JP2001200400A - Very small groove etching method, and manufacturing method of fluid dynamic pressure bearing - Google Patents

Very small groove etching method, and manufacturing method of fluid dynamic pressure bearing

Info

Publication number
JP2001200400A
JP2001200400A JP2000009184A JP2000009184A JP2001200400A JP 2001200400 A JP2001200400 A JP 2001200400A JP 2000009184 A JP2000009184 A JP 2000009184A JP 2000009184 A JP2000009184 A JP 2000009184A JP 2001200400 A JP2001200400 A JP 2001200400A
Authority
JP
Japan
Prior art keywords
processing
film
electrode
dynamic pressure
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000009184A
Other languages
Japanese (ja)
Other versions
JP4369583B2 (en
Inventor
Tadao Iwaki
岩城  忠雄
Kazuaki Oguchi
和明 小口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2000009184A priority Critical patent/JP4369583B2/en
Publication of JP2001200400A publication Critical patent/JP2001200400A/en
Application granted granted Critical
Publication of JP4369583B2 publication Critical patent/JP4369583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/026Sliding-contact bearings for exclusively rotary movement for radial load only with helical grooves in the bearing surface to generate hydrodynamic pressure, e.g. herringbone grooves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/107Grooves for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/42Groove sizes

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently form a very small groove with high accuracy by the electrolytic etching. SOLUTION: A resist layer 2 is formed on a surface 1A of a work 1 with the very small groove to be formed thereon, the patterning corresponding to the required very small groove is performed, an electrolyte 5 is interposed between the work 1 and a machining electrode 3, the pulse voltage is applied from a pulse voltage generator 6, and the work 1 is electrolytically etched using this resist layer 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、微小溝加工方法及
び流体動圧軸受の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for machining micro grooves and a method for manufacturing a fluid dynamic bearing.

【0002】[0002]

【従来の技術】例えば、流体動圧軸受の如く、円柱状の
部材の円周軸受面や円板状の部材の平面軸受部に数百〜
数十ミクロンオーダーの微小な溝を形成することがしば
しば要求される。
2. Description of the Related Art For example, several hundreds to several hundreds are provided on a circumferential bearing surface of a columnar member or a flat bearing portion of a disk-like member such as a fluid dynamic pressure bearing.
It is often required to form minute grooves on the order of tens of microns.

【0003】このような微小溝の一般的形成方法とし
て、従来から、金属の塑性変形を利用した転造、化学エ
ッチング、電解エッチングなどの方法が用いられて来
た。
[0003] As a general method of forming such microgrooves, methods such as rolling, chemical etching, and electrolytic etching utilizing plastic deformation of metal have been used.

【0004】この内、特に電解エッチングを用いた微小
溝の加工方法は、高速にて溝形成が可能であること、加
工面が滑らかで高品質の加工が可能であること、エッチ
ング液が人体に安全な中性塩を用いることができ安全性
に優れていることなどから近年特に注目を集めてきてい
る。
[0004] Of these methods, particularly, a method for processing micro grooves using electrolytic etching requires that grooves can be formed at a high speed, that the processing surface is smooth and high quality processing can be performed, and that the etching solution is applied to the human body. In recent years, it has attracted particular attention because it can use a safe neutral salt and is excellent in safety.

