the innermost tube 22c. Telescopic tube 2
2, the length can be changed by sequentially sending out the inner tube 22b and the innermost tube 22c from the outer tube 22a. If the rigidity of the telescopic tube 22 is sufficient, the telescopic tube 22 can be supported in a cantilevered state over the entire length of the hollow extruded profile M extruded from the die 1, but the support members 17 similar to FIG. By sending it out and fitting it into the telescopic tube 22, it becomes easy to maintain the cool air injection nozzle 24 substantially in the center of the hollow extruded profile M. The support 17 includes an outer tube 22a,
It is preferable to attach the inner tube 22b and the innermost tube 22c to the tip of the die 1 side. When a pipe having a certain degree of rigidity is used as the outer pipe 22a, the inner pipe 22b, and the innermost pipe 22c constituting the telescopic pipe 22, the arms 17b projecting in three directions.
Instead of the support member 17 (FIG. 2) having the roller 17c mounted thereon,
A support in which a roller is rotatably mounted on an arm projecting downward in one direction can also be used. The rotation of the outer tube 22a in the a-a direction and the rotation of the outer tube 22a to the inner tube 22b,
The delivery of 2c is performed by a drive mechanism (not shown) built in the housing 23. Inner tube 22b and innermost tube 22c
Is equal to the traveling speed v of the hollow extruded profile M traveling in the extrusion direction D, and is sequentially fed from the outer tube 22a at a feeding speed opposite to the extrusion direction D.

【0018】内管22b,外管22aの繰出し速度は、
プラー3又は内部冷却機構20の走行速度に同調させる
適宜の制御機構を用いて、中空押出形材Mの走行速度に
一致させることができる。制御機構としては、たとえば
ダイス1の出側端面から冷気噴射ノズル24までの距離
を光センサー,音響センサー,風圧センサー等で測定
し、測定結果に基づき当該距離が一定になるように制御
信号を伸縮管22の駆動機構に出力する制御回路が使用
される。押出方向Dに沿った中空押出形材Mの走行速度
と等しい送出し速度で伸縮管22が押出方向Dと逆方向
に送り出されるため、最内管22cの先端に取り付けた
冷気噴射ノズル24は、ダイス1の出側端面からの距離
が一定した絶対位置に維持される。したがって、押出直
後の中空押出形材Mは、冷気噴射ノズル24から噴出さ
れる冷気によって一定条件下で内部から冷却される。
The feeding speed of the inner tube 22b and the outer tube 22a is as follows.
The running speed of the hollow extruded section M can be made to match the running speed of the hollow extruded member M by using an appropriate control mechanism that is synchronized with the running speed of the puller 3 or the internal cooling mechanism 20. As the control mechanism, for example, the distance from the exit side surface of the die 1 to the cool air injection nozzle 24 is measured by an optical sensor, an acoustic sensor, a wind pressure sensor, or the like, and the control signal is expanded or contracted based on the measurement result so that the distance becomes constant. A control circuit that outputs to the drive mechanism of tube 22 is used. Since the telescopic tube 22 is sent out in the direction opposite to the extrusion direction D at a delivery speed equal to the traveling speed of the hollow extruded profile M along the extrusion direction D, the cold air injection nozzle 24 attached to the tip of the innermost tube 22c is The distance from the exit end face of the die 1 is maintained at a constant absolute position. Therefore, the hollow extruded shape member M immediately after the extrusion is cooled from the inside by the cool air jetted from the cool air jet nozzle 24 under certain conditions.

【0019】[0019]

【実施例】温度460℃に加熱したダイス1を押出機に
セットし,温度480℃に加熱した外径355mmのJ
IS A6063アルミニウム合金ビレットを押出機の
コンテナに充填し、長さ10mの押出パイプ(外径30
0mm,肉厚25mm)を製造した。このとき、押出直
後の中空押出形材Mを外面から冷却すると共に、図3に
示した内部冷却機構20を用いて内面からの冷却も併用
した。内部冷却機構20としては、最内管22cの外径
が100mmの伸縮管22を備えたものを使用した。押
出開始に当たり、起立状態の伸縮管22(図4a)を回
転させ、ダイス1の中心線上に冷気噴射ノズル24を位
置させた後、ダイス1の出側端面から冷気噴射ノズル2
4までの距離が3mになるまで内部冷却機構20を押出
方向Dと逆方向に移動させた。
EXAMPLE A die 1 heated to a temperature of 460.degree. C. was set in an extruder and heated to a temperature of 480.degree.
An extruder container is filled with an IS A6063 aluminum alloy billet and extruded into a 10 m-long extruded pipe (outside diameter 30 mm).
0 mm, thickness 25 mm). At this time, the hollow extruded material M immediately after extrusion was cooled from the outer surface, and also cooled from the inner surface using the internal cooling mechanism 20 shown in FIG. As the internal cooling mechanism 20, an internal cooling mechanism provided with a telescopic pipe 22 having an outer diameter of 100 mm of the innermost pipe 22c was used. At the start of extrusion, the telescopic tube 22 (FIG. 4 a) in the upright state is rotated to position the cool air injection nozzle 24 on the center line of the die 1, and then the cool air injection nozzle 2 is moved from the exit end face of the die 1.
The internal cooling mechanism 20 was moved in the direction opposite to the extrusion direction D until the distance to 4 became 3 m.

