JP2001201105A - Method for controlling indoor oxygen concentration of large-sized facility, and large-sized facility capable of controlling indoor oxygen concentration - Google Patents

Method for controlling indoor oxygen concentration of large-sized facility, and large-sized facility capable of controlling indoor oxygen concentration

Info

Publication number
JP2001201105A
JP2001201105A JP2000006771A JP2000006771A JP2001201105A JP 2001201105 A JP2001201105 A JP 2001201105A JP 2000006771 A JP2000006771 A JP 2000006771A JP 2000006771 A JP2000006771 A JP 2000006771A JP 2001201105 A JP2001201105 A JP 2001201105A
Authority
JP
Japan
Prior art keywords
oxygen concentration
air
supply system
air supply
adjusted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000006771A
Other languages
Japanese (ja)
Other versions
JP3455751B2 (en
Inventor
Kozo Kimura
興造 木村
Ryoichi Yoshida
良一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tabai Espec Co Ltd
Takenaka Komuten Co Ltd
Original Assignee
Tabai Espec Co Ltd
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tabai Espec Co Ltd, Takenaka Komuten Co Ltd filed Critical Tabai Espec Co Ltd
Priority to JP2000006771A priority Critical patent/JP3455751B2/en
Publication of JP2001201105A publication Critical patent/JP2001201105A/en
Application granted granted Critical
Publication of JP3455751B2 publication Critical patent/JP3455751B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Accommodation For Nursing Or Treatment Tables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for controlling indoor oxygen concentration of large-sized facilities and a large-sized facility, which is capable of controlling indoor oxygen concentration using the method. SOLUTION: An ordinary air-supply system, which supplies ordinary air and an adjusted air-supply system, which supplies air adjusted for oxygen concentration by means of a membrane separator are provided in parallel and connected to a mixing chamber, communicating with the indoor of the large-sized facility. In the adjusted air-supply system, a plurality of parallel circuits which are branched at every oxygen concentration is provided in the flow passage of the adjusted air taken out of the membrane separator and stop valves exclusively used for different oxygen concentrations are connected to the parallel circuits. According to the oxygen concentration required, only the stop valve of the corresponding parallel circuit is opened, and the required amount of adjusted air from the membrane separator and a required amount of ordinary air supplied from the ordinary air supplying system are joined in the mixing chamber.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、大気中の空気か
ら直接に酸素と窒素を分離する膜分離装置を利用して高
酸素空気と低酸素空気を分別して取り出し、高酸素空気
を供給した高酸素室は疲労回復、高齢者の運動、病後の
リハビリテーションなどに利用し、低酸素空気を供給し
た低酸素室はスポーツの高地トレーニングその他に利用
する技術の分野に属し、更に言えば、大容量の制御を必
要とする大型施設のための室内酸素濃度制御方法と、同
方法によって室内酸素濃度の制御が可能な大型施設に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high oxygen air supply system in which high oxygen air and low oxygen air are supplied by separating and extracting high oxygen air and low oxygen air using a membrane separation device for directly separating oxygen and nitrogen from air in the atmosphere. The oxygen chamber is used for recovery from fatigue, exercise for the elderly, rehabilitation after illness, etc.The hypoxic chamber supplied with hypoxic air belongs to the field of technology used for high altitude training of sports and other, and furthermore, large capacity The present invention relates to an indoor oxygen concentration control method for a large facility requiring control, and a large facility capable of controlling the indoor oxygen concentration by the method.

【0002】[0002]

【従来の技術】 従来、空気から直接に酸素と窒素を
分離する膜分離技術ないし膜分離装置は公知に属する
(例えば特開昭63−53109号、特公平1−443
66号公報記載の発明などを参照)。
2. Description of the Related Art Conventionally, a membrane separation technique or a membrane separation apparatus for directly separating oxygen and nitrogen from air belongs to a known art (for example, JP-A-63-53109, Japanese Patent Publication No. 1-443).
No. 66).

【0003】 また、前記の膜分離装置により高酸素
空気と低酸素空気を分別して取り出し、高酸素空気を供
給する高酸素室は疲労回復、高齢者の運動、病後のリハ
ビリテーションなどに利用し、低酸素空気を供給する低
酸素室はスポーツの高地トレーニングその他に利用する
技術も、例えば特開平10−216455号、特開平1
1−276635号公報にそれぞれ記載されて公知に属
する。
[0003] Furthermore, high oxygen air and low oxygen air are separated and taken out by the above-mentioned membrane separation device, and a high oxygen chamber for supplying high oxygen air is used for recovery from fatigue, exercise of elderly people, rehabilitation after illness, etc. The low oxygen chamber for supplying oxygen air is also used for sports high altitude training and other techniques. For example, Japanese Patent Application Laid-Open No. 10-216455 and Japanese Patent Application Laid-Open
Each of the methods described in Japanese Patent Application Laid-Open No. 1-227635 is well known.

【0004】上記の室内酸素濃度制御方法は、通常空
気の供給系統と、膜分離装置で酸素濃度を調整した空気
を供給する調整空気供給系統とを並列に設け、両系統を
対象施設に至る混合室に接続し、混合室で酸素濃度が一
定となるように混合した空気を対象室へ供給する方法で
ある。この方法を小規模施設に実施する場合には、送風
量そのものが基本的に小さいので、多少の変動幅がある
としても、何等問題はないものである。
In the above method for controlling the oxygen concentration in a room, a normal air supply system and a regulated air supply system for supplying air whose oxygen concentration is adjusted by a membrane separation device are provided in parallel, and both systems are mixed to reach a target facility. This is a method of connecting to a chamber and supplying air mixed so that the oxygen concentration is constant in the mixing chamber to the target chamber. When this method is applied to a small-scale facility, the air flow itself is basically small, so that there is no problem even if there is some variation.