【0005】例えば、特開平9−192932号公報に
は、所定の微小溝形状が電解加工される被加工物と、当
該被加工物に加工される微小溝形状に対応した微小溝形
状の電極露出部を有する電極工具と、を互いに近接して
対向配置するとともに、これら被加工物及び電極工具を
電極加工用電源の負極及び正極にそれぞれ接続し、電極
工具と被加工物との間に所定の電解液を流動させながら
通電することによって上記被加工物を前記微小溝形状に
対応して溶出させ微小溝の電解加工を行う場合に、上記
電極工具及び被加工物を所定の加工間隙をもって相対的
に不動状態に固定するとともに、前記電極加工用電源か
ら所定の時間間隔でパルス状電圧を出力し、当該電解加
工用電源から与えられた総電気量を制御することによっ
て、被加工物における微小溝形状の電解加工量を制御
し、これによって、電解微小溝加工を行う方法が開示さ
れている。
For example, Japanese Unexamined Patent Application Publication No. 9-192933 discloses a process in which a predetermined micro-groove shape is electrolytically processed and an electrode exposure of a micro-groove shape corresponding to the micro-groove shape to be processed in the workpiece. And an electrode tool having a portion are disposed close to each other and opposed to each other, and the workpiece and the electrode tool are respectively connected to the negative electrode and the positive electrode of an electrode processing power source, and a predetermined distance is provided between the electrode tool and the workpiece. In the case where the workpiece is eluted in accordance with the shape of the microgrooves and the electrolytic processing of the microgrooves is performed by energizing while flowing the electrolytic solution, the electrode tool and the workpiece are relatively separated with a predetermined processing gap. And a pulsed voltage is output from the power source for electrode processing at predetermined time intervals to control the total amount of electricity supplied from the power source for electrolytic processing. That controls the electrolytic processing amount of the fine groove shape, thereby, a method of performing electrolysis microgrooves machining is disclosed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
電解エッチング方法にあっては、加工する溝幅が、主に
溝パターンに対応した電極形状を有する加工電極と被加
工物との距離によって制限され、溝幅200μm以下の
動圧溝を加工する場合は上記距離を500μm以下、好
ましくは200〜300μm程度に狭めなければなら
ず、電解液の流量管理と前記距離の管理が困難となり大
量生産を行うことは困難であった。
However, in the conventional electrolytic etching method, the width of a groove to be processed is limited mainly by the distance between a processing electrode having an electrode shape corresponding to the groove pattern and a workpiece. When machining a dynamic pressure groove having a groove width of 200 μm or less, the above distance must be narrowed to 500 μm or less, preferably about 200 to 300 μm, and it becomes difficult to control the flow rate of the electrolyte and the distance, and mass production is performed. It was difficult.

【0007】すなわち、図4に示すように、加工電極1
01と被加工物102とを対向させ、加工電極101の
周囲には絶縁材103を配置し、加工間隙104に電解
液105を介在させて被加工物102に加工電極101
の形状に相応した微小溝102Aを形成しようとする場
合、加工間隙104の幅dが大きいと加工電極101の
幅W1よりも加工溝の幅W2の方が大きくなってしまう
傾向を有する。この拡りは幅dを小さくすることによっ
て抑えることが可能であるが、幅dを小さくすると加工
間隙104における電解液105の円滑な流れが確保で
きなくなって加工能率が低下したり、加工が不安定にな
ったりするため、幅dの値をある程度大きくせざるを得
ず、上述の問題を生じるのである。
That is, as shown in FIG.
01 and the workpiece 102 are opposed to each other, an insulating material 103 is disposed around the processing electrode 101, and the processing electrode 101 is
When the width d of the processing gap 104 is large, the width W2 of the processing groove tends to be larger than the width W1 of the processing electrode 101 when the minute groove 102A corresponding to the shape of FIG. This spread can be suppressed by reducing the width d. However, if the width d is reduced, a smooth flow of the electrolyte solution 105 in the processing gap 104 cannot be secured, and the processing efficiency is reduced, or the processing becomes impossible. In order to be stable, the value of the width d must be increased to some extent, which causes the above-described problem.

【0008】本発明の目的は、したがって、従来技術に
おける上述の問題点を解決することができるようにし
た、微小溝加工方法及び流体動圧軸受の製造方法を提案
することにある。
An object of the present invention is to propose a method of machining a micro groove and a method of manufacturing a fluid dynamic bearing, which can solve the above-mentioned problems in the prior art.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するた
め、本発明によれば、被加工物の表面に溝パターンを形
成するための加工方法であって、前記被加工物の表面に
皮膜を形成し固定する工程と、レーザ光によって前記皮
膜の前記溝パターンに対応する部分を除去する工程と、
前記被加工物に加工用電極を対向させ、前記被加工物と
前記加工用電極との間の加工間隙に電解液を介在させて
パルス電圧を印加し、前記被加工物の加工面をエッチン
グする工程と、前記皮膜を除去する工程とを備えて成る
加工方法が提案される。
According to the present invention, there is provided a processing method for forming a groove pattern on a surface of a workpiece, wherein a film is formed on the surface of the workpiece. Forming and fixing, and removing a portion of the coating corresponding to the groove pattern by laser light,
A processing electrode is opposed to the workpiece, a pulse voltage is applied with an electrolytic solution interposed in a processing gap between the workpiece and the processing electrode, and a processing surface of the workpiece is etched. A processing method comprising a step and a step of removing the film is proposed.