【0020】次いで、中空押出形材Mの先端をプラー3
で拘束し、プラー3及び内部冷却機構20を押出方向D
に走行させながら、中空押出形材Mを形材速度5m/分
で押し出した(図4b)。押出成形中に冷気噴射ノズル
24から温度20℃の冷却空気を流量50m3/分で噴
き出し、中空押出形材Mを内部から冷却した。同時に、
中空押出形材Mの周囲に配置したノズルから温度20℃
の冷却空気を流速10m/秒で噴き出し、中空押出形材
Mを外部からも冷却した。
Next, the tip of the hollow extruded section M is pulled out with a puller 3.
And puller 3 and internal cooling mechanism 20 are pushed out in the extrusion direction D.
, The hollow extruded section M was extruded at a section speed of 5 m / min (FIG. 4b). During extrusion molding, cooling air at a temperature of 20 ° C. was blown from the cold air injection nozzle 24 at a flow rate of 50 m 3 / min, and the hollow extruded shape M was cooled from the inside. at the same time,
Temperature of 20 ° C from a nozzle arranged around the hollow extruded profile M
Was blown out at a flow rate of 10 m / sec, and the hollow extruded shape M was also cooled from the outside.

【0021】ダイス1から押し出される中空押出形材M
の押出長さが長くなるに応じ、ダイス1の出側端面から
冷気噴射ノズル24までの距離が一定値3mに維持され
るように外管22aから内管22b,最内管22cを順
次繰り出した(図4c)。冷却条件は、1ビレットを押
し出す全工程を通して一定条件とした。中空押出形材M
の押出長さが15mに達したとき、1ビレットを押し出
す全工程が終了したものと扱い、押出終了に伴って冷気
の噴出しも中止した。次いで、最内管22c,内管22
bを外管22aに引き込んで伸縮管22を縮め、プラテ
ンソー6で中空押出形材Mをプラテン2から切り離した
(図4d)。
Hollow extruded profile M extruded from die 1
As the extrusion length of the die becomes longer, the inner pipe 22b and the innermost pipe 22c are sequentially fed out from the outer pipe 22a so that the distance from the outlet end face of the die 1 to the cool air jet nozzle 24 is maintained at a constant value of 3 m. (FIG. 4c). The cooling conditions were constant throughout the entire process of extruding one billet. Hollow extruded profile M
When the extrusion length reached 15 m, it was regarded that the entire process of extruding one billet was completed, and with the completion of the extrusion, the blowing of cold air was also stopped. Next, the innermost tube 22c and the inner tube 22
b was drawn into the outer tube 22a to shrink the telescopic tube 22, and the hollow extruded section M was separated from the platen 2 by the platen saw 6 (FIG. 4d).

【0022】製造された中空押出形材Mの金属組織を観
察した結果、全長にわたって析出物のないマトリックス
をもっていた。この中空押出形材Mに190℃×180
分の時効処理を施したところ、190N/mm2以上の
強度を付与できた。比較のため、内面からの冷却を省略
する以外は同じ条件下で中空押出形材Mを製造した。得
られた中空押出形材Mは、多数の析出物がマトリックス
に析出しており、時効処理後の強度も110N/mm2
と低い値を示した。
As a result of observing the metal structure of the manufactured hollow extruded shape member M, it was found that there was a precipitate-free matrix over the entire length. 190 ° C. × 180
When aging treatment was performed for minutes, a strength of 190 N / mm 2 or more could be imparted. For comparison, a hollow extruded section M was produced under the same conditions except that cooling from the inner surface was omitted. In the obtained hollow extruded shape M, a large number of precipitates are precipitated in the matrix, and the strength after aging treatment is 110 N / mm 2.
And a low value.