【0005】[0005]

【本発明が解決しようとする課題】例えば高地トレーニ
ングに利用する低酸素室へ供給する低酸素空気の酸素濃
度は、低酸素室において制御したい酸素濃度幅に対し
て、最も低い酸素濃度よりも更に低い酸素濃度に調整し
た低酸素空気を供給しなければならない。一例として、
10%〜15%の範囲で酸素濃度を制御したい低酸素室
の場合、供給するべき低酸素空気の酸素濃度は9%前後
に設定する必要がある。つまり、酸素濃度9%前後の低
酸素空気を原資として、低酸素室の酸素濃度を10%〜
15%の範囲で制御するのである。よって、酸素濃度1
0%の制御はさておき、酸素濃度を15%に制御する場
合には、酸素濃度を希釈するために大量の通常空気(外
気)を必要とすることになる。とりわけ低酸素室が高地
トレーニングに利用できるほどに大型で大容量の施設で
あると、前記通常空気の供給量は更に飛躍的に倍増し、
エネルギー消費が大となるばかりでなく、送風機の能力
に大きな問題が生ずる。
For example, the oxygen concentration of the low-oxygen air supplied to the low-oxygen chamber used for high altitude training is more than the lowest oxygen concentration for the oxygen concentration range to be controlled in the low-oxygen chamber. Low oxygen air adjusted to a low oxygen concentration must be supplied. As an example,
In the case of a low oxygen chamber where the oxygen concentration is desired to be controlled within the range of 10% to 15%, the oxygen concentration of the low oxygen air to be supplied needs to be set to about 9%. That is, the oxygen concentration in the low-oxygen chamber is reduced from 10% to 10% using low-oxygen air having an oxygen concentration of about 9% as a source.
The control is performed within the range of 15%. Therefore, oxygen concentration 1
Aside from the control of 0%, when the oxygen concentration is controlled to 15%, a large amount of normal air (outside air) is required to dilute the oxygen concentration. Especially when the hypoxia room is a large and large-capacity facility that can be used for high altitude training, the supply amount of the normal air further doubles dramatically,
Not only is the energy consumption high, but also a major problem with the capacity of the blower.

【0006】具体的に説明すると、高地トレーニングに
利用する低酸素室は、標高2000m級の酸素濃度(約
19%)から、標高3000m級の酸素濃度(約16
%)ないし標高6000m級の酸素濃度(約10%)の
実現が望まれる。しかも高地トレーニング用としての適
性上、低酸素室が、一辺が3mの矩形断面で、長さが1
00m程度の大型施設である場合、同低酸素室の容量は
単純計算で900L(キロリットル)になる。したがっ
て、上記特開平11−276635号公報の図1に記載
され、且つ本願の図4に例示した構成の室内酸素濃度制
御方法によるときは、通常空気供給系統Aに必要な空気
量qと、膜分離装置11で酸素濃度を調整する調整空気
供給系統Bに必要とされる調整空気量Qは、大略、次の
ように計算される。
More specifically, a low-oxygen chamber used for high-altitude training is designed to reduce the oxygen concentration at an altitude of 2000 m (about 19%) to the oxygen concentration at an altitude of 3000 m (about 16%).
%) Or an oxygen concentration (about 10%) of an altitude of 6000 m is desired. Moreover, because of its suitability for high altitude training, the hypoxic chamber has a rectangular section of 3 m on a side and a length of 1
In the case of a large facility of about 00 m, the capacity of the low oxygen chamber is 900 L (kiloliter) by simple calculation. Therefore, when the indoor oxygen concentration control method described in FIG. 1 of JP-A-11-276635 and illustrated in FIG. 4 of the present application is used, the air amount q required for the normal air supply system A and the membrane The adjusted air amount Q required for the adjusted air supply system B for adjusting the oxygen concentration in the separation device 11 is roughly calculated as follows.

【0007】 標高 調整空気量Q 空気量q 合計(単位、L/min) 6000m: 900 105 1005 3000m: 900 885 1785 2000m: 900 1545 2445 但し、上記の数字は、膜分離装置11から供給する低酸
素空気の酸素濃度を9%とする場合である。
[0007] Altitude adjusted air amount Q Air amount q Total (unit: L / min) 6000 m: 900 105 1005 3000 m: 900 885 1785 2000 m: 900 1545 2445 However, the above figures are low oxygen supplied from the membrane separation device 11. This is the case where the oxygen concentration of air is 9%.

【0008】しかし、通常空気供給系統Aの送風機3の
能力及び性能として、毎分当たり風量を105L/mi
nから1545L/minまで運転することは、その性
能上は実際上不可能に近い。仮に2000m級の最大風
量をカバーできる大容量の送風機を使用するときは、6
000m級の最小風量に使用する際のモータ動力のエネ
ルギー消費が過大になって不経済である。
However, as the capacity and performance of the blower 3 of the normal air supply system A, the air flow per minute is 105 L / mi.
Operating from n to 1545 L / min is practically impossible in its performance. If you use a large-capacity blower that can cover the maximum air volume of 2000m class,
The energy consumption of the motor power at the time of using the minimum air volume of the 000 m class becomes excessively uneconomical.

【0009】一案として、上記低酸素室1に必要な室内
酸素濃度の制御幅10%〜16%を、10%〜13.5
%の範囲と、13.5%〜16%の範囲の二つに区分し
て、前者の制御には酸素濃度が9%の低酸素空気を供給
し、後者の制御には酸素濃度が12.5%の低酸素空気
を供給する構成とすれば、上記通常空気の供給量qはか
なり低減化できることになる。
As a proposal, the control range of the room oxygen concentration required for the low oxygen chamber 1 is 10% to 16%, and 10% to 13.5.
% And a range of 13.5% to 16%. For the former control, low-oxygen air having an oxygen concentration of 9% is supplied, and for the latter control, an oxygen concentration of 12.1% is used. With a configuration in which 5% low oxygen air is supplied, the supply amount q of the normal air can be considerably reduced.

【0010】ところが、上記膜分離装置11の分離性能
は、空気の温度Tと空気流量Q及び空気圧力Pの三要素
によって大きく左右されることは周知である。具体的な
データとして、図2には、縦軸に調整空気流量比(供給
された空気と、調整された低酸素空気量との比)を示
し、横軸には調整された低酸素空気の酸素濃度(%)を
示す。図3Aには、空気の温度T及び空気流量Qが一定
で、横軸の空気圧力Pが変化する場合に、図1の符号1
1aの方へ出る低酸素空気Oa、および図1の符号11
bの方へ出る高酸素空気Obそれぞれの酸素濃度(%)
を縦軸に示す。図3Bには、空気温度Tと空気圧力Pが
一定で、横軸の空気流量Qが変化する場合に、図1の符
号11aの方へ出る低酸素空気Oa、及び図1の符号1
1bの方へ出る高酸素空気Obそれぞれの酸素濃度
(%)を縦軸に示している。
However, it is well known that the separation performance of the membrane separation device 11 is greatly affected by three factors: the temperature T of the air, the air flow rate Q, and the air pressure P. As specific data, FIG. 2 shows the adjusted air flow rate ratio (the ratio between the supplied air and the adjusted low oxygen air amount) on the vertical axis, and the adjusted low oxygen air amount on the horizontal axis. Indicates the oxygen concentration (%). In FIG. 3A, when the air temperature T and the air flow rate Q are constant and the air pressure P on the horizontal axis changes, the reference numeral 1 in FIG.
Low oxygen air Oa exiting towards 1a and 11 in FIG.
The oxygen concentration (%) of each of the high oxygen air Ob flowing toward b
Is shown on the vertical axis. FIG. 3B shows low-oxygen air Oa flowing toward reference numeral 11a in FIG. 1 and reference numeral 1 in FIG. 1 when the air temperature T and the air pressure P are constant and the air flow rate Q on the horizontal axis changes.
The oxygen concentration (%) of each of the high oxygen air Ob flowing toward 1b is shown on the vertical axis.