【0010】本発明によれば、また、流体動圧軸受部材
の軸受面に動圧溝を形成するための流体動圧軸受の製造
方法であって、前記軸受面に皮膜を形成し固定する工程
と、レーザ光によって前記皮膜の前記動圧溝に対応する
部分を除去する工程と、前記軸受面に加工用電極を対向
させ前記軸受面と前記加工用電極との間の加工間隙に電
解液を介在させてパルス電圧を印加し前記軸受面をエッ
チングする工程と、前記皮膜を除去する工程とを備えて
成る流体動圧軸受の製造方法が提案される。
According to the present invention, there is also provided a method of manufacturing a fluid dynamic bearing for forming a dynamic pressure groove in a bearing surface of a fluid dynamic bearing member, the method comprising forming a film on the bearing surface and fixing the film. Removing a portion of the coating corresponding to the dynamic pressure groove by laser light, and facing a machining electrode to the bearing surface, and applying an electrolytic solution to a machining gap between the bearing surface and the machining electrode. There is proposed a method of manufacturing a fluid dynamic bearing comprising a step of interposing a pulse voltage to etch the bearing surface and a step of removing the film.

【0011】上記皮膜は、昇華性色素を含有する有機皮
膜とすることもできる。
The above film may be an organic film containing a sublimable dye.

【0012】前記エッチングする工程において、前記加
工間隙において前記電解液を流動させる構成とし、これ
により加工速度を高めるようにすることもできる。
In the etching step, the electrolytic solution may be caused to flow in the processing gap, so that the processing speed can be increased.

【0013】上述した構成によれば、所定の溝に対応し
てパターニングされた皮膜によって溝を形成すべき部分
のみが電解液と接触するようにしてパルス電圧の印加を
行うので、エッチングにより寸法精度の高い溝の形成が
可能となる。このため、加工間隙幅は広くてもよく、従
って電解液を強制的に流す必要がなく装置の構成を簡単
にすることができる。
According to the above-described structure, the pulse voltage is applied such that only the portion where the groove is to be formed by the film patterned corresponding to the predetermined groove is in contact with the electrolytic solution. Can be formed. For this reason, the width of the working gap may be wide, so that it is not necessary to forcibly flow the electrolytic solution, and the configuration of the apparatus can be simplified.

【0014】[0014]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態の一例につき詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings.

【0015】図1は、本発明の方法によりステンレス鋼
材である被加工物1の表面1Aに微小溝加工を施す場合
の一実施形態を説明するための図である。
FIG. 1 is a view for explaining an embodiment in which a fine groove is formed on the surface 1A of a workpiece 1 made of stainless steel by the method of the present invention.

【0016】先ず、被加工物1の表面1Aに昇華性色素
を含有した有機バインダーを適宜の厚さにスプレー塗布
し、塗布後乾燥させることによりレジスト層2を形成す
る。しかる後、レジスト層2に所要の微小溝の形状に応
じたパターニングを施し、レジスト層2にこの微小溝に
相応した窓2Aを設ける。
First, a resist layer 2 is formed by spray-coating an organic binder containing a sublimable dye to an appropriate thickness on the surface 1A of the workpiece 1 and then drying it after application. Thereafter, patterning is performed on the resist layer 2 in accordance with the shape of the required minute groove, and a window 2A corresponding to the minute groove is provided in the resist layer 2.

