JP2001205098A - Catalyst carrier and method for preparing catalyst carrier - Google Patents

Catalyst carrier and method for preparing catalyst carrier

Info

Publication number
JP2001205098A
JP2001205098A JP2000019644A JP2000019644A JP2001205098A JP 2001205098 A JP2001205098 A JP 2001205098A JP 2000019644 A JP2000019644 A JP 2000019644A JP 2000019644 A JP2000019644 A JP 2000019644A JP 2001205098 A JP2001205098 A JP 2001205098A
Authority
JP
Japan
Prior art keywords
base material
catalyst carrier
glass
catalyst
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000019644A
Other languages
Japanese (ja)
Inventor
Yasunori Gama
保典 蒲
Toru Shoji
亨 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2000019644A priority Critical patent/JP2001205098A/en
Publication of JP2001205098A publication Critical patent/JP2001205098A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst carrier with excellent corrosion resistance while a metal is used as a constitutional material and a method for preparing the catalyst carrier with excellent corrosion resistance. SOLUTION: This a catalyst carrier comprises a cylindrical base material consisting of a corrugated foil made of a metal and a spacer foil and with a crosssection of a honey-comb structure and a corrosion-resistant layer covering the surface of the above base material, and the corrosion-resistant layer consists of a glass including a crystalline glass. In addition, the catalyst carrier is prepared by a process wherein the corrugated foil made of a metal and the spacer foil are laminated to prepare the cylindrical base material with the crosssection of the honey-comb structure and after the cylindrical base material is immersed into a solution containing the crystalline glass, the cylindrical base material is heated to form the corrosion-resistant layer and in the process for forming the corrosion-resistant layer, a plurality of times of the processing are preferably performed while the amount of sticking of the solution onto the cylindrical base material is restricted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排ガス浄化触媒、
脱臭触媒、燃焼触媒といった触媒で使用される触媒担体
及びその製造方法に関する。特に、処理対象物が腐食性
物質を含む反応系で使用される触媒で用いられる触媒担
体に関するものである。
[0001] The present invention relates to an exhaust gas purifying catalyst,
The present invention relates to a catalyst carrier used for a catalyst such as a deodorizing catalyst and a combustion catalyst, and a method for producing the same. In particular, the present invention relates to a catalyst carrier used for a catalyst used in a reaction system in which an object to be treated contains a corrosive substance.

【0002】[0002]

【従来の技術】触媒は、石油精製、石油化学品製造とい
った工業的利用の他、排ガス浄化、脱臭のような公害防
止、環境浄化の目的にも広く利用されている。これら触
媒の形態としては、粉末担体、ペレット担体に触媒成分
を担持させたものが従来から用いられているが、排ガス
浄化触媒等の環境浄化用の触媒においては、近年、軽量
で圧力損失が少ない断面ハニカム構造の筒状基材(一般
にハニカム又はモノリスと呼ばれることが多い。)に触
媒成分を担持させたハニカム触媒が広く利用されてい
る。
2. Description of the Related Art Catalysts are widely used not only for industrial applications such as petroleum refining and petrochemical production, but also for pollution control such as exhaust gas purification and deodorization and environmental purification. As a form of these catalysts, those in which a catalyst component is supported on a powder carrier or a pellet carrier have been conventionally used. However, in the case of an environmental purification catalyst such as an exhaust gas purification catalyst, in recent years, the pressure is low and the pressure loss is small. BACKGROUND ART Honeycomb catalysts in which a catalyst component is supported on a tubular base material having a honeycomb structure in cross section (generally, often referred to as a honeycomb or a monolith) are widely used.

【0003】そして、ハニカム触媒で使用されるハニカ
ムの態様にも変化が見られ、アルミナ、コージェライト
等のセラミックを成形したセラミックハニカムから、構
成材料として金属を採用するメタルハニカムの適用が有
力視されている。これは、金属が弾性を有し靭性に優れ
ることから衝撃に対しても破損しにくい上に、機械的強
度が高いため担体の強度を確保しつつ各セルの壁厚を薄
くすることができ反応ガスの圧力損失を更に低減させる
ことができという理由によるものである。また、金属は
熱伝導率が良好であることから、所定の反応温度に加熱
する際の加熱時間を短縮することができ、エネルギー効
率が良好であることもメタルハニカムの特色である。
[0003] Further, there has been a change in the form of the honeycomb used in the honeycomb catalyst, and the application of a metal honeycomb employing a metal as a constituent material from a ceramic honeycomb formed of ceramic such as alumina or cordierite is considered to be promising. ing. This is because the metal is elastic and has excellent toughness, so it is not easily damaged by impact.In addition, since the mechanical strength is high, the wall thickness of each cell can be reduced while ensuring the strength of the carrier. This is because the gas pressure loss can be further reduced. In addition, since the metal has good thermal conductivity, it is possible to shorten the heating time when heating to a predetermined reaction temperature, and it is also a feature of the metal honeycomb that the energy efficiency is good.