【0011】上記図2及び図3から推考されるように、
上述した一案の如く低酸素室1に必要な室内酸素濃度の
制御範囲を、高、中、低のように複数に区分してそれぞ
れの区分に適した酸素濃度の調整空気を供給する方法が
好ましいことは理解されても、膜分離装置11の分離性
能が、上述したように空気温度Tと空気流量Q及び空気
圧力Pの三要素によって大きく左右される以上、図4の
ように膜分離装置11の調整空気出口に単一の開閉弁1
2を設けただけの構成ではとうてい実行することは出来
ないのである。
As deduced from FIGS. 2 and 3,
As described in the above-mentioned plan, the method of supplying the adjusted air having the oxygen concentration suitable for each section by dividing the control range of the indoor oxygen concentration necessary for the low oxygen chamber 1 into a plurality of sections such as high, medium, and low. Although it is understood that it is preferable, since the separation performance of the membrane separation device 11 is greatly influenced by the three factors of the air temperature T, the air flow rate Q, and the air pressure P as described above, as shown in FIG. A single open / close valve 1 at 11 conditioned air outlets
However, it cannot be executed with a configuration having only 2 provided.

【0012】本発明の目的は、特に大型施設の場合に、
通常空気供給量の変動幅を極力小さくして制御性を良好
ならしめると共に、通常空気の供給源要素(空気圧縮機
や送風機)の容量増大を抑制できて効率が良く、省エネ
ルギー化を図ることができる室内酸素濃度制御方法及び
室内酸素濃度を制御可能な大型施設を提供することであ
る。
It is an object of the present invention, particularly in the case of large facilities,
In addition to improving the controllability by minimizing the fluctuation range of the normal air supply amount, the increase in the capacity of the normal air supply source element (air compressor or blower) can be suppressed, resulting in high efficiency and energy saving. It is an object of the present invention to provide a room oxygen concentration control method capable of controlling a room oxygen concentration.

【0013】本発明の次の目的は、膜分離装置の特徴と
して、一方の出口に低酸素空気が、他方の出口には高酸
素空気がそれぞれ分別して発生することに着眼し、特に
大型低酸素施設の場合に、通常空気供給系統へ前記の高
酸素空気を供給して混合することによって通常空気供給
量の変動幅を一層小さくして制御性を良好ならしめると
共に、通常空気の供給源要素(空気圧縮機や送風機)の
容量増大を抑制できて効率が良く、省エネルギー化を図
ることができる室内酸素濃度制御方法及び室内酸素濃度
を制御可能な大型施設を提供することである。
A second object of the present invention is that the membrane separation apparatus is characterized in that low-oxygen air is separately generated at one outlet and high-oxygen air is separately generated at the other outlet. In the case of a facility, by supplying and mixing the high oxygen air to the normal air supply system, the fluctuation range of the normal air supply amount can be further reduced to improve controllability, and the normal air supply source element ( It is an object of the present invention to provide an indoor oxygen concentration control method capable of suppressing an increase in the capacity of an air compressor or a blower), improving efficiency and saving energy, and a large facility capable of controlling the indoor oxygen concentration.

【0014】[0014]

【課題を解決するための手段】上記従来技術の課題を解
決するための手段として、請求項1に記載した発明に係
る大型施設の室内酸素濃度制御方法は、室内酸素濃度の
制御を必要とする大型施設に対して、通常空気の供給系
統と、膜分離装置で酸素濃度を調整した空気を供給する
調整空気供給系統とを並列に設け、前記二つの系統は大
型施設の室内とつながる混合室へ接続すること、前記調
整空気供給系統には、膜分離装置から取り出した調整空
気の流路に、酸素濃度別に複数に分岐させた並列回路を
設け、その各並列路に酸素濃度別に専用の開閉弁を接続
すること、調整空気供給系統に必要とされる酸素濃度に
応じて、対応する並列路の開閉弁のみを開き、膜分離装
置で酸素濃度を調整した必要量の調整空気、および通常
空気供給系統から供給される必要量の通常空気をそれぞ
れ混合室で合流させ、混合室において混合した空気を室
内酸素濃度の制御を必要とする大型施設へ供給すること
を特徴とする。
According to the first aspect of the present invention, there is provided a method for controlling the oxygen concentration in a large facility, which requires control of the indoor oxygen concentration. For a large facility, a normal air supply system and a regulated air supply system for supplying air whose oxygen concentration has been adjusted by a membrane separation device are provided in parallel, and the two systems are connected to a mixing room connected to the room of the large facility. Connecting, in the regulated air supply system, a flow path of the regulated air taken out of the membrane separation device is provided with a parallel circuit branched into a plurality of portions for each oxygen concentration, and a dedicated on-off valve for each oxygen concentration in each parallel path. In accordance with the oxygen concentration required for the regulated air supply system, only the corresponding parallel path open / close valve is opened, and the required amount of regulated air whose oxygen concentration is adjusted by the membrane separation device, and the normal air supply From the strain Normal air required amount to be fed are merged with each mixing chamber, and supplying to large facilities that require mixed air in the mixing chamber to control the indoor oxygen concentration.

【0015】請求項2記載の発明に係る大型施設の室内
酸素濃度制御方法は、室内酸素濃度の制御を必要とする
大型施設に対して、通常空気の供給系統と、膜分離装置
で酸素濃度を調整した空気を供給する調整空気供給系統
とを並列に設け、前記二つの系統は大型施設の室内とつ
ながる混合室へ接続すること、前記調整空気供給系統に
は、膜分離装置の一方の出口から取り出した調整空気の
流路に、酸素濃度別に複数に分岐させた並列回路を設
け、その各並列路に酸素濃度別に専用の開閉弁を接続す
ること、前記膜分離装置の他方の出口から取り出した調
整空気の流路は前記通常空気の供給系統と接続するこ
と、調整空気供給系統に必要とされる酸素濃度に応じ
て、対応する並列路の開閉弁のみを開き、膜分離装置で
酸素濃度を調整した必要量の調整空気、および通常空気
供給系統から供給される通常空気には前記膜分離装置の
他方の出口から取り出した調整空気を加えて必要量とし
た空気をそれぞれ混合室で合流させ、混合室において混
合した空気を室内酸素濃度の制御を必要とする大型施設
へ供給することを特徴とする。
According to a second aspect of the present invention, there is provided a method for controlling the concentration of oxygen in a room of a large facility, wherein the oxygen concentration is controlled by a normal air supply system and a membrane separation apparatus for a large facility requiring the control of the indoor oxygen concentration. A regulated air supply system for supplying regulated air is provided in parallel, and the two systems are connected to a mixing chamber connected to the room of the large facility.The regulated air supply system is connected to one outlet of the membrane separation device. In the flow path of the taken-out adjusted air, a parallel circuit branched into a plurality of parts for each oxygen concentration was provided, and a dedicated opening / closing valve was connected to each parallel path for each oxygen concentration, and taken out from the other outlet of the membrane separation device. The flow path of the regulated air is connected to the supply system of the normal air, and according to the oxygen concentration required for the regulated air supply system, only the corresponding on-off valve of the parallel path is opened, and the oxygen concentration is adjusted by the membrane separation device. Adjusted need The adjusted air and the normal air supplied from the normal air supply system are added with the adjusted air taken out from the other outlet of the membrane separation device, and the required amount of air is respectively joined in the mixing chamber, and mixed in the mixing chamber. The air is supplied to a large facility that needs to control indoor oxygen concentration.

【0016】請求項3記載の発明に係る室内酸素濃度を
制御可能な大型施設は、室内酸素濃度の制御を必要とす
る大型施設に対して、通常空気の供給系統と、膜分離装
置で酸素濃度を調整した空気を供給する調整空気供給系
統とを並列に設け、前記二つの系統は大型施設の室内と
つながる混合室へ接続されていること、前記調整空気供
給系統には、膜分離装置から取り出した調整空気の流路
に、酸素濃度別に複数に分岐させた並列回路を設け、そ
の各並列路に酸素濃度別に専用の開閉弁が接続されてい
ること、調整空気供給系統に必要とされる酸素濃度に応
じて、対応する並列路の開閉弁のみを開き、膜分離装置
で酸素濃度を調整した必要量の調整空気、および通常空
気供給系統から供給される必要量の通常空気をそれぞれ
混合室で合流させ、混合室において混合した空気が大型
施設へ供給されることを特徴とする。
The large-scale facility capable of controlling the indoor oxygen concentration according to the third aspect of the present invention is a large-scale facility requiring the control of the indoor oxygen concentration, and is provided with an ordinary air supply system and a membrane separation device. A regulated air supply system for supplying regulated air is provided in parallel, and the two systems are connected to a mixing chamber connected to a room of a large facility, and the regulated air supply system is taken out of the membrane separation device. In the flow path of the regulated air, a plurality of parallel circuits are provided which are branched into a plurality of sections for each oxygen concentration, and a dedicated opening / closing valve is connected to each parallel path for each oxygen concentration. According to the concentration, only the corresponding on-off valve of the parallel path is opened, and the required amount of adjusted air obtained by adjusting the oxygen concentration by the membrane separation device and the required amount of normal air supplied from the normal air supply system are respectively supplied to the mixing chamber. Merge Air mixed in the mixing chamber, characterized in that it is supplied to the large facilities.

【0017】請求項4記載の発明に係る室内酸素濃度を
制御可能な大型施設は、室内酸素濃度の制御を必要とす
る大型施設に対して、通常空気の供給系統と、膜分離装
置で酸素濃度を調整した空気を供給する調整空気供給系
統とを並列に設け、前記二つの系統は大型施設の室内へ
至る混合室に接続されていること、前記調整空気供給系
統には、膜分離装置の一方の出口から取り出した調整空
気の流路に、酸素濃度別に複数に分岐させた並列路を設
け、各並列路に酸素濃度別に専用の開閉弁が接続されて
いること、前記膜分離装置の他方の出口から取り出した
調整空気の流路は、途中の開閉弁を介して、前記通常空
気の供給系統と接続されていること、調整空気供給系統
に必要とされる酸素濃度に応じて、対応する並列路の開
閉弁のみを開き、膜分離装置で酸素濃度を調整した必要
量の調整空気、および通常空気供給系統から供給される
通常空気には前記膜分離装置の他方の出口から取り出し
た調整空気を加えて必要量とした空気をそれぞれ混合室
で合流させ、混合室において混合した空気が大型施設へ
供給されることを特徴とする。
The large-scale facility capable of controlling the indoor oxygen concentration according to the fourth aspect of the present invention is a large-scale facility requiring the control of the indoor oxygen concentration, and is provided with a normal air supply system and a membrane separation device. A regulated air supply system for supplying regulated air is provided in parallel, and the two systems are connected to a mixing chamber leading to a room of a large facility, and the regulated air supply system includes one of a membrane separation device. In the flow path of the conditioned air taken out from the outlet, a parallel path branched into a plurality of sections for each oxygen concentration is provided, and a dedicated opening / closing valve is connected to each parallel path for each oxygen concentration, and the other of the membrane separation device. The flow path of the conditioned air taken out from the outlet is connected to the normal air supply system via an on-off valve on the way, and a corresponding parallel air supply is required depending on the oxygen concentration required for the conditioned air supply system. Open only the on-off valve of the road, The necessary amount of adjusted air obtained by adjusting the oxygen concentration in the separation device, and the normal air supplied from the normal air supply system, the adjusted air taken out from the other outlet of the membrane separation device is added to the required amount of air, respectively. The air is combined in the mixing chamber, and the mixed air in the mixing chamber is supplied to a large facility.

【0018】[0018]

【発明の実施形態及び実施例】図1は、請求項1及び2
に記載した発明に係る大型施設の室内酸素濃度制御方法
を実施する、請求項3及び4に記載した発明に係る室内
酸素濃度を制御可能な大型施設1の実施形態を示してい
る。本実施形態は、高地トレーニング用などとして使用
する大型の低酸素室1に関する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG.
The embodiment of the large-scale facility 1 capable of controlling the indoor oxygen concentration according to the inventions according to the third and fourth aspects of the present invention, which implements the indoor oxygen concentration control method for a large-scale facility according to the invention described in (1). The present embodiment relates to a large-sized low oxygen chamber 1 used for high altitude training or the like.

【0019】室内酸素濃度を制御するべき大型施設1の
直前に位置する混合室2に、通常空気供給系統A、及び
膜分離装置11で酸素濃度を調整した空気を供給する調
整空気供給系統Bとが並列に接続されている。
A normal air supply system A and a regulated air supply system B for supplying air whose oxygen concentration has been adjusted by the membrane separation device 11 to the mixing chamber 2 located immediately before the large facility 1 for controlling the indoor oxygen concentration. Are connected in parallel.