【0017】しかる後、表面1Aにパターニングされた
レジスト層2を設けた被加工物1に加工用電極3を対向
させ、加工用電極3の平坦面3Aと表面1Aとが平行状
態となるようにして加工間隙4を形成する。そして、加
工間隙4にNaCl溶液の如き適宜の電解液5を介在さ
せて加工間隙4にパルス電圧発生器6からパルス電圧を
繰り返し印加し、加工間隙4に加工用パルス電流を間歇
的に流す。この場合、被加工物1が正で加工用電極3が
負となる極性でパルス電圧を印加する。
Thereafter, the processing electrode 3 is made to face the workpiece 1 provided with the patterned resist layer 2 on the surface 1A so that the flat surface 3A of the processing electrode 3 and the surface 1A are in a parallel state. Thus, a working gap 4 is formed. Then, a pulse voltage is repeatedly applied from the pulse voltage generator 6 to the machining gap 4 with an appropriate electrolytic solution 5 such as a NaCl solution interposed in the machining gap 4, and a machining pulse current is intermittently supplied to the machining gap 4. In this case, a pulse voltage is applied with a polarity such that the workpiece 1 is positive and the processing electrode 3 is negative.

【0018】この結果、加工間隙4には、被加工物1か
ら加工用電極3に向けて加工用パルス電流が電解液5中
を流れ、これによる電解作用でレジスト層2に形成され
た窓2Aによって定められる形状に従う微小溝1Bが被
加工物1の表面1Aに形成される。
As a result, a processing pulse current flows through the electrolytic solution 5 from the workpiece 1 to the processing electrode 3 in the processing gap 4, and the window 2 A formed in the resist layer 2 by the electrolytic action by this. A minute groove 1B according to the shape defined by the above is formed on the surface 1A of the workpiece 1.

【0019】このように、この方法によれば、加工用電
極3側に加工しようとする溝パターンを形成する必要が
なく、加工用電極3側には平坦面3Aのみを形成すれば
よいので、加工用電極3の形成が簡単である。また、被
加工物1に形成される微小溝1Bの形状はレジスト層2
のパターニングにより形成される窓2Aによって略定め
られるので、加工間隙4の幅が拡がったとしてもこれに
よる溝加工の寸法精度への影響は小さく、所要の寸法形
状の微小溝1Bを精度よく形成できる。したがって、加
工間隙4の幅を広くすることができるので、加工間隙4
における電解液5の流量管理が極めて容易となる。
As described above, according to this method, it is not necessary to form a groove pattern to be processed on the processing electrode 3 side, and only the flat surface 3A needs to be formed on the processing electrode 3 side. The formation of the processing electrode 3 is simple. The shape of the minute groove 1B formed in the workpiece 1 is
Is substantially defined by the window 2A formed by the patterning, so that even if the width of the processing gap 4 is widened, the influence on the dimensional accuracy of the groove processing is small, and the minute groove 1B having a required dimensional shape can be formed with high precision. . Therefore, since the width of the processing gap 4 can be increased, the processing gap 4 can be increased.
It becomes extremely easy to control the flow rate of the electrolytic solution 5 in the above.

【0020】また、加工間隙4の幅を広くすることがで
きるので、加工間隙4においてポンプ等を使用して電解
液5を強制的に流動させる場合の圧力を低減させること
ができ、所要の加工を円滑に行うことができる。
Further, since the width of the working gap 4 can be widened, the pressure required when the electrolytic solution 5 is forced to flow in the working gap 4 by using a pump or the like can be reduced. Can be performed smoothly.

【0021】図1では、表面1A及び平坦面3Aがいず
れも平面であったが、本発明の方法はこれに限定され
ず、被加工物1の表面1Aが曲面である場合にも同様に
して適用できる。この場合には、加工用電極3の平坦面
3Aを表面1Aに相応した曲面とすればよい。
In FIG. 1, the surface 1A and the flat surface 3A are both flat, but the method of the present invention is not limited to this, and the same applies to the case where the surface 1A of the workpiece 1 is a curved surface. Applicable. In this case, the flat surface 3A of the processing electrode 3 may be a curved surface corresponding to the surface 1A.

【0022】図2は、本発明を用いた流体動圧軸受の製
造方法の実施の形態の一例を説明するための工程の一部
を示す工程図である。図2の(A)を参照すると、流体
動圧軸受を製造するための被加工材である円柱状のステ
ンレス鋼材11を用意し、ステンレス鋼材11の外周面
11Aを充分に洗浄する。
FIG. 2 is a process diagram showing a part of a process for explaining an example of an embodiment of a method of manufacturing a fluid dynamic bearing using the present invention. Referring to FIG. 2A, a cylindrical stainless steel material 11 which is a work material for manufacturing a fluid dynamic bearing is prepared, and the outer peripheral surface 11A of the stainless steel material 11 is sufficiently washed.