【0004】ところで、環境浄化用触媒が適用される反
応系においては、腐食性成分が含有されている場合が多
い。また、触媒は、通常、室温以上の温度で使用され、
場合によっては相当高温下で使用されるものである。従
って、環境浄化用触媒は相当の腐食環境下で使用されて
いることが多いと考えられ、このような触媒の担体とし
てメタルハニカムを使用した場合、担体の腐食及び触媒
の破損という問題が生じるものと考えられる。
Incidentally, in a reaction system to which an environmental purification catalyst is applied, corrosive components are often contained. Further, the catalyst is usually used at a temperature of room temperature or higher,
In some cases, it is used at a considerably high temperature. Therefore, it is considered that the catalyst for environmental purification is often used in a considerably corrosive environment, and when a metal honeycomb is used as a carrier for such a catalyst, problems such as corrosion of the carrier and damage to the catalyst occur. it is conceivable that.

【0005】[0005]

【発明が解決しようとする課題】かかる腐食の問題への
対策としては、メタルハニカムを適用するならば構成材
料を耐食性の高い金属材料、即ち材料の高級化を図るこ
とが考えられる。また、メタルハニカムから従来のセラ
ミックハニカムを使用することも考えられる。
As a countermeasure against such a corrosion problem, if a metal honeycomb is applied, it is conceivable to use a metal material having high corrosion resistance, that is, to improve the quality of the material. It is also conceivable to use a conventional ceramic honeycomb instead of a metal honeycomb.

【0006】しかしながら、構成材料の高級化は、担体
の価格ひいては触媒の価格が向上させることとなり、実
際的には有用な対策ではない。また、従来のセラミック
ハニカムを使用することにより担体の腐食の問題は解消
されるものの、上記したメタルハニカムの長所を考慮す
れば、セラミックハニカムの適用が困難である場合も考
えられる。
[0006] However, the upgrading of the constituent materials leads to an increase in the price of the support and, in turn, the price of the catalyst, and is not a practically useful measure. Further, although the problem of corrosion of the carrier is solved by using the conventional ceramic honeycomb, it may be difficult to apply the ceramic honeycomb in consideration of the above-mentioned advantages of the metal honeycomb.

【0007】そこで、本発明は構成材料として金属を用
いつつ、耐食性に優れた触媒担体及び耐食性に優れる触
媒担体の製造方法を提供することを目的とする。
Accordingly, an object of the present invention is to provide a catalyst carrier having excellent corrosion resistance and a method for producing a catalyst carrier having excellent corrosion resistance while using metal as a constituent material.

【0008】[0008]

【課題を解決するための手段】本発明者は、従来のメタ
ルハニカムに防食層を設けることで上記課題を解決する
ことができると考えた。そして、次のような条件が防食
層について必要であるとして鋭意検討を行った。即ち、
腐食性ガスに不活性であり、防食効果に優れているこ
とが必要である。また、比較的少量の付着量、つま
り、比較的薄くとも防食効果を有することが必要であ
る。メタルハニカムは壁厚を薄くできることで流通ガス
の圧力損失を小さくすることができるという利点を有す
ることから、防食層の厚さもできる限り薄くすべきと考
えられるからである。更に、複雑形状の物に対しても
偏差なく均一に素地金属を被覆することができるもので
あることが必要である。特に、ハニカムはその形状が複
雑であり、防食層の有無、厚さに偏差が生じやすいが、
全面に均一に形成されなければそこから腐食が進行する
こととなるため、この条件は重要である。
Means for Solving the Problems The present inventor has considered that the above problem can be solved by providing an anticorrosion layer on a conventional metal honeycomb. Then, the following conditions were required for the anticorrosion layer, and intensive studies were made. That is,
It must be inert to corrosive gases and have an excellent anticorrosion effect. In addition, it is necessary that a relatively small amount of adhesion, that is, a relatively thin coating has an anticorrosive effect. This is because the metal honeycomb has the advantage that the wall thickness can be reduced and the pressure loss of the flowing gas can be reduced, so that the thickness of the anticorrosion layer should be as small as possible. Furthermore, it is necessary that the base metal can be uniformly coated with no deviation even on an object having a complicated shape. In particular, the shape of the honeycomb is complicated, and the presence or absence of the anticorrosion layer and the thickness are likely to vary,
This condition is important because if not formed uniformly over the entire surface, corrosion will proceed from there.