【0023】[0023]

【発明の効果】以上に説明したように、本発明において
は、先端に冷気噴射ノズルを取り付けた冷気供給管を中
空押出形材の出側開口から挿し込み、ダイスの出側端面
から一定距離だけ離れた位置で中空押出形材の内部に維
持した冷気噴射ノズルから冷気を噴き出すことにより、
中空押出形材を内部から冷却している。この方法による
とき、厚肉の中空押出形材であっても十分な冷却速度が
とれるため、強度付与に寄与しない合金成分の析出が防
止される。したがって、時効処理時に強度付与に有効な
析出量が十分確保され、強度の高い中空押出形材が提供
される。
As described above, according to the present invention, a cool air supply pipe having a cool air injection nozzle attached at the tip is inserted from the outlet opening of the hollow extruded profile and is fixed at a predetermined distance from the outlet end face of the die. By blowing cool air from a cool air spray nozzle maintained inside the hollow extruded profile at a remote position,
The hollow extruded profile is cooled from the inside. According to this method, a sufficient cooling rate can be obtained even with a thick hollow extruded profile, so that precipitation of alloy components that do not contribute to imparting strength is prevented. Therefore, a sufficient amount of precipitation effective for imparting strength during the aging treatment is sufficiently ensured, and a hollow extruded section having high strength is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 冷気供給管として冷気供給ホースを用い、押
出方向に沿ったプラーの走行に合わせて冷気噴射ノズル
を逆方向に等速で送り出す機構を備えた内部冷却機構の
説明図
FIG. 1 is an explanatory diagram of an internal cooling mechanism that uses a cold air supply hose as a cold air supply pipe and has a mechanism for sending a cold air injection nozzle in a reverse direction at a constant speed in accordance with the travel of a puller in an extrusion direction.

【図2】 中空押出形材の内部に挿入された冷気供給ホ
ース及び冷気噴射ノズルを示す断面図
FIG. 2 is a cross-sectional view showing a cold air supply hose and a cold air injection nozzle inserted inside a hollow extruded profile.

【図3】 冷気供給管として伸縮管を備えた内部冷却機
構の斜視図
FIG. 3 is a perspective view of an internal cooling mechanism provided with a telescopic tube as a cold air supply tube.

【図4】 同内部冷却機構を用いた押出成形工程の説明
FIG. 4 is an explanatory diagram of an extrusion molding process using the internal cooling mechanism.

【符号の説明】[Explanation of symbols]

1:ダイス 2:プラテン 3:プラー 4:レ
ール 5:イニシャルテーブル 6:プラテンソー 10:内部冷却機構 11:冷気供給ホース 1
2:冷気噴射ノズル 13:ホースリール 14:
ホースガイド 15:ノズル孔 16:傘状プレー
ト 17:支持具 17a:リング 17b:ア
ーム 17c:ローラ 18:ホース送りローラ 20:内部冷却機構 21:レール 22:伸縮管
22a:外管 22b:内管 22c:最内管
23:ハウジング 24:冷気噴射ノズル M:中空押出形材 D:押出方向 d:ダイスの出側端面から冷気噴射ノズルまでの距離
1: Die 2: Platen 3: Puller 4: Rail 5: Initial table 6: Platen saw 10: Internal cooling mechanism 11: Cold air supply hose 1
2: Cold air injection nozzle 13: Hose reel 14:
Hose guide 15: Nozzle hole 16: Umbrella plate 17: Support 17a: Ring 17b: Arm 17c: Roller 18: Hose feed roller 20: Internal cooling mechanism 21: Rail 22: Telescopic tube 22a: Outer tube 22b: Inner tube 22c : Innermost tube 23 : Housing 24 : Cool air jet nozzle M : Hollow extruded shape material D : Extrusion direction d : Distance from exit end face of die to cold air jet nozzle