【0020】通常空気供給系統Aには、通常空気供給源
要素としての送風機3から延びる空気配管4の途中に流
量制御弁5(自動弁)が設置されている。この流量制御
弁5は前記混合室2内の酸素濃度を測定するセンサー6
の測定値が入力されるコントローラ7により、混合室2
内の空気濃度が制御目標値(設定値)となるように通常
空気流量qを自動制御される。
In the normal air supply system A, a flow control valve 5 (automatic valve) is provided in the middle of an air pipe 4 extending from a blower 3 as a normal air supply source element. This flow control valve 5 is provided with a sensor 6 for measuring the oxygen concentration in the mixing chamber 2.
Of the mixing chamber 2 by the controller 7 to which the measured value of
The normal air flow rate q is automatically controlled so that the air concentration in the inside becomes the control target value (set value).

【0021】一方、調整空気供給系統Bは、大気中の空
気を膜分離装置11へ供給する要素であるコンプレッサ
ー10と接続された膜分離装置11の一方の調整空気取
り出し口11aから取り出した低酸素空気の流路に、そ
の酸素濃度別(例えば9%、12.5%、15%など)
に複数に分岐した並列回路12a、12b、12cを設
け、各並列流路に各酸素濃度別に適性を有する専用の開
閉弁13a、13b、13cを接続した構成である。
On the other hand, the regulated air supply system B is provided with a low-oxygen gas taken out from one regulated air take-out port 11a of the membrane separation device 11 connected to the compressor 10, which is an element for supplying atmospheric air to the membrane separation device 11. Depending on the oxygen concentration in the air flow path (for example, 9%, 12.5%, 15%, etc.)
In this configuration, parallel circuits 12a, 12b, and 12c branched into a plurality are provided, and dedicated on-off valves 13a, 13b, and 13c that are appropriate for each oxygen concentration are connected to each parallel flow path.

【0022】前記並列回路の後流に自動切替え弁14が
設置されている。この自動切替え弁14は、やはり混合
室2内の酸素濃度その他を測定する安全センサー15に
よる酸素濃度その他の測定値により、前記自動切替え弁
14を外部排気へ自動切り替えして大型施設(低酸素
室)1内の居住環境を安全に保持する。
An automatic switching valve 14 is provided downstream of the parallel circuit. The automatic switching valve 14 automatically switches the automatic switching valve 14 to the external exhaust according to the oxygen concentration and the like measured by the safety sensor 15 which also measures the oxygen concentration and the like in the mixing chamber 2, and the large facility (low oxygen chamber) ) Keep the living environment inside 1 safe.

【0023】ちなみに上記したように膜分離装置11の
調整空気取り出し口11aから取り出す低酸素空気の酸
素濃度別に異なる複数の並列回路12a、12b、12
cを設けて、各並列流路に各酸素濃度に専用の開閉弁1
3a、13b、13cを接続した理由は、次のとおりで
ある。
Incidentally, as described above, a plurality of parallel circuits 12a, 12b, 12 which differ depending on the oxygen concentration of the low oxygen air taken out from the conditioned air outlet 11a of the membrane separation device 11 are provided.
c, and an on-off valve 1 dedicated to each oxygen concentration in each parallel flow path.
The reason why 3a, 13b and 13c are connected is as follows.

【0024】大型施設(低酸素室)1に要求される酸素
濃度の制御範囲が、一例として上述した標高2000m
級(酸素濃度約19%)から標高6000m級(酸素濃
度約10%)の範囲に及ぶときは、その制御範囲を、例
えば標高6000m級(酸素濃度約10%)を下限と
する酸素濃度10%〜13.5%の制御範囲と、標高
3000m級(酸素濃度約16%)を上限とする酸素濃
度13.5%〜16%、及び標高2000m級(酸素
濃度約19%)までを含む酸素濃度16%以上の三つ
(複数)に区分するのが制御上有利であることは既に上
記解決課題の項で述べた。そこで、前記の各区分〜
の酸素濃度の制御に適正であるように、膜分離装置11
で調整した低酸素空気の酸素濃度をには9%、には
12.5%、には15%で供給できるようにするため
である。即ち、上記した開閉弁13a、13b、13c
はそれぞれ、前記した低酸素空気の酸素濃度9%、1
2.5%、及び15%に適応する専用の弁が選択される
のである。
The control range of the oxygen concentration required for the large facility (low oxygen chamber) 1 is, for example, 2000 m above-mentioned altitude.
When the range extends from a class (oxygen concentration of about 19%) to an altitude of 6000 m (oxygen concentration of about 10%), the control range is, for example, an oxygen concentration of 10% with the lower limit of the altitude of 6000 m (oxygen concentration of about 10%) Oxygen concentration up to 3000 m class (oxygen concentration about 16%) and oxygen concentration up to 2000 m class (oxygen concentration about 19%) It has already been described in the section of the above-mentioned problem that the division into three (plural) of 16% or more is advantageous for control. Therefore, each of the above categories ~
Membrane separation device 11 so as to be appropriate for controlling the oxygen concentration of
This is because the oxygen concentration of the low oxygen air adjusted in the above can be supplied at 9%, 12.5%, and 15%. That is, the above-described on-off valves 13a, 13b, 13c
Represent the oxygen concentration of the low oxygen air of 9%, 1
Dedicated valves for 2.5% and 15% are selected.

【0025】上記設例を本実施形態の方法で室内酸素濃
度を制御したときは、通常空気供給系統Aに必要な空気
量qと、膜分離装置11で酸素濃度を調整する調整空気
供給系統Bに必要とされる調整空気量Qは、大略、次の
ように計算される。
In the above example, when the indoor oxygen concentration is controlled by the method of this embodiment, the air amount q required for the normal air supply system A and the regulated air supply system B for adjusting the oxygen concentration by the membrane separation device 11 are provided. The required adjusted air amount Q is roughly calculated as follows.

【0026】 標高 調整空気量Q 空気量q 合計(単位、L/min) 6000m: 900 105 1005 3000m: 1050 525 1575 2000m: 1050 675 1725Altitude adjustment air volume Q Air volume q Total (unit: L / min) 6000 m: 900 105 1005 3000 m: 1050 525 1575 2000 m: 1050 675 1725

【0027】これを上述した従来技術の数値と比較する
と、一見して明かなとおり、通常空気量qの変動は約6
倍程度であり、毎分当たり105L/minであれ、6
75L/minであっても、送風機3の通常の能力範囲
であり、何等問題はない。
When this is compared with the above-mentioned numerical values of the prior art, it is apparent at a glance that the fluctuation of the normal air amount q is about 6
6 times, and 105 L / min per minute, 6
Even at 75 L / min, it is within the normal capacity range of the blower 3, and there is no problem.

【0028】以上は請求項1及び3記載の発明の実施形
態を説明したものである。次には同じ図1に基いて請求
項2及び4記載の発明の実施形態を説明する。
The above is an explanation of the first and third embodiments of the present invention. Next, an embodiment of the present invention will be described with reference to FIG.

【0029】請求項2及び4記載の発明の大部分も、上
記請求項1及び3記載の発明の構成と共通するが、前記
膜分離装置11のもう一つの調整空気取り出し口11b
から取り出される高酸素空気の有効利用を図った点が特
徴である。即ち、前記調整空気取り出し口11bから取
り出す高酸素空気の流路は、途中の自動切替え弁16を
介して、前記通常空気供給系統Aの空気配管4と接続さ
れている。この自動切替え弁16も、上述の酸素濃度セ
ンサー6の測定値に基いてコントローラ7を通じて自動
制御される。
Most of the inventions according to claims 2 and 4 have the same construction as the inventions according to claims 1 and 3, but the other conditioned air outlet 11b of the membrane separation apparatus 11 is also provided.
The feature is that the effective utilization of the high oxygen air taken out of the air. That is, the flow path of the high oxygen air taken out from the regulated air outlet 11b is connected to the air pipe 4 of the normal air supply system A via the automatic switching valve 16 on the way. The automatic switching valve 16 is also automatically controlled through the controller 7 based on the measured value of the oxygen concentration sensor 6 described above.

【0030】従って、大型施設1内の低酸素濃度の制御
は、第1段階として、上述の制御範囲に応じて対応する
並列路の開閉弁12aないし12cのいずれかを一つの
みを開き、該当する低酸素濃度(9%、12.5%、1
5%)の調整空気を混合室2へ供給する。例えば制御範
囲が10%〜13.5%のときは酸素濃度9%の調整空
気を、13.5〜16%のときは酸素濃度12.5%の
調整空気を、16%以上のときは酸素濃度15%の調整
空気をそれぞれ混合室2へ供給する。同時に通常空気供
給系統Aを通じて所定流量の通常空気をやはり混合室2
へ供給し、両空気の混合により目標とする低酸素濃度の
空気を作り、これを大型施設1内へ供給することは、上
記第1の実施形態の場合と同じである。
Therefore, the control of the low oxygen concentration in the large-scale facility 1 is performed as a first step by opening only one of the on-off valves 12a to 12c of the corresponding parallel path according to the control range described above. Low oxygen concentration (9%, 12.5%, 1
5%) is supplied to the mixing chamber 2. For example, when the control range is 10% to 13.5%, conditioned air with an oxygen concentration of 9% is used. When the control range is 13.5 to 16%, conditioned air with an oxygen concentration of 12.5% is used. Adjusted air having a concentration of 15% is supplied to the mixing chamber 2. At the same time, normal air at a predetermined flow rate is also supplied to the mixing chamber 2 through the normal air supply system A.
The air is supplied to the large facility 1 by mixing the two airs to produce air having a low oxygen concentration as a target, as in the case of the first embodiment.

【0031】第2段階としては、前記の酸素濃度制御方
法において、通常空気供給系統Aで供給するべき通常空
気量が増大して、送風機3の負担が大きくなる場合に
は、前記切替え弁16を開いて、取り出し口11bから
得られる高酸素空気を通常空気へ合流させる。その結
果、通常空気の酸素濃度が上昇するから、その分通常空
気の供給量は相対的に少なくても、制御目標の低酸素濃
度を容易に達成することが出来る。
As a second step, in the above-mentioned oxygen concentration control method, when the amount of normal air to be supplied in the normal air supply system A increases and the load on the blower 3 increases, the switching valve 16 is turned on. When opened, the high oxygen air obtained from the outlet 11b is combined with the normal air. As a result, since the oxygen concentration of the normal air increases, the control target low oxygen concentration can be easily achieved even if the supply amount of the normal air is relatively small.

【0032】或いは当初から高酸素空気の利用を行う時
は、相対的に送風機3の基本容量を小さい等級で同様に
実施できるのである。
Alternatively, when high oxygen air is used from the beginning, the basic capacity of the blower 3 can be similarly reduced to a smaller grade.

【0033】なお、上記の実施形態は、大型施設1を低
酸素室として利用する場合について説明したが、この限
りではない。逆に大型施設1を高酸素室として利用する
場合には、膜分離装置11の調整空気取り出し口11a
と11bを正反対に使用することにより全く同様に実施
することができる。
In the above embodiment, the case where the large facility 1 is used as a low oxygen chamber has been described, but the present invention is not limited to this. Conversely, when the large facility 1 is used as a high oxygen chamber, the adjusted air outlet 11a of the membrane separation device 11 is used.
Exactly the same can be achieved by using diametrically and 11b oppositely.

【0034】図1中の符号20は大型施設1の空気を放
出するダンパーを示している。
Reference numeral 20 in FIG. 1 indicates a damper for discharging air from the large facility 1.

【0035】[0035]

【本発明が奏する効果】請求項1、2に記載した発明に
係る大型施設の室内酸素濃度制御方法、及び請求項3、
4に記載した発明に係る室内酸素濃度を制御可能な大型
施設によれば、特に大型施設で実施する場合に、通常空
気供給系統の送風機の風量負担を軽減でき、効率よく、
少ないエネルギー消費で経済的に実施できるのである。
According to the present invention, there is provided a method for controlling the oxygen concentration in a room of a large facility according to the present invention.
According to the large facility capable of controlling the indoor oxygen concentration according to the invention described in 4, the air load on the blower of the normal air supply system can be reduced, particularly when the operation is performed in a large facility,
It can be implemented economically with low energy consumption.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る室内酸素濃度制御方法を実施する
大型施設の実施形態を示した回路図である。
FIG. 1 is a circuit diagram showing an embodiment of a large facility that implements the indoor oxygen concentration control method according to the present invention.

【図2】膜分離装置における調整空気流量比と酸素濃度
との相関図である。
FIG. 2 is a correlation diagram between an adjusted air flow rate ratio and an oxygen concentration in the membrane separation device.

【図3】A、Bは膜分離装置における調整空気の酸素濃
度と圧力及び流量との相関図である。
FIGS. 3A and 3B are correlation diagrams of oxygen concentration, pressure, and flow rate of conditioned air in a membrane separation device.

【図4】従来の室内酸素濃度制御方法を実施する大型施
設の実施形態を示した回路図である。
FIG. 4 is a circuit diagram showing an embodiment of a large facility that implements a conventional indoor oxygen concentration control method.

【符号の説明】[Explanation of symbols]

A 通常空気供給系統 B 調整空気供給系統 1 対象の大型施設 2 混合室 11 膜分離装置 11a 一つの調整空気取り出し口 11b 他方の調整空気取り出し口 12a〜12c 並列回路 13a〜13c 開閉弁 16 切替え弁(開閉弁) A Normal air supply system B Regulated air supply system 1 Target large facility 2 Mixing chamber 11 Membrane separation device 11a One regulated air outlet 11b The other regulated air outlet 12a-12c Parallel circuit 13a-13c Open / close valve 16 Switching valve ( On-off valve)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 良一 大阪府大阪市北区天神橋三丁目5番6号 タバイエスペック株式会社内 Fターム(参考) 4C341 KL06 4D006 GA41 KE12P KE12Q KE13P KE13Q MB04 PB17 PB62 PC73 PC80  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Ryoichi Yoshida 3-5-6 Tenjinbashi, Kita-ku, Osaka-shi, Osaka Prefecture F-term (reference) 4C341 KL06 4D006 GA41 KE12P KE12Q KE13P KE13Q MB04 PB17 PB62 PC73 PC80

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】室内酸素濃度の制御を必要とする大型施設
に対して、通常空気の供給系統と、膜分離装置で酸素濃
度を調整した空気を供給する調整空気供給系統とを並列
に設け、前記二つの系統は大型施設の室内とつながる混
合室へ接続すること、 前記調整空気供給系統には、膜分離装置から取り出した
調整空気の流路に、酸素濃度別に複数に分岐させた並列
回路を設け、その各並列路に酸素濃度別に専用の開閉弁
を接続すること、 調整空気供給系統に必要とされる酸素濃度に応じて、対
応する並列路の開閉弁のみを開き、膜分離装置で酸素濃
度を調整した必要量の調整空気、および通常空気供給系
統から供給される必要量の通常空気をそれぞれ混合室で
合流させ、混合室において混合した空気を室内酸素濃度
の制御を必要とする大型施設へ供給することを特徴とす
る、大型施設の室内酸素濃度制御方法。
1. A large-scale facility requiring control of indoor oxygen concentration is provided in parallel with a normal air supply system and a regulated air supply system for supplying air whose oxygen concentration has been adjusted by a membrane separator. The two systems are connected to a mixing chamber connected to the room of a large facility.The regulated air supply system has a parallel circuit that is branched into a plurality of circuits for each oxygen concentration in a flow path of the regulated air taken out from the membrane separation device. A dedicated on-off valve is connected to each parallel path for each oxygen concentration, and only the corresponding on-off valve is opened according to the oxygen concentration required for the regulated air supply system. A large facility where the required amount of adjusted air with adjusted concentration and the required amount of normal air supplied from the normal air supply system are combined in the mixing chamber, and the mixed air in the mixing chamber needs to be controlled for indoor oxygen concentration. What Characterized by feeding, indoor oxygen concentration control method of the large facilities.
【請求項2】室内酸素濃度の制御を必要とする大型施設
に対して、通常空気の供給系統と、膜分離装置で酸素濃
度を調整した空気を供給する調整空気供給系統とを並列
に設け、前記二つの系統は大型施設の室内とつながる混
合室へ接続すること、 前記調整空気供給系統には、膜分離装置の一方の出口か
ら取り出した調整空気の流路に、酸素濃度別に複数に分
岐させた並列回路を設け、その各並列路に酸素濃度別に
専用の開閉弁を接続すること、 前記膜分離装置の他方の出口から取り出した調整空気の
流路は前記通常空気の供給系統と接続すること、 調整空気供給系統に必要とされる酸素濃度に応じて、対
応する並列路の開閉弁のみを開き、膜分離装置で酸素濃
度を調整した必要量の調整空気、および通常空気供給系
統から供給される通常空気には前記膜分離装置の他方の
出口から取り出した調整空気を加えて必要量とした空気
をそれぞれ混合室で合流させ、混合室において混合した
空気を室内酸素濃度の制御を必要とする大型施設へ供給
することを特徴とする、大型施設の室内酸素濃度制御方
法。
2. A large-scale facility requiring control of indoor oxygen concentration is provided in parallel with a normal air supply system and a regulated air supply system for supplying air whose oxygen concentration has been adjusted by a membrane separator. The two systems are connected to a mixing chamber that is connected to the room of a large facility.The regulated air supply system is branched into a plurality of passages for the oxygen concentration in a flow path of the regulated air taken out from one outlet of the membrane separation device. A parallel circuit is provided, and a dedicated on-off valve is connected to each parallel path for each oxygen concentration. A flow path of the conditioned air taken out from the other outlet of the membrane separation device is connected to the normal air supply system. In accordance with the oxygen concentration required for the regulated air supply system, only the corresponding on-off valve of the parallel path is opened, and the required amount of regulated air whose oxygen concentration has been adjusted by the membrane separation device and the normal air supply system Normal sky The adjusted air taken out from the other outlet of the membrane separation device is added, and the required amount of air is combined in the mixing chamber, and the mixed air in the mixing chamber is sent to a large facility that requires control of the indoor oxygen concentration. A method for controlling the oxygen concentration in a room of a large facility, characterized by supplying the oxygen.
【請求項3】室内酸素濃度の制御を必要とする大型施設
に対して、通常空気の供給系統と、膜分離装置で酸素濃
度を調整した空気を供給する調整空気供給系統とを並列
に設け、前記二つの系統は大型施設の室内とつながる混
合室へ接続されていること、 前記調整空気供給系統には、膜分離装置から取り出した
調整空気の流路に、酸素濃度別に複数に分岐させた並列
回路を設け、その各並列路に酸素濃度別に専用の開閉弁
が接続されていること、 調整空気供給系統に必要とされる酸素濃度に応じて、対
応する並列路の開閉弁のみを開き、膜分離装置で酸素濃
度を調整した必要量の調整空気、および通常空気供給系
統から供給される必要量の通常空気をそれぞれ混合室で
合流させ、混合室において混合した空気が大型施設へ供
給されることを特徴とする、室内酸素濃度を制御可能な
大型施設。
3. An ordinary air supply system and a regulated air supply system for supplying air whose oxygen concentration has been adjusted by a membrane separation device are provided in parallel for a large facility requiring control of indoor oxygen concentration. The two systems are connected to a mixing chamber that is connected to the room of the large facility. A circuit is provided, and a dedicated on-off valve is connected to each parallel path for each oxygen concentration, and according to the oxygen concentration required for the regulated air supply system, only the corresponding on-off valve is opened, and the membrane is opened. The required amount of adjusted air whose oxygen concentration has been adjusted by the separator and the required amount of normal air supplied from the normal air supply system are respectively combined in the mixing chamber, and the mixed air in the mixing chamber is supplied to a large facility. Especially To be, capable of controlling large-scale facilities indoor oxygen concentration.
【請求項4】室内酸素濃度の制御を必要とする大型施設
に対して、通常空気の供給系統と、膜分離装置で酸素濃
度を調整した空気を供給する調整空気供給系統とを並列
に設け、前記二つの系統は大型施設の室内とつながる混
合室へ接続されていること、 前記調整空気供給系統には、膜分離装置の一方の出口か
ら取り出した調整空気の流路に、酸素濃度別に複数に分
岐させた並列回路を設け、その各並列路に酸素濃度別に
専用の開閉弁が接続されていること、 前記膜分離装置の他方の出口から取り出した調整空気の
流路は、途中の開閉弁を介して、前記通常空気の供給系
統と接続されていること、 調整空気供給系統に必要とされる酸素濃度に応じて、対
応する並列路の開閉弁のみを開き、膜分離装置で酸素濃
度を調整した必要量の調整空気、および通常空気供給系
統から供給される通常空気には前記膜分離装置の他方の
出口から取り出した調整空気を加えて必要量とした空気
をそれぞれ混合室で合流させ、混合室において混合した
空気が大型施設へ供給されることを特徴とする、室内酸
素濃度を制御可能な大型施設。
4. A large-scale facility requiring control of indoor oxygen concentration is provided with a normal air supply system and a regulated air supply system for supplying air whose oxygen concentration is adjusted by a membrane separation device in parallel, The two systems are connected to a mixing chamber that is connected to the room of the large facility.The regulated air supply system has a plurality of passages of regulated air taken out from one outlet of the membrane separation device for each oxygen concentration. A branched parallel circuit is provided, and a dedicated opening / closing valve is connected to each parallel path for each oxygen concentration.The flow path of the conditioned air taken out from the other outlet of the membrane separation device is provided with an opening / closing valve on the way. Via the normal air supply system, and according to the oxygen concentration required for the regulated air supply system, only the corresponding on-off valve of the parallel path is opened, and the oxygen concentration is adjusted by the membrane separation device. Required amount of conditioned air, To the normal air supplied from the normal air supply system, adjusted air taken out from the other outlet of the membrane separation device is added, and the required amount of air is combined in the mixing chamber, and the mixed air in the mixing chamber is large. A large facility capable of controlling indoor oxygen concentration, which is supplied to the facility.
JP2000006771A 2000-01-14 2000-01-14 Indoor oxygen concentration control method for large facilities and large facility capable of controlling indoor oxygen concentration Expired - Lifetime JP3455751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000006771A JP3455751B2 (en) 2000-01-14 2000-01-14 Indoor oxygen concentration control method for large facilities and large facility capable of controlling indoor oxygen concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000006771A JP3455751B2 (en) 2000-01-14 2000-01-14 Indoor oxygen concentration control method for large facilities and large facility capable of controlling indoor oxygen concentration