【0009】そして、上記した条件を具備するものとし
て、結晶性ガラスを含むガラス層を防食層として金属基
材上に形成させるのが適当であるとした。即ち、本願請
求項1記載の発明は、金属製の波形フォイル及びスペー
サーフォイルからなり断面ハニカム構造を有する筒状基
材と前記基材の表面を覆う防食層とからなる触媒担体で
あって、防食層は結晶性ガラスを含むガラスからなる触
媒担体である。
[0009] Then, assuming that the above conditions are satisfied, it has been determined that it is appropriate to form a glass layer containing crystalline glass on a metal substrate as an anticorrosion layer. In other words, the invention according to claim 1 of the present application is a catalyst carrier comprising a tubular base material having a cross-section honeycomb structure made of a metal corrugated foil and a spacer foil, and a corrosion protection layer covering the surface of the base material. The layer is a catalyst support made of glass, including crystalline glass.

【0010】結晶性ガラスは、化学的に安定であり腐食
性成分に対しても反応性が低く、また、緻密で反応性ガ
スを通過させることがないことから、金属基材上に結晶
性ガラスを含むガラス層を形成させることで、基材の金
属素地を保護することができる。また、結晶性ガラスは
融点が高く耐熱性に優れることから、高温で用いられる
触媒に対しても使用可能である。
Crystalline glass is chemically stable, has low reactivity to corrosive components, and is dense and does not allow a reactive gas to pass therethrough. By forming a glass layer containing, the metal substrate of the base material can be protected. In addition, since crystalline glass has a high melting point and excellent heat resistance, it can be used for a catalyst used at a high temperature.

【0011】また、後述のように結晶性ガラスは、その
粉末を液体溶媒中に分散させて液状にしこれを塗布する
ことで、複雑形状の被覆材についてもムラなく均一に付
着させることができる。従って、本発明のハニカム形状
を有する基材についても均一な防食層を形成させること
ができる。
Further, as described later, the crystalline glass is dispersed in a liquid solvent so as to be in a liquid state, and the liquid is applied, whereby even a coating material having a complicated shape can be uniformly applied. Therefore, a uniform anticorrosion layer can be formed even on the honeycomb-shaped substrate of the present invention.

【0012】ここで、防食層を形成する結晶性ガラスの
成分としては、主結晶がアノーサイト(CaAl
)、スロートサイト(SrAlSi
)、セルシアン(BaAl Si)の1
種又はこれら2種以上の混合体であるのが好ましい。本
発明者の試行によれば、これらの結晶性ガラスを含むガ
ラス層が特に防食効果が高いと考えられるからである。
As a component of the crystalline glass forming the anticorrosion layer, the main crystal is anorthite (CaAl 2 S).
i 2 O 8 ), throat site (SrAl 2 Si)
2 O 8 ), 1 of celsian (BaAl 2 Si 2 O 8 )
It is preferably a species or a mixture of two or more of these. This is because according to the trial of the present inventors, the glass layer containing these crystalline glasses is considered to have a particularly high anticorrosion effect.

【0013】尚、本発明において筒状基材の構成材料
は、従来の金属ハニカム担体で使用されている金属材料
が使用できる。具体的には、ステンレス系の耐熱合金材
(Fe−Cr−Al合金等)のような耐熱合金が使用さ
れる。
In the present invention, as the constituent material of the tubular base material, a metal material used in a conventional metal honeycomb carrier can be used. Specifically, a heat-resistant alloy such as a stainless-based heat-resistant alloy material (Fe—Cr—Al alloy or the like) is used.

【0014】また、一般的な触媒においては、触媒粒子
の分散性を高めて有効表面積を向上させるべく、担体に
アルミナ、ジルコニア等の多孔質無機質材(一般的にウ
オッシュコートと呼ばれる。)をコーティングし、その
上に触媒粒子を担持して製造する。本発明の結晶性ガラ
ス層を有する触媒担体を用いて触媒を製造する場合も、
ガラス層の上にウオッシュコートをコーティングし、触
媒成分を担持させて使用することができ、取り扱いに特
別な配慮は不要である。
In a general catalyst, a carrier is coated with a porous inorganic material (generally called a washcoat) such as alumina or zirconia in order to enhance the dispersibility of the catalyst particles and improve the effective surface area. Then, the catalyst particles are supported thereon to produce. When producing a catalyst using a catalyst carrier having a crystalline glass layer of the present invention,
A wash coat can be coated on the glass layer to support and use a catalyst component, and no special care is required for handling.