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ダイスから押し出される中空押出形材
に、該中空押出形材の出側開口から冷気供給管を挿し込
み、該冷気供給管の先端に取り付けた冷気噴射ノズルか
ら前記ダイスの出側端面までの距離を一定に維持し、前
記中空押出形材の半径方向から出側開口に向けて前記冷
気噴射ノズルから冷気を噴き出すことを特徴とする中空
押出形材内面の冷却方法。
1. A cold air supply pipe is inserted into a hollow extruded shape extruded from a die through an outlet opening of the hollow extruded shape, and a cold air injection nozzle attached to a tip of the cold air supply pipe exits the die. A method of cooling an inner surface of a hollow extruded profile, wherein a constant distance to an end face is maintained, and cool air is blown from a radial direction of the hollow extruded profile toward an outlet opening from the cool air injection nozzle.
【請求項2】 先端に冷気噴射ノズルが装着された冷気
供給ホースと、該冷気供給ホースが巻き付けられ、プラ
ーに搭載されたホースリールと、前記冷気供給ホースを
押出成形中の中空押出形材の内部に案内するホースガイ
ドと、押出方向に沿ったプラーの移動速度と等速で且つ
押出方向と逆方向に送り出す送出し機構とを備え、ダイ
スの出側端面から一定距離だけ離れた位置に維持された
前記冷気噴射ノズルから噴き出される冷気で中空押出形
材の内面を冷却することを特徴とする中空押出形材内面
の冷却装置。
2. A cold air supply hose having a cold air injection nozzle mounted at a tip thereof, a hose reel wound around the cold air supply hose and mounted on a puller, and a hollow extruded material being formed by extruding the cold air supply hose. Equipped with a hose guide that guides inside and a delivery mechanism that sends out the puller at the same speed as the moving direction in the extrusion direction and in the opposite direction to the extrusion direction, and maintains a position at a fixed distance from the exit side end surface of the die A cooling device for cooling the inner surface of the hollow extruded profile, wherein the inner surface of the hollow extruded profile is cooled by the cool air blown out from the cold air injection nozzle.
【請求項3】 請求項2記載の送出し機構は、プラーが
走行するレールに回転可能に接触するホース送りローラ
を備え、押出方向とは逆方向で且つ押出速度と等速の周
速で回転する前記ホース送りローラによって冷気供給ホ
ースが中空押出形材に送り込まれる冷却装置。
3. The delivery mechanism according to claim 2, further comprising a hose feed roller rotatably contacting a rail on which the puller runs, and rotating at a circumferential speed opposite to the extrusion direction and at a constant speed equal to the extrusion speed. A cooling device in which a cold air supply hose is fed into a hollow extruded profile by the hose feed roller.
【請求項4】 押出機の出側に配置されたイニシャルテ
ーブルに沿ったレールと、該レールに走行可能に配置さ
れたハウジングと、該ハウジングに一端が取り付けら
れ、ダイス側に片持ち状態で延びる伸縮管と、伸縮管の
先端に装着された冷気噴射ノズルとを備え、押出成形中
にプラーと同期してハウジングを押出方向に走行させる
際、ダイスの出側端面から一定距離だけ離れた位置で中
空押出形材の内部に前記冷気噴射ノズルが維持されるよ
うに、押出方向とは逆方向で且つハウジングの走行速度
と等速で伸縮管を伸張させることを特徴とする中空押出
形材内面の冷却装置。
4. A rail along an initial table arranged on the exit side of the extruder, a housing movably arranged on the rail, one end attached to the housing, and extending in a cantilevered state on the die side. Equipped with a telescopic tube and a cool air injection nozzle attached to the end of the telescopic tube.When the housing is run in the extrusion direction in synchronization with the puller during extrusion molding, at a position away from the exit end surface of the die by a certain distance In order to maintain the cold air injection nozzle inside the hollow extruded profile, the telescopic tube is stretched in the direction opposite to the extrusion direction and at the same speed as the traveling speed of the housing. Cooling system.
【請求項5】 冷気噴射ノズルのダイス側端部に、該冷
気噴射ノズルから噴き出される冷気が前記ダイスに直接
吹き付けられることを防止する傘状プレートが設けられ
ている請求項2〜4の何れかに記載の冷却装置。
5. An umbrella-shaped plate provided at an end of the cool air injection nozzle on the die side to prevent cold air blown out from the cool air injection nozzle from being directly blown onto the die. The cooling device according to any one of the above.
【請求項6】 冷気供給ホース又は伸縮管を中空押出形
材の中心に維持する支持具が所定間隔で冷気供給ホース
又は伸縮管に装着される請求項2又は4記載の冷却装
置。
6. The cooling device according to claim 2, wherein a support for maintaining the cold air supply hose or the telescopic tube at the center of the hollow extruded section is attached to the cold air supply hose or the telescopic tube at predetermined intervals.
JP2000011121A 2000-01-20 2000-01-20 Method and apparatus for cooling inner surface of hollow extruded profile Expired - Fee Related JP4277149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000011121A JP4277149B2 (en) 2000-01-20 2000-01-20 Method and apparatus for cooling inner surface of hollow extruded profile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000011121A JP4277149B2 (en) 2000-01-20 2000-01-20 Method and apparatus for cooling inner surface of hollow extruded profile