Publications (2)

Publication Number Publication Date
JP2001201105A true JP2001201105A (en) 2001-07-27
JP3455751B2 JP3455751B2 (en) 2003-10-14

Family

ID=18535247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000006771A Expired - Lifetime JP3455751B2 (en) 2000-01-14 2000-01-14 Indoor oxygen concentration control method for large facilities and large facility capable of controlling indoor oxygen concentration

Country Status (1)

Country Link
JP (1) JP3455751B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018172713A (en) * 2017-03-31 2018-11-08 Jfeスチール株式会社 Blowing method of blowing oxygen-rich air into furnace
CN111589066A (en) * 2019-02-20 2020-08-28 爱斯佩克株式会社 Low-oxygen air supply device and training device
CN113390159A (en) * 2021-05-20 2021-09-14 福建省绿润康成环境科技股份有限公司 Oxygen supply method for gymnasium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018172713A (en) * 2017-03-31 2018-11-08 Jfeスチール株式会社 Blowing method of blowing oxygen-rich air into furnace
CN111589066A (en) * 2019-02-20 2020-08-28 爱斯佩克株式会社 Low-oxygen air supply device and training device
JP2020131121A (en) * 2019-02-20 2020-08-31 エスペック株式会社 Low oxygen air supply device and training device
JP7156965B2 (en) 2019-02-20 2022-10-19 エスペック株式会社 Hypoxic air supply device and training device
CN113390159A (en) * 2021-05-20 2021-09-14 福建省绿润康成环境科技股份有限公司 Oxygen supply method for gymnasium

Also Published As

Publication number Publication date
JP3455751B2 (en) 2003-10-14

Similar Documents

Publication Publication Date Title
US7445660B2 (en) Method for operating gas generators in tandem
US7722700B2 (en) Apparatus and method of providing concentrated product gas
WO2005018789A3 (en) Oxygen-concentrating device
US20140326021A1 (en) Inerting method and system for reducing oxygen
CN101542803B (en) Fuel cell system
US6669758B1 (en) Variable inlet air restriction for composition control of product gas
CN101991921A (en) Emergency oxygen supply device
JPH0536083B2 (en)
JP2001201105A (en) Method for controlling indoor oxygen concentration of large-sized facility, and large-sized facility capable of controlling indoor oxygen concentration
JP7493004B2 (en) Training Equipment
CN205442636U (en) Air passage control system
JP2000027472A (en) Method and device for creating workout environment, and structure therefor
CN106598110B (en) Novel spraying machine people's positive-pressure explosion-proof system
WO2004027906A3 (en) System and method for process gas stream delivery and regulation using open loop and closed loop control
EP2135011B1 (en) Air conditioning equipment for return air
JP3226776U (en) Low oxygen environment control system
JPS6344099Y2 (en)
JPH0562372B2 (en)
JPS60113079A (en) Negative pressure chamber control equipment
JPS60231403A (en) Feeder of oxygen-enriched air
WO2004027907A3 (en) System and method for process gas stream delivery and regulation in a fuel cell system using down spool control
JP6996237B2 (en) Exhaust gas piping structure of a vehicle equipped with a fuel cell stack
KR20200112072A (en) Air conditioning system using fuel cell system
JPS60181211A (en) Method for changing over control of furnace top pressure
JPH0331882B2 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3455751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term