【0015】次に、本発明に係る触媒担体の製造方法に
ついて説明する。本発明に係る触媒担体は、金属製波形
フォイルとスペーサーフォイルとを積層さて断面ハニカ
ム構造を有する筒状基材を製造し、この筒状基材を結晶
性ガラスを含む溶液に浸漬して溶液を筒状基材に付着さ
せた後、筒状基材を加熱しすることて金属製基材上に結
晶性ガラスを含む防食層を形成させることができる。
Next, a method for producing a catalyst carrier according to the present invention will be described. The catalyst support according to the present invention, a metal corrugated foil and a spacer foil are laminated to produce a cylindrical substrate having a cross-sectional honeycomb structure, and the cylindrical substrate is immersed in a solution containing crystalline glass to form a solution. After being attached to the cylindrical substrate, the cylindrical substrate is heated to form an anticorrosive layer containing crystalline glass on the metal substrate.

【0016】ここでいう、波形フォイルとは波形成形可
能な成形ロールによって予め波形形状が付与された金属
箔をいい、スペーサーフォイルとは平形の金属箔をい
う。これらの金属箔の厚さは流通するガスの圧力損失を
考慮すると30〜100μmのものが使用される。そし
て、基材の製造に際しては、波形フォイルとスペーサー
フォイルとを積層することでハニカム形状を有する断面
角型又は円形の筒状の基材とすることができる。尚、円
筒形状の基材については、波形フォイルとスペーサーフ
ォイルとを積層しこれを巻回することで容易に成形可能
である。
Here, the corrugated foil refers to a metal foil to which a corrugated shape is previously given by a forming roll capable of corrugating, and the spacer foil refers to a flat metal foil. The thickness of these metal foils is 30 to 100 μm in consideration of the pressure loss of flowing gas. In manufacturing the base material, a corrugated foil and a spacer foil are laminated to form a base material having a honeycomb shape and a square cross section or a circular cylindrical shape. Note that a cylindrical base material can be easily formed by laminating a corrugated foil and a spacer foil and winding the laminated foil.

【0017】このように成形した筒状基材を結晶ガラス
を含む溶液に浸漬して結晶性ガラスを基材表面に付着さ
せる。この結晶性ガラスの付着には溶液を基材に吹付け
て行うことも可能であるが、請求項3記載のように溶液
への浸漬によることで結晶性ガラスを基材に偏差なく付
着させるができる。ここで、基材を浸漬させる溶液とし
ては、結晶性ガラス粉末のみを溶媒に分散させたものの
他、非晶質ガラス粉末と結晶ガラス粉末との混合物が分
散したものを用いても良い。
The cylindrical base material thus formed is immersed in a solution containing crystal glass to attach the crystalline glass to the surface of the base material. The deposition of the crystalline glass can be performed by spraying the solution onto the substrate, but the crystalline glass is adhered to the substrate without deviation by immersion in the solution as described in claim 3. it can. Here, as the solution for immersing the base material, a solution in which only a crystalline glass powder is dispersed in a solvent or a solution in which a mixture of an amorphous glass powder and a crystalline glass powder is dispersed may be used.

【0018】そして、基材表面に結晶性ガラス粉末を付
着させた後、所定温度で熱処理を行う。これは、基材表
面の結晶性ガラス中の揮発成分を脱出させ完全に結晶化
させると共に、結晶性ガラスを焼結させ強固な防食層と
するためである。この際の熱処理温度としては、結晶性
ガラスの軟化点以上で結晶性ガラスの焼結可能な温度で
ある830〜950℃の範囲で行うのが好ましい。
After attaching the crystalline glass powder to the surface of the base material, heat treatment is performed at a predetermined temperature. This is because volatile components in the crystalline glass on the surface of the base material are escaped to completely crystallize, and the crystalline glass is sintered to form a strong anticorrosive layer. The heat treatment temperature at this time is preferably in the range of 830 to 950 ° C., which is a temperature above the softening point of the crystalline glass and at which the crystalline glass can be sintered.

【0019】以上の結晶性ガラスの付着、熱処理により
基材表面に強固な防食層を形成させることができるが、
請求項3の記載にあるように、この防食層形成工程は、
基材へのガラス溶液の付着量を制限して複数回行うこと
が必要である。つまり、基材保護のために必要となる量
(厚さ)のガラスを一度に付着させるのではなく、1回
あたりのガラスの付着量を少なくして防食層の形成を複
数回行うものである。これは、熱処理時にガラス層が収
縮することから、一度に必要量のガラスを全て付着させ
焼成すると、ガラス層の剥離又はガラス層に孔が生じる
ことがあるため、これを回避すべく1工程で形成させる
ガラス層の厚さは薄くしてガラス層の剥離等が生じない
ようにし、これを数回繰り返すことで必要な量のガラス
層を形成するようにしたものである。
A strong anticorrosion layer can be formed on the surface of the substrate by the above-described attachment of the crystalline glass and heat treatment.
As described in claim 3, this anticorrosion layer forming step comprises:
It is necessary to perform the treatment several times while limiting the amount of glass solution attached to the substrate. In other words, the amount of glass (thickness) required for protecting the base material is not applied at once, but the anticorrosion layer is formed a plurality of times by reducing the amount of glass applied per application. . This is because the glass layer shrinks during the heat treatment, and if all the required amount of glass is adhered and fired at a time, the glass layer may be peeled off or holes may be formed in the glass layer. The thickness of the glass layer to be formed is reduced to prevent the glass layer from peeling off, and this is repeated several times to form a required amount of the glass layer.

【0020】そして、この1回の防食層形成工程で付着
させるガラス溶液の質量は、形成するガラス層の質量が
基材の表面積を基準として0.3mg/cm以下とな
るようにするのが好ましい。この程度であれば熱処理時
においてもガラス層の剥離等は生じないからである。
尚、形成されるガラス層の質量がかかる範囲内となるよ
うに、ガラス溶液の付着量を制限する方法としては、ガ
ラス溶液に浸漬後取出した基材にエア吹付けを行い、余
分なガラス溶液を吹き飛ばす手法が挙げられる。
The mass of the glass solution to be adhered in this single anticorrosion layer forming step should be such that the mass of the glass layer to be formed is 0.3 mg / cm 2 or less based on the surface area of the substrate. preferable. This is because the glass layer does not peel off even during the heat treatment at this level.
In addition, as a method of limiting the amount of the glass solution attached so that the mass of the formed glass layer is within the above range, the base material taken out after being immersed in the glass solution is sprayed with air, and the excess glass solution is applied. Is blown away.

【0021】また、このときの防食層(ガラス層)の最
終的な質量としては、基材の表面積を基準として0.4
〜0.8mg/cm程度とするのが好ましい。0.4
mg/cm以下では形成される防食層が薄すぎて防食
効果に乏しく、一方、0.8mg/cm以上としても
防食効果に差異がないばかりか、ハニカムの壁厚を増加
させ触媒の圧力損失に影響を与えることとなるからであ
る。
At this time, the final mass of the anticorrosion layer (glass layer) is 0.4% based on the surface area of the substrate.
It is preferably about 0.8 mg / cm 2 . 0.4
mg / cm 2 or less in poor anti-corrosion layer is too thin anticorrosion effect to be formed, whereas, not only there is no difference in the corrosion protection even 0.8 mg / cm 2 or more, the pressure of the catalyst to increase the wall thickness of the honeycomb This will affect the loss.

【0022】尚、上述のように本発明に係る触媒担体の
取り扱いは、従来の触媒担体と異なることはない。従っ
て、本発明に係る製造方法にて製造される触媒担体より
触媒を製造する際には、上記方法により完成した触媒担
体をウオッシュコート溶液中に浸漬・乾燥させてウオッ
シュコートを積層させ、更に、触媒成分を含む溶液中に
浸漬することで目的の触媒とすることができる。
As described above, the handling of the catalyst carrier according to the present invention is not different from the conventional catalyst carrier. Therefore, when producing a catalyst from the catalyst carrier produced by the production method according to the present invention, the catalyst carrier completed by the above method is immersed and dried in a washcoat solution to laminate a washcoat, and further, The target catalyst can be obtained by immersing it in a solution containing a catalyst component.

【0023】[0023]

【発明の実施の形態】以下に本発明の好適な実施形態を
図面と共に示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings.

【0024】本実施形態に係る触媒担体1の製造過程を
図1のように概略図示する。厚さ50μmのステンレス
系耐熱合金材(Fe―20%Cr−5%Al―0.08%
La)からなる、波型フォイル2と平形フォイルと3を
多層に重ね合わせて巻き込むことで、断面ハニカム形状
の筒状の基材4を製造した。本実施形態で製造した基材
の寸法は、直径158mmφ、長さ75mmである。
The manufacturing process of the catalyst carrier 1 according to this embodiment is schematically illustrated in FIG. 50 μm thick stainless steel heat resistant alloy material (Fe-20% Cr-5% Al-0.08%
By laminating a corrugated foil 2 and a flat foil 3 made of La) in multiple layers and winding them, a cylindrical base material 4 having a honeycomb cross section was manufactured. The dimensions of the substrate manufactured in the present embodiment are 158 mm in diameter and 75 mm in length.

【0025】そして、この基材4を、900℃で15時
間加熱処理を行った。これは、担体金属と、その後に塗
布する結晶性ガラス層との密着強度を高めるためのアン
カーとして金属表面に酸化アルミニウムのウイスカーを
成長させるためである。尚、この熱処理は、本実施形態
のようにフォイルから担体を組み上げた後に行う場合の
みならず、先にフォイルに熱処理を行った後、担体とし
て組み上げても良い。
Then, the substrate 4 was subjected to a heat treatment at 900 ° C. for 15 hours. This is because aluminum oxide whiskers are grown on the metal surface as anchors for increasing the adhesion strength between the carrier metal and the crystalline glass layer to be subsequently applied. Note that this heat treatment may be performed not only after the carrier is assembled from the foil as in the present embodiment, but also as a carrier after the foil is heat-treated first.

【0026】次に、以上のように、前処理をした基材4
を、結晶性ガラス溶液5に浸漬した。結晶性ガラス溶液
5は、非晶質ガラス粉末(SiO:54.9%、B
O:35.0%、CaO:7.4%、MgO:2.5
%、PbO:17.6%、Al :8.4%、Na
O:2.6%、KO:1.6%)と耐熱性酸化物
(Al)とをエチルセルロースのα−タービネオ
ール溶液に分散させたペーストに、更に焼成時にアノー
サイトの結晶を析出する結晶性ガラス粉末(SiO
35.6%、BO:3.1%、CaO:16.9%、
ZnO:19.2%、Al:11.3%、TiO
:13.9%)を混合させたガラスペーストと、イソ
プロピルアルコールとを1:2の比率で混合したもので
ある。
Next, the pretreated base material 4
Was immersed in the crystalline glass solution 5. Crystalline glass solution
5 is an amorphous glass powder (SiO 2)2: 54.9%, B2
O: 35.0%, CaO: 7.4%, MgO: 2.5
%, PbO: 17.6%, Al 2O3: 8.4%, Na
2O: 2.6%, K2O: 1.6%) and heat-resistant oxide
(Al2O3) And ethyl cellulose α-turbineo
To the paste dispersed in
A crystalline glass powder (SiO 2:
35.6%, B2O: 3.1%, CaO: 16.9%,
ZnO: 19.2%, Al2O3: 11.3%, TiO
2: 13.9%) and a glass paste mixed with
Mixed with propyl alcohol in a ratio of 1: 2
is there.

【0027】そして、ガラス溶液に浸漬した基材4を取
出し、1回工程当りのガラス付着量を極力少なくするた
めエアー吹き付けをしてガラス溶液を吹き飛ばした。
Then, the substrate 4 immersed in the glass solution was taken out, and the glass solution was blown off by blowing air to minimize the amount of glass adhered per process.

【0028】ガラス付着後の基材は、120℃で30分
仮乾燥させ、アルコール分を除去し、250℃で1時間
本乾燥させた。そして、950℃で2時間加熱し基材表
面のガラスを結晶化させて防食層を形成した。
The substrate on which the glass was adhered was temporarily dried at 120 ° C. for 30 minutes to remove alcohol, and then completely dried at 250 ° C. for 1 hour. And it heated at 950 degreeC for 2 hours, and crystallized the glass of the base material surface, and formed the anticorrosion layer.

【0029】以上の基材のガラス溶液への浸漬、熱処理
工程を2回行い、基材の表面積を基準として0.52m
g/cmのガラス層を最終的に形成させて触媒担体1
を製造した。
The above-mentioned immersion of the base material in the glass solution and the heat treatment step are performed twice, and the base material has a surface area of 0.52 m
g / cm 2 of glass layer is finally formed to form the catalyst support 1
Was manufactured.

【0030】この本実施形態に係る触媒担体1にウオッ
シュコートとしてアルミナをコーティングし、更に、触
媒粒子(白金)を担持させて脱臭触媒を製造した。
The catalyst carrier 1 according to this embodiment was coated with alumina as a wash coat, and further supported with catalyst particles (platinum) to produce a deodorizing catalyst.

【0031】この脱臭触媒を、加熱乾燥型トイレの排気
管に取付けて実機試験を行ったところ、試験開始後6ヶ
月以上使用しても触媒に腐食は生じず、また、触媒活性
の低下も見られなかった。
When this deodorizing catalyst was attached to the exhaust pipe of a heat-drying toilet and subjected to an actual test, the catalyst did not corrode even if it was used for 6 months or more after the start of the test. I couldn't.

【0032】一方、従来の結晶性ガラスをコーティング
していないメタルハニカムを用いて製造した脱臭触媒
を、同様の加熱乾燥型トイレの排気管に取付けて対比試
験を行ったところ、試験開始後2ヶ月で担体が腐食し触
媒の崩壊が生じた。
On the other hand, when a deodorizing catalyst manufactured using a conventional metal honeycomb not coated with crystalline glass was attached to the same exhaust pipe of a heat-drying toilet and a comparative test was performed, two months after the start of the test The carrier corroded and the catalyst collapsed.

【0033】[0033]

【発明の効果】以上説明したように本発明に係る触媒担
体は、耐食性に優れている。従って、本発明に係る触媒
担体を用いて製造される触媒は、処理対象物中に腐食性
成分が含有されている場合においても腐食による破損が
生じることなく長期使用が可能である。
As described above, the catalyst carrier according to the present invention is excellent in corrosion resistance. Therefore, the catalyst produced by using the catalyst carrier according to the present invention can be used for a long period of time without being damaged by corrosion even when the object to be treated contains a corrosive component.

【0034】また、構成材料として金属を使用している
ことから、従来のメタルハニカムの特性、即ち、低圧力
損失、高強度、高熱伝導率を有することから、本発明に
係る触媒担体を用いること取り扱い性及び触媒性能に優
れた触媒を製造することができる。
Further, since a metal is used as a constituent material, it has characteristics of a conventional metal honeycomb, that is, low pressure loss, high strength, and high thermal conductivity. A catalyst excellent in handleability and catalytic performance can be produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本実施形態に係る触媒担体の製造工程を示す
図。
FIG. 1 is a view showing a manufacturing process of a catalyst carrier according to the present embodiment.

【符号の説明】[Explanation of symbols]

1 触媒担体 2 波形フォイル 3 平形フォイル 4 基材 5 ガラス溶液 DESCRIPTION OF SYMBOLS 1 Catalyst support 2 Corrugated foil 3 Flat foil 4 Substrate 5 Glass solution

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3G091 AB01 BA00 GA06 GA08 GA16 GB01X GB06W GB16X GB17X 4D048 AA21 BA39X BA39Y BA48X BA48Y BB02 BB05 BB12 BC05 4G069 AA01 AA08 AA09 BA14A BA14B BA17 CA02 CA03 CA12 CA13 CA19 DA06 EA21 EA24 EA27 ED10 EE01 FA04 FB23 FC04  ──────────────────────────────────────────────────続 き Continuing on the front page F term (reference) 3G091 AB01 BA00 GA06 GA08 GA16 GB01X GB06W GB16X GB17X 4D048 AA21 BA39X BA39Y BA48X BA48Y BB02 BB05 BB12 BC05 4G069 AA01 AA08 AA09 BA14A BA14B BA17 CA02 EA19 CA13 FA04 FB23 FC04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】金属製の波形フォイル及びスペーサーフォ
イルからなり断面ハニカム構造を有する筒状基材と、前
記基材の表面を覆う防食層とからなる触媒担体であっ
て、 前記防食層は、結晶性ガラスを含むガラスからなる触媒
担体。
1. A catalyst carrier comprising: a tubular base material having a cross-section honeycomb structure made of a metal corrugated foil and a spacer foil; and an anticorrosion layer covering a surface of the base material, wherein the anticorrosion layer is formed of a crystal. A catalyst support made of glass containing a functional glass.
【請求項2】防食層を構成する結晶性ガラスは、主結晶
がアノーサイト、スロートサイト、セルシアンの1種又
はこれら2種以上の混合体からなる請求項1記載の触媒
担体。
2. The catalyst carrier according to claim 1, wherein the crystalline glass constituting the anticorrosion layer has a main crystal composed of one or more of anorthite, throatsite, and celsian, or a mixture of two or more thereof.
【請求項3】金属製波形フォイルとスペーサーフォイル
とを積層させて断面ハニカム構造を有する筒状基材を製
造する基材製造工程と、 前記筒状基材を結晶性ガラスを含む溶液に浸漬して前記
溶液を筒状基材に付着させた後、筒状基材を加熱して結
晶性ガラスを含む防食層を形成する防食層形成工程とか
らなる触媒担体の製造方法であって、 前記防食層形成工程を、溶液の筒状基材への付着量を制
限しつつ複数回行う触媒担体の製造方法。
3. A base material manufacturing process for manufacturing a cylindrical base material having a honeycomb structure in section by laminating a metal corrugated foil and a spacer foil, and immersing the cylindrical base material in a solution containing crystalline glass. And then applying the solution to the cylindrical substrate by heating the cylindrical substrate to form an anticorrosion layer containing crystalline glass. A method for producing a catalyst carrier, wherein the layer forming step is performed a plurality of times while limiting the amount of solution adhering to the cylindrical substrate.
【請求項4】1回の防食層形成工程で形成する防食層の
質量が基材の表面積を基準として0.3mg/cm
下となるように溶液の付着量を制限する請求項3記載の
触媒担体の製造方法。
4. The adhesion amount of the solution according to claim 3, wherein the mass of the anticorrosion layer formed in one anticorrosion layer formation step is limited to 0.3 mg / cm 2 or less based on the surface area of the base material. A method for producing a catalyst carrier.
JP2000019644A 2000-01-28 2000-01-28 Catalyst carrier and method for preparing catalyst carrier Pending JP2001205098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000019644A JP2001205098A (en) 2000-01-28 2000-01-28 Catalyst carrier and method for preparing catalyst carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000019644A JP2001205098A (en) 2000-01-28 2000-01-28 Catalyst carrier and method for preparing catalyst carrier

Publications (1)

Publication Number Publication Date
JP2001205098A true JP2001205098A (en) 2001-07-31

Family

ID=18546305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000019644A Pending JP2001205098A (en) 2000-01-28 2000-01-28 Catalyst carrier and method for preparing catalyst carrier

Country Status (1)

Country Link
JP (1) JP2001205098A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013056301A (en) * 2011-09-08 2013-03-28 Chugoku Electric Power Co Inc:The Benzene cracking apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013056301A (en) * 2011-09-08 2013-03-28 Chugoku Electric Power Co Inc:The Benzene cracking apparatus

Similar Documents

Publication Publication Date Title
GB2094656A (en) Oxide-whisker-covered structural member
JP3309971B2 (en) Manufacturing method of exhaust gas purifying catalyst
JPH11503661A (en) Thermal spraying method for bonding catalyst materials to metal substrates
CN102635430A (en) Structured body and method for manufacturing structured body
JP6445838B2 (en) Electric heating type catalytic converter
JP2002011353A (en) Honeycomb body made from ceramic
WO2002020154A1 (en) Method for producing catalyst body and carrier having alumina carried thereon
KR100353497B1 (en) Zeolite-Coated Metal Sheets
JPS62225250A (en) Powder deposition type catalyst
JP3953944B2 (en) Metal foil and honeycomb structure
JP2001205098A (en) Catalyst carrier and method for preparing catalyst carrier
JP4171939B2 (en) Method for manufacturing catalytic converter
RU2126717C1 (en) Method of manufacturing catalytic unit for neutralization of gas effluents
JPH0478447A (en) Catalytic metal carrier and production thereof
JPH03154637A (en) Flat catalyst
JPH06246176A (en) Production of plate catalyst and processing solution of metal substrate for the catalyst
JPH0356147A (en) Preparation of catalyst carrier
JP2502260Y2 (en) Metal catalyst carrier for catalyst converter
JP2004176086A (en) Metallic honeycomb structure excellent in oxidation resistance, and its production method
JP3486279B2 (en) DeNOx catalyst and method for producing the same
JP2725793B2 (en) Method for producing plate catalyst for removing nitrogen oxides
JP2010125371A (en) Method of supporting oxide catalyst particle
JPH10244154A (en) Multilayered catalyst for treatment of exhaust gas from diesel engine and its production
JPS6147575B2 (en)
JP2001129409A (en) Manufacturing method of metallic carrier for depositing catalyst