【0023】次に、図2の(B)に示すように、ステン
レス鋼材11の外周面11A上に昇華性色素を含有した
有機バインダーを約10μmの厚さにスプレー塗布し、
塗布後これを乾燥させることによりレジスト層12を形
成する。
Next, as shown in FIG. 2B, an organic binder containing a sublimable dye is spray-coated on the outer peripheral surface 11A of the stainless steel material 11 to a thickness of about 10 μm.
After application, the resist layer 12 is dried to form a resist layer 12.

【0024】そして、図2の(C)に示すように、レジ
スト層12の形成されたステンレス鋼材11を適宜の回
転装置13により矢印X方向に回転させながら、この回
転に同期して炭酸ガスレーザ装置14からのレーザ光1
4Aをレジスト層12上で回転軸方向に沿って走査する
ことにより、動圧溝パターンに対応する部分の昇華性色
素を除去するパターニングを行う。ここで、色素の昇華
効率をよくするためにステンレス鋼材11を例えば80
〜100°C程度に加熱した状態でレジスト層12のパ
ターニングを行うのが好ましい。
Then, as shown in FIG. 2 (C), the stainless steel material 11 on which the resist layer 12 is formed is rotated in the direction of arrow X by an appropriate rotating device 13, and the carbon dioxide laser device is synchronized with this rotation. Laser light 1 from 14
By scanning the resist layer 12 on the resist layer 12 along the direction of the rotation axis, patterning for removing the sublimable dye at a portion corresponding to the dynamic pressure groove pattern is performed. Here, in order to improve the dye sublimation efficiency, the stainless steel material 11 is
It is preferable that the resist layer 12 is patterned while being heated to about 100 ° C.

【0025】この結果、レジスト層12のうち所要の動
圧溝に相応する部分が除去され、レジスト層12に動圧
溝パターン15が形成された状態となる(図1の
(D))。
As a result, a portion of the resist layer 12 corresponding to a required dynamic pressure groove is removed, and a state in which the dynamic pressure groove pattern 15 is formed in the resist layer 12 (FIG. 1D).

【0026】このパターニング工程の終了後、図2の
(D)に示した状態のステンレス鋼材11に加工用電極
を対向させ、ステンレス鋼材11とこの加工用電極との
間に形成される加工間隙にNaClの如き電解液を介在
させてパルス電圧を印加し、ステンレス鋼材11の外周
面11Aのエッチングを動圧溝パターン15を介して行
い、これにより動圧溝パターン15に相応した形状の動
圧溝をステンレス鋼材11の外周面11Aに形成するの
である。
After completion of this patterning step, the working electrode is made to face the stainless steel material 11 in the state shown in FIG. 2D, and the working gap is formed between the stainless steel material 11 and this working electrode. A pulse voltage is applied with an electrolytic solution such as NaCl interposed, and the outer peripheral surface 11A of the stainless steel material 11 is etched through the dynamic pressure groove pattern 15, whereby the dynamic pressure groove having a shape corresponding to the dynamic pressure groove pattern 15 is formed. Is formed on the outer peripheral surface 11 </ b> A of the stainless steel material 11.

【0027】図3は、図2に示した一連の工程によって
得られた同図(D)に示す状態のステンレス鋼材11を
電解エッチングするための電解加工装置が示されてい
る。
FIG. 3 shows an electrolytic processing apparatus for electrolytically etching the stainless steel material 11 in the state shown in FIG. 2D obtained by the series of steps shown in FIG.