Publications (2)

Publication Number Publication Date
JP2001205330A true JP2001205330A (en) 2001-07-31
JP4277149B2 JP4277149B2 (en) 2009-06-10

Family

ID=18539030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000011121A Expired - Fee Related JP4277149B2 (en) 2000-01-20 2000-01-20 Method and apparatus for cooling inner surface of hollow extruded profile

Country Status (1)

Country Link
JP (1) JP4277149B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105689428A (en) * 2016-03-13 2016-06-22 安徽鑫旭新材料股份有限公司 Copper material extrusion-forming, cooling and cleaning device capable of improving draining
CN108237182A (en) * 2016-12-27 2018-07-03 天津市升发科技股份有限公司 A kind of cooling device for aluminum profiles
CN113954329A (en) * 2021-11-10 2022-01-21 重庆金山洋生管道有限公司 Large-diameter ribbed pipe processing equipment
CN114951331A (en) * 2022-08-01 2022-08-30 广东赛福智能装备有限公司 Cooling system for aluminum profile extrusion rear production line
CN116921492A (en) * 2023-09-19 2023-10-24 成都先进金属材料产业技术研究院股份有限公司 Preparation method of thick-wall titanium alloy pipe

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111014331B (en) * 2019-12-17 2021-09-24 扬州瑞斯乐复合金属材料有限公司 Cooling method of micro-channel aluminum flat tube

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105689428A (en) * 2016-03-13 2016-06-22 安徽鑫旭新材料股份有限公司 Copper material extrusion-forming, cooling and cleaning device capable of improving draining
CN108237182A (en) * 2016-12-27 2018-07-03 天津市升发科技股份有限公司 A kind of cooling device for aluminum profiles
CN113954329A (en) * 2021-11-10 2022-01-21 重庆金山洋生管道有限公司 Large-diameter ribbed pipe processing equipment
CN113954329B (en) * 2021-11-10 2023-12-15 重庆金山洋生管道有限公司 Processing equipment for large-caliber reinforced pipe
CN114951331A (en) * 2022-08-01 2022-08-30 广东赛福智能装备有限公司 Cooling system for aluminum profile extrusion rear production line
CN114951331B (en) * 2022-08-01 2022-11-15 广东赛福智能装备有限公司 Cooling system for aluminum profile extrusion rear production line
CN116921492A (en) * 2023-09-19 2023-10-24 成都先进金属材料产业技术研究院股份有限公司 Preparation method of thick-wall titanium alloy pipe
CN116921492B (en) * 2023-09-19 2024-02-02 成都先进金属材料产业技术研究院股份有限公司 Preparation method of thick-wall titanium alloy pipe

Also Published As

Publication number Publication date
JP4277149B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
US5271786A (en) Method and apparatus for producing pipes for drip irrigation
JPH02238919A (en) Method and device for producing dropping-irrigation duct
JPS6038138A (en) Production unit for double wall type spiral thermoplastic pipe
JP4277149B2 (en) Method and apparatus for cooling inner surface of hollow extruded profile
JP2008540163A (en) Heat transfer method and apparatus
JP4420438B2 (en) Longitudinal stretching of tubular thermoplastic film
JPS5923269B2 (en) Air ring for inflation film production
CN114103082A (en) Plastic film blowing equipment
JP2005505448A5 (en)
US20050008806A1 (en) Medical device tubing with discrete orientation regions
EP0795389A1 (en) Method and apparatus for internal cooling of plastic pipes
KR20150131380A (en) Method for producing a steel tube including cleaning of the inner tube wall
JP2000271986A (en) Manufacture of synthetic resin wire material
US4043856A (en) Apparatus and method for producing flexible plastic tubing
JPS62263314A (en) New uniform polymer filament
KR20150131379A (en) Method for producing a steel tube including cleaning of the outer tube wall
US3541191A (en) Method for manufacturing film from thermoplastic resinous film-forming materials
CN209869199U (en) Polyethylene pipe cooling device
JP2618472B2 (en) Aluminum coated wire manufacturing equipment
JPH06194092A (en) Manufacture of aluminum flat tube for heat exchanger
JPH0571375B2 (en)
KR101778400B1 (en) Amorphous material coiling apparatus
JPH05138717A (en) Method and device for manufacturing extruded foamy body
JP4292858B2 (en) Material blowing method in rotary molding machine
JP2603981B2 (en) Manufacturing method of aluminum tube containing optical fiber unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070213

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090212

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees