JP2001203535A - Composite vibrator and voltage controlled piezoelectric oscillator using it - Google Patents

Composite vibrator and voltage controlled piezoelectric oscillator using it

Info

Publication number
JP2001203535A
JP2001203535A JP2000011154A JP2000011154A JP2001203535A JP 2001203535 A JP2001203535 A JP 2001203535A JP 2000011154 A JP2000011154 A JP 2000011154A JP 2000011154 A JP2000011154 A JP 2000011154A JP 2001203535 A JP2001203535 A JP 2001203535A
Authority
JP
Japan
Prior art keywords
electrode
piezoelectric
frequency
vibrator
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000011154A
Other languages
Japanese (ja)
Inventor
Atsushi Ono
淳 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2000011154A priority Critical patent/JP2001203535A/en
Publication of JP2001203535A publication Critical patent/JP2001203535A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To realize a voltage controlled piezoelectric oscillator that is driven at a low voltage with a wide frequency variable range. SOLUTION: The composite vibrator consists of a piezoelectric substrate on which 1st and 2nd electrodes with different electrode areas are arranged and the other substrate on which a 3rd electrode is arranged and a relation of f1-f2≈f2-f3 and t1-t2≈t2-t3 is satisfied, where t1, t2, t3 are respective top temperatures of the vibrator configured with the 1st, 2nd and 3rd electrodes and f1, f2, f3 are frequencies at the respective temperatures.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電圧制御型圧電発振
器に関し、特に周波数可変範囲を広くした低電圧駆動の
電圧制御型圧電発振器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a voltage controlled piezoelectric oscillator, and more particularly to a low voltage driven voltage controlled piezoelectric oscillator having a wide frequency variable range.

【0002】[0002]

【従来の技術】圧電振動子を用いた圧電発振器は、周波
数安定度、周波数温度特性、周波数エージング特性等が
他の電子部品を用いた発振器より優れているため、通信
機、電子機器等に広く使用されている。ところが単体の
圧電振動子、例えばATカット水晶振動子を用いた圧電
発振器においては、−30℃から80℃の温度範囲にお
いて6ppm〜7ppmの周波数変動があり、そのままでは高
精度の周波数源を必要とする通信装置には採用できなか
った。一方、従来から上記温度範囲において周波数を安
定化する手段として各種の温度補償手段が講じられてい
るが、その結果周波数の可変範囲が狭くなり、近年の通
信機器用発振器に要求されている広範囲にわたる周波数
可変能力を満たし得ない。そこで、ある程度の周波数安
定度を確保する手段として、2次曲線の温度特性を有す
る圧電振動子を3個並列接続した複合振動子が、例えば
特公昭51−36154に提案されている。
2. Description of the Related Art Piezoelectric oscillators using piezoelectric vibrators are widely used in communication equipment, electronic equipment, and the like because their frequency stability, frequency temperature characteristics, and frequency aging characteristics are superior to oscillators using other electronic components. It is used. However, in a piezoelectric oscillator using a single piezoelectric vibrator, for example, an AT-cut quartz vibrator, there is a frequency variation of 6 ppm to 7 ppm in a temperature range of -30 ° C. to 80 ° C., and a high-precision frequency source is needed as it is. It could not be used for communication devices that do. On the other hand, various temperature compensating means have conventionally been employed as means for stabilizing the frequency in the above-mentioned temperature range, but as a result, the variable range of the frequency has been narrowed, and a wide range required in recent oscillators for communication equipment has been widened. The frequency variable ability cannot be satisfied. Therefore, as a means for securing a certain degree of frequency stability, a composite vibrator in which three piezoelectric vibrators having quadratic curve temperature characteristics are connected in parallel has been proposed, for example, in Japanese Patent Publication No. 51-36154.

【0003】図10は、温度補償複合振動子の構成を示
す図であって、同図(a)は3個のBTカット水晶振動
子Y1、Y2、Y3を並列接続すると共に、負荷容量C
Lを直列接続した回路図、同図(b)はその電気的等価
回路図、同図(c)は3個のBTカット水晶振動子Y
1、Y2、Y3のそれぞれの周波数温度特性を、横軸を
温度、縦軸を周波数として表示したものである。ここ
で、3個のBTカット水晶振動子Y1、Y2、Y3の頂
点温度(周波数温度特性が2次曲線を呈するとき、温度
に関する1次微分が零となる温度)をそれぞれt1、t
2、t3、その温度における周波数をそれぞれf1、f
2、f3とする。前記公報によれば、3個のBTカット
水晶振動子Y1、Y2及びY3がf3≒f1、t3−t
2≒t2−t1等の条件を満たすときに、図10(a)
の複合振動子の周波数温度特性はほぼ平坦になると記さ
れている。また、BTカット水晶振動子Y2のインダク
タンスL2をBTカット水晶振動子Y1、Y3のインダ
クタンスL1、L3より大きくすることにより、負荷容
量CLを変化させた場合に周波数温度特性の劣化が最小に
なると記されている。
FIG. 10 is a diagram showing the structure of a temperature-compensated composite resonator. FIG. 10A shows a configuration in which three BT-cut crystal resonators Y1, Y2, and Y3 are connected in parallel, and a load capacitance C
L is connected in series, FIG. 3B is an electrical equivalent circuit diagram, and FIG. 3C is a circuit diagram showing three BT-cut crystal units Y.
The frequency temperature characteristics of Y1, Y2, and Y3 are displayed with the horizontal axis representing temperature and the vertical axis representing frequency. Here, the peak temperatures of the three BT-cut quartz resonators Y1, Y2, and Y3 (the temperatures at which the first-order derivative with respect to the temperature becomes zero when the frequency-temperature characteristic exhibits a quadratic curve) are t1 and t, respectively.
2, t3, and the frequencies at that temperature are f1, f, respectively.
2, f3. According to the above publication, three BT-cut crystal units Y1, Y2 and Y3 are f3ff1, t3-t
When conditions such as 2 ≒ t2−t1 are satisfied, FIG.
It is described that the frequency-temperature characteristic of the composite oscillator becomes substantially flat. Further, by making the inductance L2 of the BT cut crystal resonator Y2 larger than the inductances L1 and L3 of the BT cut crystal resonators Y1 and Y3, when the load capacitance CL is changed, the deterioration of the frequency temperature characteristic is minimized. It is noted.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
公報に基づいきBTカット水晶振動子を用いて複合振動
子を構成すると、周波数温度特性は広温度範囲にわたっ
て平坦な特性が得られるものの、3個の水晶振動子が必
要となり、構造も複雑になるため高価になると云う問題
があった。さらに、上記のBTカット水晶複合振動子を
用いてVCXOを構成すると周波数可変範囲に限界があ
り、さらに広い範囲の可変能力実現が不可能であった。
一方、上記の周波数可変範囲を改善するために、BTカ
ット水晶よりも容量比γが小さい厚み滑り振動モードの
Xカットタンタル酸リチウム振動子を用いて複合振動子
を構成することが考えられるが、周波数可変範囲は改善
されるものの周波数温度特性が極端に劣化するという問
題があった。例えば、エネルギー閉じ込め係数を最適に
設定したXカットタンタル酸リチウム振動子でさえ、B
Tカット水晶振動子の周波数温度特性より2倍以上と悪
く、これを用いて複合振動子を構成しても目的を達成す
ることは極めて困難である。本発明は上記問題を解決す
るためになされたものであって、周波数温度特性がAT
カット水晶振動子より優れ、例えば周波数可変範囲がA
Tカット水晶振動子の4倍程度と広い電圧制御型圧電発
振器を提供することを目的とする。
However, when a composite resonator is formed by using a BT-cut crystal resonator based on the above-mentioned publication, the frequency-temperature characteristic can be obtained over a wide temperature range. However, there is a problem that the crystal resonator is required and the structure becomes complicated, resulting in an increase in cost. Furthermore, when a VCXO is formed using the above-described BT-cut quartz crystal resonator, the frequency variable range is limited, and it is impossible to realize a wider range of variable capability.
On the other hand, in order to improve the above-mentioned frequency variable range, it is conceivable to configure a composite resonator using an X-cut lithium tantalate resonator in a thickness sliding vibration mode having a smaller capacity ratio γ than a BT-cut quartz crystal, Although the frequency variable range is improved, there is a problem that the frequency temperature characteristic is extremely deteriorated. For example, even with an X-cut lithium tantalate oscillator with an optimal energy confinement factor, B
The frequency-temperature characteristic of a T-cut crystal resonator is twice or more worse than that, and it is extremely difficult to achieve the purpose even if a composite resonator is formed using this. The present invention has been made to solve the above problem, and has a frequency-temperature characteristic of AT.
Superior to cut quartz crystal units, for example, the frequency variable range is A
It is an object of the present invention to provide a voltage-controlled piezoelectric oscillator that is as large as about four times the size of a T-cut crystal resonator.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る複合振動子とそれを用いた電圧制御型圧
電発振器の請求項1記載の発明は、一つの圧電基板上に
互いに面積の異なる少なくとも2つの対向電極を配置
し、前記各電極が形成する振動子の頂点温度を互いに異
ならせたことを特徴とする複合振動子である。請求項2
記載の発明は、第1の対向電極と、該第1の対向電極と
は面積の異なる第2の対向電極とを所定の間隔をおいて
配置した第1の圧電基板と、第3の対向電極を配置した
第2の圧電基板とを備えた複合振動子であって、前記第
1の電極、第2、第3の電極が形成する振動子の頂点温
度をそれぞれt1、t2、t3とし、各振動子の頂点温
度における周波数をそれぞれf1、f2、f3としたと
き、f2−f1≒f2−f3と、t2−t1≒t3−t
2とを満たすように構成したことを特徴とする複合振動
子である。請求項3記載の発明は、圧電基板がYカット
近傍のランガサイト基板であることを特徴とする請求項
1記載の複合振動子である。請求項4記載の発明は、請
求項1または2記載の複合振動子と、増幅器と可変容量
素子とを直列接続して発振器を構成したことを特徴とす
る電圧制御型圧電発振器である。
According to a first aspect of the present invention, there is provided a composite oscillator according to the present invention and a voltage-controlled piezoelectric oscillator using the same. Wherein the at least two opposing electrodes are arranged differently from each other, and the peak temperatures of the vibrators formed by the respective electrodes are different from each other. Claim 2
According to the invention described above, a first piezoelectric substrate in which a first counter electrode and a second counter electrode having an area different from that of the first counter electrode are arranged at a predetermined interval; and a third counter electrode. And a second piezoelectric substrate on which the first electrode, the second electrode, and the third electrode are formed. The peak temperatures of the oscillator formed by the first electrode, the second electrode, and the third electrode are defined as t1, t2, and t3, respectively. When the frequencies at the top temperature of the vibrator are f1, f2, and f3, respectively, f2-f1 ≒ f2-f3 and t2-t1 ≒ t3-t
2 is a composite vibrator characterized by being configured to satisfy 2. According to a third aspect of the present invention, there is provided the composite vibrator according to the first aspect, wherein the piezoelectric substrate is a Langasite substrate near the Y cut. According to a fourth aspect of the present invention, there is provided a voltage-controlled piezoelectric oscillator, wherein an oscillator is configured by connecting the composite resonator according to the first or second aspect, an amplifier and a variable capacitance element in series.

【0006】[0006]

【発明の実施の形態】以下本発明を図面に示した実施の
形態に基づいて詳細に説明する。図1(a)は本発明に
係る複合振動子の構成を示す図であって、Yカットラン
ガサイト(La3Ga5SiO14)振動子を3個並列接続した複
合振動子であり、同図(b)はその電気的等価回路であ
る。本発明の1つの特徴は圧電振動子に厚み滑り振動モ
ードのYカットランガサイト振動子を用いたことにあ
る。Yカットランガサイト振動子の容量比γ(モーショ
ナルキャパシタンスC1に対する静電容量C0の比、γ=C0
/C1)は、60程度とATカット水晶振動子の容量比(25
0)よりはるかに小さいため、該振動子を用いて複合振
動子を構成すると、周波数可変範囲はかなり広くなるこ
とが予想される。また、Yカットランガサイト振動子の
周波数温度特性は上に凸の2次曲線、即ちΔf/f=a
(t−ti2+b(t−ti)となり、3個の振動子を
並列接続することにより、周波数温度特性の良好な複合
振動子が期待できる。ここで、aは二次温度係数、bは
一次温度係数、tiは頂点温度である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on an embodiment shown in the drawings. FIG. 1A is a diagram showing a configuration of a composite vibrator according to the present invention, which is a composite vibrator in which three Y-cut langasite (La 3 Ga 5 SiO 14 ) vibrators are connected in parallel. (B) is an electrical equivalent circuit thereof. One feature of the present invention resides in that a Y-cut Langasite vibrator in a thickness-shear vibration mode is used for the piezoelectric vibrator. Y-cut Langasite vibrator capacitance ratio γ (ratio of capacitance C 0 to motional capacitance C 1 , γ = C 0
/ C 1 ) is about 60 and the capacitance ratio of AT-cut quartz resonator (25
Since it is much smaller than 0), when a composite vibrator is configured using the vibrator, the frequency variable range is expected to be considerably wide. The frequency temperature characteristic of the Y-cut Langasite vibrator is a quadratic curve convex upward, that is, Δf / f = a
(T−t i ) 2 + b (t−t i ), and by connecting three vibrators in parallel, a composite vibrator having good frequency-temperature characteristics can be expected. Here, a is the secondary temperature coefficient, b is the primary temperature coefficient, and t i is the peak temperature.

【0007】上記のように、良好な周波数温度特性を有
し、周波数可変範囲の広い複合振動子を開発すべく、Y
カットランガサイト振動子を用いて種々の実験を行っ
た。図2は、3個のYカットランガサイト振動子を並列
接続した複合振動子の温度範囲を、例えば、−35℃か
ら85℃の範囲に設定した場合、3個の振動子の頂点温
度と該頂点温度における共振周波数を示した図である。
中心周波数を20MHzとし、図2に示すようにYカット
ランガサイト振動子Y1、Y2、Y3の頂点温度t1、
t2、t3をそれぞれ−195℃、25℃、245℃と
220℃間隔で設定し、Y1とY3との頂点温度におけ
る周波数f1、f3をほぼ等しくすると共に、Y2の頂
点温度t2における周波数f2をf1、f3より967
ppm程度高く設定する。さらに、Y1、Y3のインダク
タンスL1、L3をそれぞれ2mH、Y2のインダクタン
スL2を8mH、並列容量C0を3pFとした複合振動子
の周波数温度特性を図3に示す。3つの曲線は負荷容量
CLをパラメータとしてそれぞれ8pF、10pF、12pFに
設定した場合であり、周波数偏差が最も大きいCL=8p
Fのときでも、−35℃から85℃の温度範囲内で7pp
m以内とATカット水晶振動子の場合とほぼ同等の値で
あり、CL=10pFの場合はほとんどフラットな周波数
温度特性となることが確認できる。
As described above, in order to develop a composite oscillator having good frequency-temperature characteristics and a wide frequency variable range,
Various experiments were performed using a cut Langasite oscillator. FIG. 2 shows that, when the temperature range of a composite vibrator in which three Y-cut Langasite vibrators are connected in parallel is set to, for example, a range of −35 ° C. to 85 ° C., the apex temperatures of the three vibrators and FIG. 4 is a diagram illustrating a resonance frequency at a peak temperature.
The center frequency is set to 20 MHz, and as shown in FIG. 2, the apex temperatures t1 of the Y-cut Langasite vibrators Y1, Y2, Y3,
t2 and t3 are set at −195 ° C., 25 ° C., and 245 ° C. at 220 ° C. intervals, so that the frequencies f1 and f3 at the peak temperatures of Y1 and Y3 are substantially equal, and the frequency f2 at the peak temperature t2 of Y2 is f1. 967 from f3
Set higher than ppm. Further, it is shown Y1, Y3 of the inductance L1, L3, respectively 2mH, Y2 8mH inductance L2 of the frequency temperature properties of the composite transducers and 3pF parallel capacitance C 0 in FIG. The three curves are load capacity
Each 8 pF, 10 pF for C L as a parameter, a case of setting to 12 pF, the frequency deviation is the largest C L = 8p
Even at F, 7pp in the temperature range of -35 ° C to 85 ° C
m, which is almost the same value as in the case of the AT-cut quartz resonator, and it can be confirmed that the frequency temperature characteristic becomes almost flat when C L = 10 pF.

【0008】図4に示した曲線αは負荷容量CLが8pF、
10pF、12pFとなるように可変容量素子(バラクター
ダイオード)の印加電圧を3V、2.5V、2Vと変化
させた場合の制御電圧Vcontと周波数変動Δf/fとの
関係を示す曲線である。比較のため、ATカット水晶振
動子を用いて構成したVCXOの制御電圧−周波数変動
曲線βも重ね書きした。図4から明らかなように、AT
カット水晶振動子を用いたVCXOの電圧感度が133
ppm/Vであるのに対し、ランガサイト振動子を3個並
列接続した複合振動子を用いたVCXOの電圧感度は5
53ppm/Vと、約4倍の周波数可変特性を示している
ことが分かる。
[0008] Curve α shown in FIG. 4 is the load capacitance C L is 8 pF,
It is a curve which shows the relationship between control voltage Vcont and frequency fluctuation (DELTA) f / f when changing the applied voltage of a variable capacitance element (varactor diode) to 3p, 2.5v, and 2v so that it may become 10pF and 12pF. For comparison, a control voltage-frequency variation curve β of the VCXO constituted by using the AT-cut quartz resonator was also overwritten. As is apparent from FIG.
Voltage sensitivity of VCXO using cut crystal oscillator is 133
ppm / V, the voltage sensitivity of a VCXO using a complex oscillator in which three Langasite oscillators are connected in parallel is 5
It can be seen that the frequency variable characteristic is 53 ppm / V, which is about four times as large.

【0009】図5は本発明に係る他の実施例の複合振動
子の構成を示す図であって、同図(a)は3個のランガ
サイト振動子Y1、Y2、Y3の構成を示す平面図、
(b)はそのQ−Qにおける断面図である。3個のラン
ガサイト振動子のうち2個のY1、Y2は、圧電基板1
上に対向電極2a、2bを配置すると共に、該電極2
a、2bと音響的結合のない位置に対向電極3a、3b
を設け、電極2a、3a及び電極2b、3bより基板端
部に向けてそれぞれリード電極を延在し、それらを接続
してリード電極4a、4bとして形成する。さらに、他
の圧電基板5上に対向電極6a、6bを配置すると共
に、該電極6a、6bから基板端部に向けてそれぞれリ
ード電極7a、7bを延在し、圧電振動子Y3を形成す
る。そして、圧電基板1及び5をセラミックパッケージ
8等に収容し、リード電極4a、4b、7a、7bの端
部とパッケージの端子電極とを導電性接着剤9、9を用
いて接着固定して複合圧電振動子を構成する。このとき
圧電基板1、5の切断角度は、一般的に異ならせる。
FIG. 5 is a view showing the structure of a composite vibrator according to another embodiment of the present invention. FIG. 5A is a plan view showing the structure of three langasite vibrators Y1, Y2 and Y3. Figure,
(B) is a sectional view taken along the line QQ. Two of the three langasite vibrators Y1 and Y2 are the piezoelectric substrates 1
The counter electrodes 2a and 2b are disposed on the
a and 2b at positions where there is no acoustic coupling with the counter electrodes 3a and 3b
Are provided, the lead electrodes extend from the electrodes 2a, 3a and the electrodes 2b, 3b toward the ends of the substrate, and are connected to form lead electrodes 4a, 4b. Further, the opposing electrodes 6a and 6b are arranged on another piezoelectric substrate 5, and the lead electrodes 7a and 7b extend from the electrodes 6a and 6b toward the ends of the substrate, respectively, to form the piezoelectric vibrator Y3. Then, the piezoelectric substrates 1 and 5 are housed in a ceramic package 8 or the like, and the ends of the lead electrodes 4a, 4b, 7a, 7b and the terminal electrodes of the package are bonded and fixed using conductive adhesives 9, 9 to form a composite. Construct a piezoelectric vibrator. At this time, the cutting angles of the piezoelectric substrates 1 and 5 are generally made different.

【0010】本実施例の特徴は同一圧電基板上に互いに
電極面積の異なる2個の圧電振動子Y1、Y2を形成
し、別個に形成した圧電振動素子Y3と共に同一パッケ
ージに収容して複合圧電振動子を構成したことである。
このように複合圧電振動子を構成することにより、高価
な圧電基板の数を低減できる共に小型化することが可能
となる。圧電振動子Y1、Y2、Y3にはYカット近傍
のランガサイト基板を用いたため、振動モードは厚み滑
り振動となり、その周波数温度特性は上に凸の2次曲線
となる。
The feature of this embodiment is that two piezoelectric vibrators Y1 and Y2 having different electrode areas are formed on the same piezoelectric substrate, and are housed in the same package together with the separately formed piezoelectric vibrating element Y3 to form a composite piezoelectric vibrator. That is, the child was constructed.
By configuring the composite piezoelectric vibrator in this manner, the number of expensive piezoelectric substrates can be reduced and the size can be reduced. Since a langasite substrate near the Y-cut is used for the piezoelectric vibrators Y1, Y2, and Y3, the vibration mode is thickness-shear vibration, and the frequency-temperature characteristic is a quadratic curve convex upward.

【0011】図6はYカットランガサイト基板に、10
0Åのクロム下地電極の上に1000Åの金電極を対向
して付着した場合の電極面積と頂点温度tiとの関係を
示した図である。図から明らかなように同じ切断角度を
用いた圧電振動子であっても、電極面積を次第に増大す
ると頂点温度tiが低温側へ移動することが判明した。
また、図7は圧電振動子の電極面積と1次温度係数bと
の関係を示す図で、この図より電極面積を増大すると一
次温度係数bが減少することが分かる。
FIG. 6 shows a Y-cut Langasite substrate with 10
FIG. 9 is a diagram showing a relationship between an electrode area and a vertex temperature t i when a 1000 ° gold electrode is attached to a 0 ° chromium base electrode so as to face each other. As is clear from the figure, even with a piezoelectric vibrator using the same cutting angle, it was found that the vertex temperature t i moves to the lower temperature side as the electrode area gradually increases.
FIG. 7 shows the relationship between the electrode area of the piezoelectric vibrator and the primary temperature coefficient b. It can be seen from FIG. 7 that the primary temperature coefficient b decreases as the electrode area increases.

【0012】また、図8は電極面積と二次温度係数aと
の関係を示す図であり、この図から明らかなように、二
次温度係数aは電極面積にほとんど依存しないことが分
かる。図6、7、8は電極の厚みを一定とし、電極面積
と頂点温度ti、一次温度係数b、二次温度係数aとの
関係を実験的に調べたが、これらの関係は正確には電極
の大きさと、電極膜厚、即ち周波数低下量Δ=(f−f
e)/fs(f:共振周波数、fe:電極部のカットオ
フ周波数、fs:基板部のカットオフ周波数)の平方根
との積(エネルギー閉じ込め係数と呼ばれている)に依
存するものと推測される。
FIG. 8 is a diagram showing the relationship between the electrode area and the secondary temperature coefficient a. As is clear from this figure, it can be seen that the secondary temperature coefficient a hardly depends on the electrode area. 6, 7 and 8 show the relationship between the electrode area and the apex temperature t i , the primary temperature coefficient b and the secondary temperature coefficient a experimentally with the electrode thickness kept constant. The size of the electrode and the electrode thickness, that is, the amount of frequency decrease Δ = (ff−
e) It is presumed that it depends on the product of the square root of / fs (f: resonance frequency, fe: cut-off frequency of the electrode portion, fs: cut-off frequency of the substrate portion) (called the energy confinement coefficient). You.

【0013】3個の圧電振動子Y1、Y2、Y3の頂点
温度t1、t2、t3とそれぞれの周波数f1、f2、
f3との関係は前記公報に基づいて、図9に示すように
設定する。図5に示したように3個の圧電振動子Y1、
Y2、Y3のうち、頂点温度が隣接する2個の振動子、
例えばY1とY2とを同一ランガサイト基板上に形成し
てもよい。このとき図6に基づいてY2の電極面積を小
さくすることにより、Y1とY2とのそれぞれの頂点温
度t1、t2の間隔を適切に設定することができる。な
お、Y3の頂点温度t3は切断角度を適切に選定するこ
とにより自由に頂点温度t3を決めることができる。さ
らに、圧電振動子Y2の頂点温度t2をt1とt3との
中間に設定することにより、Y2のインダクタンスL2
を他のものより大きくすることもできるので、負荷容量
Lを変動させた場合の周波数温度特性の劣化も最小に
することができる利点もある。
The peak temperatures t1, t2, t3 of the three piezoelectric vibrators Y1, Y2, Y3 and their respective frequencies f1, f2,
The relationship with f3 is set based on the above publication as shown in FIG. As shown in FIG. 5, three piezoelectric vibrators Y1,
Two oscillators whose peak temperatures are adjacent to each other among Y2 and Y3,
For example, Y1 and Y2 may be formed on the same langasite substrate. At this time, by reducing the electrode area of Y2 based on FIG. 6, the interval between the peak temperatures t1 and t2 of Y1 and Y2 can be appropriately set. The peak temperature t3 of Y3 can be freely determined by appropriately selecting the cutting angle. Further, by setting the apex temperature t2 of the piezoelectric vibrator Y2 at an intermediate value between t1 and t3, the inductance L2 of Y2
Since it is also possible to increase than others, there is an advantage that deterioration can also be minimized in the frequency temperature characteristics in a case where varying the load capacitance C L.

【0014】以上では圧電基板にYカット近傍のランガ
サイト基板を用い、該基板上に2個の圧電振動子を形成
する場合について説明したが、本発明はこれのみに限定
するものではなく、他の圧電材料、例えば四硼酸リチウ
ム等の同一圧電基板上に複数の振動子を、それぞれの頂
点温度とそれらの温度におけるそれぞれの周波数とを異
なるように形成して、複合圧電振動子とし、これを用い
て電圧制御型圧電発振器を構成してもよい。
In the above, the case where a Langasite substrate near the Y-cut is used as the piezoelectric substrate and two piezoelectric vibrators are formed on the substrate has been described. However, the present invention is not limited to this. A plurality of vibrators are formed on the same piezoelectric substrate such as a piezoelectric material, for example, lithium tetraborate, so that the respective peak temperatures and the respective frequencies at those temperatures are different from each other to form a composite piezoelectric vibrator. A voltage-controlled piezoelectric oscillator may be configured by using this.

【0015】[0015]

【発明の効果】本発明は、以上説明したように構成した
ので、Yカット近傍のランガサイト基板上に複数の振動
子を形成すると共に、それぞれの振動子の頂点温度を異
ならせて複合圧電振動子を構成することが可能である。
該複合振動子を用いて電圧制御型圧電発振器を構成すれ
ば、周波数温度特性をATカット水晶振動子の特性程度
にできると共に、周波数可変感度をはるかに大きくした
電圧制御型圧電発振器を実現でき、該発振器を通信機等
に用いれば低消費電力で且つ、高速のデータ電送が可能
となる装置を構成できるという優れた効果を表す。
As described above, according to the present invention, a plurality of vibrators are formed on a langasite substrate in the vicinity of the Y-cut, and the peak temperature of each vibrator is made different to make a composite piezoelectric vibrator. It is possible to configure children.
If a voltage-controlled piezoelectric oscillator is configured using the composite vibrator, the frequency-temperature characteristic can be made to be approximately the same as that of an AT-cut quartz-crystal vibrator, and a voltage-controlled piezoelectric oscillator with much higher frequency variable sensitivity can be realized. When the oscillator is used for a communication device or the like, an excellent effect that a device that can transmit data at high speed with low power consumption can be realized can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は3個のランガサイト振動子を並列接続
して構成した複合振動子、(b)はその電気的等価回路
図である。
FIG. 1A is a composite vibrator configured by connecting three Langasite vibrators in parallel, and FIG. 1B is an electrical equivalent circuit diagram thereof.

【図2】3個のYカットランガサイト振動子のそれぞれ
の頂点温度とそれらの周波数を示す図である。
FIG. 2 is a diagram showing peak temperatures and frequencies of three Y-cut langasite vibrators.

【図3】電圧制御型圧電発振器の負荷容量CLをパラメ
ータとしたときの周波数温度特性である。
FIG. 3 is a frequency temperature characteristic when a load capacitance C L of a voltage controlled piezoelectric oscillator is used as a parameter.

【図4】電圧制御型圧電発振器の制御電圧Vcontと周波
数変動曲線との関係を示す図である。
FIG. 4 is a diagram showing a relationship between a control voltage Vcont of a voltage controlled piezoelectric oscillator and a frequency variation curve.

【図5】本発明の他の実施例の複合振動子の構成を示す
図で、(a)は複合圧電振動子の平面図、(b)はその
断面図である。
5A and 5B are diagrams showing a configuration of a composite vibrator according to another embodiment of the present invention, wherein FIG. 5A is a plan view of a composite piezoelectric vibrator, and FIG. 5B is a cross-sectional view thereof.

【図6】2個のYカットランガサイト振動子と1個のY
カットランガサイト振動子とのそれぞれの頂点温度とそ
れらの周波数を示す図である。
FIG. 6 shows two Y-cut Langasite vibrators and one Y
It is a figure which shows each vertex temperature of a cut Langasite oscillator, and those frequencies.

【図7】Yカットランガサイト振動子の電極面積と一次
温度係数との関係を示す図である。
FIG. 7 is a diagram illustrating a relationship between an electrode area of a Y-cut langasite vibrator and a primary temperature coefficient.

【図8】Yカットランガサイト振動子の電極面積と二次
温度係数との関係を示す図である。
FIG. 8 is a diagram illustrating a relationship between an electrode area of a Y-cut langasite vibrator and a secondary temperature coefficient.

【図9】3個のYカットランガサイト振動子のそれぞれ
の頂点温度とそれらの周波数を示す図である。
FIG. 9 is a diagram illustrating peak temperatures and frequencies of three Y-cut langasite vibrators.

【図10】従来の複合圧電振動子の構成を示す図で、
(a)は3個圧電振動子を並列接続したものに負荷容量
を直列接続した回路図、(b)はその電気的等価回路
図、(c)は3個の圧電振動子のそれぞれの頂点温度と
その周波数とを表した図である。
FIG. 10 is a diagram showing a configuration of a conventional composite piezoelectric vibrator.
(A) is a circuit diagram in which three piezoelectric vibrators are connected in parallel and a load capacitance is connected in series, (b) is an electrical equivalent circuit diagram thereof, and (c) is a peak temperature of each of the three piezoelectric vibrators. FIG. 3 is a diagram showing the frequency of the signal.

【符号の説明】[Explanation of symbols]

1、5・・圧電基板 2a、2b、3a、3b、6a、6b・・電極 4a、4b、7a、7b・・リード電極 8・・パッケージ 9・・導電性接着剤 Y1、Y2、Y3・・圧電振動子 AMP・・増幅器 D・・可変容量素子 L1、L2、L3・・インダクタンス C1、C2、C3・・モーショナルキャパシタンス R1、R2、R3・・等価抵抗 CL・・負荷容量 t1、t2、t3・・頂点温度 f1、f2、f3・・頂点温度における周波数 C0・・並列容量1, 5 ··· piezoelectric substrate 2a, 2b, 3a, 3b, 6a, 6b ··· electrode 4a, 4b, 7a, 7b ··· lead electrode 8 ··· package 9 ··· conductive adhesive Y 1 , Y 2 , Y 3 ·· Piezoelectric oscillator AMP ··· Amplifier D ··· Variable capacitance element L 1 , L 2 , L 3 ··· Inductance C 1 , C 2 , C 3 ··· Motional capacitance R 1 , R 2 , R 3 ··· Equivalent resistance C L ··· Load capacitance t 1 , t 2 , t 3 ··· Vertex temperature f 1 , f 2 , f 3 ··· Frequency at vertex temperature C 0 ··· Parallel capacitance

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一つの圧電基板上に互いに面積の異なる
少なくとも2つの対向電極を配置し、前記各電極が形成
する振動子の頂点温度を互いに異ならせたことを特徴と
する複合振動子。
1. A composite vibrator in which at least two opposing electrodes having different areas are arranged on one piezoelectric substrate, and the peak temperatures of the vibrators formed by the respective electrodes are different from each other.
【請求項2】 第1の対向電極と、該第1の対向電極と
は面積の異なる第2の対向電極とを所定の間隔をおいて
配置した第1の圧電基板と、第3の対向電極を配置した
第2の圧電基板とを備えた複合振動子であって、前記第
1の電極、第2、第3の電極が形成する振動子の頂点温
度をそれぞれt1、t2、t3とし、各振動子の頂点温
度における周波数をそれぞれf1、f2、f3としたと
き、f2−f1≒f2−f3と、t2−t1≒t3−t
2とを満たすように構成したことを特徴とする複合振動
子。
2. A first piezoelectric substrate in which a first opposing electrode and a second opposing electrode having an area different from the first opposing electrode are arranged at a predetermined interval, and a third opposing electrode. And a second piezoelectric substrate on which the first electrode, the second electrode, and the third electrode are formed. The peak temperatures of the oscillator formed by the first electrode, the second electrode, and the third electrode are defined as t1, t2, and t3, respectively. When the frequencies at the top temperature of the vibrator are f1, f2, and f3, respectively, f2-f1 ≒ f2-f3 and t2-t1 ≒ t3-t
2. A composite vibrator characterized by satisfying 2.
【請求項3】 圧電基板がYカット近傍のランガサイト
基板であることを特徴とする請求項1記載の複合振動
子。
3. The composite vibrator according to claim 1, wherein the piezoelectric substrate is a Langasite substrate near the Y cut.
【請求項4】 請求項1または2記載の複合振動子と、
増幅器と可変容量素子とを直列接続して発振器を構成し
たことを特徴とする電圧制御型圧電発振器。
4. A composite vibrator according to claim 1 or 2,
A voltage controlled piezoelectric oscillator comprising an amplifier and a variable capacitance element connected in series to form an oscillator.
JP2000011154A 2000-01-20 2000-01-20 Composite vibrator and voltage controlled piezoelectric oscillator using it Pending JP2001203535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000011154A JP2001203535A (en) 2000-01-20 2000-01-20 Composite vibrator and voltage controlled piezoelectric oscillator using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000011154A JP2001203535A (en) 2000-01-20 2000-01-20 Composite vibrator and voltage controlled piezoelectric oscillator using it

Publications (1)

Publication Number Publication Date
JP2001203535A true JP2001203535A (en) 2001-07-27

Family

ID=18539057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000011154A Pending JP2001203535A (en) 2000-01-20 2000-01-20 Composite vibrator and voltage controlled piezoelectric oscillator using it

Country Status (1)

Country Link
JP (1) JP2001203535A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112688654A (en) * 2019-10-18 2021-04-20 精工爱普生株式会社 Vibration element and oscillator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112688654A (en) * 2019-10-18 2021-04-20 精工爱普生株式会社 Vibration element and oscillator
CN112688654B (en) * 2019-10-18 2023-07-14 精工爱普生株式会社 Vibrating element and oscillator

Similar Documents

Publication Publication Date Title
KR100520335B1 (en) Voltage controlled oscillator
US8242663B2 (en) Oscillator having micro-electromechanical resonators and driver circuits therein that support in-phase and out-of-phase signals
US7800282B2 (en) Single-resonator dual-frequency lateral-extension mode piezoelectric oscillators, and operating methods thereof
EP2892153B1 (en) Piezoelectric acoustic resonator with adjustable temperature compensation capability
CN100566154C (en) Multi-mode thin film elastic wave resonator filter
JP4053504B2 (en) Tunable filter
US7719388B2 (en) Resonator operating with bulk acoustic waves
US20110043080A1 (en) Complex resonance circuit and oscillation circuit using the same
US5874866A (en) Phase-shift oscillator having ladder-type saw filter feedback circuit
US7319371B2 (en) Resonator filter structure having equal resonance frequencies
JP2008502240A (en) Oscillator
KR20040101214A (en) Piezoelectric vibrator, filter using same and method for adjusting piezoelectric vibrator
JP2014096631A (en) Self-oscillation circuit
JPWO2018070369A1 (en) Elastic wave device
AU550978B2 (en) An improved trapped energy resonator for multiple resonator application
CN112350681A (en) Frequency-adjustable film bulk acoustic resonator
JP2001203535A (en) Composite vibrator and voltage controlled piezoelectric oscillator using it
JPH04269010A (en) Surface-wave resonator
JPH0870232A (en) Surface acoustic wave element and oscillat0r
JP2002076816A (en) Composite vibrator and piezoelectric oscillator using the same
US6965274B2 (en) Thin film bulk acoustic resonator for controlling resonance frequency and voltage controlled oscillator using the same
JP2002232236A (en) Complex crystal resonator and crystal oscillator using the same
Gruzinenco et al. Miniature BAW resonators and filters based on single crystals of strong piezoelectrics
JP2000082922A (en) Piezoelectric oscillator
JP2004023568A (en) Oscillation circuit and electronic apparatus employing the same