【0028】電解加工装置20は、電解液21が満たさ
れている加工タンク22を有しており、加工タンク22
内に設けられている円筒状の加工用電極23内に被加工
物1がセットされている。加工用電極23は内周面23
Aが円筒平滑面となっており、ステンレス鋼材11の外
周面11Aに形成されたレジスト層12の外周面12A
は内周面23Aに囲まれ、且つステンレス鋼材11の外
周面11Aと内周面23Aとの間に形成される加工間隙
Gの間隙幅Wが全周に亘って均一となるよう、図示しな
い固定用治具を用いてステンレス鋼材11が加工用電極
23内に同軸配置されている。
The electrolytic processing apparatus 20 has a processing tank 22 filled with an electrolytic solution 21.
The workpiece 1 is set in a cylindrical machining electrode 23 provided therein. The machining electrode 23 is an inner peripheral surface 23
A is a cylindrical smooth surface, and the outer peripheral surface 12A of the resist layer 12 formed on the outer peripheral surface 11A of the stainless steel material 11
Is fixed not shown so that the gap width W of the machining gap G formed between the outer peripheral surface 11A of the stainless steel material 11 and the inner peripheral surface 23A is surrounded by the inner peripheral surface 23A and is uniform over the entire circumference. The stainless steel material 11 is coaxially arranged in the processing electrode 23 by using a jig.

【0029】ステンレス鋼材11及び加工用電極23は
いずれも電解液21内に浸漬されているので、加工間隙
G内も電解液21によって満たされている。
Since the stainless steel material 11 and the working electrode 23 are both immersed in the electrolyte 21, the working gap G is also filled with the electrolyte 21.

【0030】加工間隙Gに加工のために必要な加工用パ
ルス電圧を与えるため、直流電源24がスイッチ25を
介して図3の如く電気的に接続されている。すなわち、
直流電源24の負極は加工用電極23に直接接続され、
直流電源24の正極はステンレス鋼材11にスイッチ2
5を介して接続されている。
A DC power supply 24 is electrically connected via a switch 25 as shown in FIG. 3 to apply a processing pulse voltage required for processing to the processing gap G. That is,
The negative electrode of the DC power supply 24 is directly connected to the processing electrode 23,
The positive electrode of the DC power supply 24 has a switch 2 connected to the stainless steel material 11.
5 are connected.

【0031】スイッチ25を周期的にオン、オフ動作さ
せるため、オン/オフコントローラ26が設けられてお
り、オン/オフコントローラ26からのオン/オフ制御
信号Sに応答してスイッチ25がオン/オフを繰り返
し、これにより加工間隙Gに加工用パルス電圧が印加さ
れる構成である。ここで、スイッチ25は、例えばトラ
ンジスタ等の如き半導体スイッチング素子とすることが
できる。
An on / off controller 26 is provided for periodically turning on and off the switch 25, and the switch 25 is turned on / off in response to an on / off control signal S from the on / off controller 26. Is repeated, whereby the processing pulse voltage is applied to the processing gap G. Here, the switch 25 can be a semiconductor switching element such as a transistor.

【0032】符号27で示されるのは、加工タンク22
内の電解液21を浄化処理し、浄化処理された電解液を
再び加工タンク22内に戻すための電解液再処理装置で
ある。電解液再処理装置27は、ドレインパイプ27A
を介して加工タンク22内の電解液21を取り込み、再
処理された電解液を供給パイプ27Bを介して加工タン
ク22内に戻す公知の構成の電解液のための再生処理用
装置であるから、その詳細について説明するのを省略す
る。
Reference numeral 27 denotes the processing tank 22.
This is an electrolytic solution reprocessing device for purifying the electrolytic solution 21 therein and returning the purified electrolytic solution to the inside of the processing tank 22 again. The electrolyte reprocessing device 27 includes a drain pipe 27A.
It is a device for regenerating the electrolytic solution of a known configuration, which takes in the electrolytic solution 21 in the processing tank 22 via the supply pipe and returns the reprocessed electrolytic solution into the processing tank 22 via the supply pipe 27B. A detailed description thereof will be omitted.

【0033】次に、電解加工装置20による具体的加工
例について説明する。本実地の形態では、電解液21と
してNaCl水溶液が用いられており、加工用パルス電
圧の印加により加工間隙Gにパルス電流を所定の時間だ
け間歇的に流してステンレス鋼材11に溝形成を行っ
た。
Next, a specific example of processing by the electrolytic processing apparatus 20 will be described. In the present embodiment, a NaCl aqueous solution is used as the electrolytic solution 21, and a groove is formed in the stainless steel material 11 by applying a pulse current intermittently for a predetermined time to the processing gap G by applying a processing pulse voltage. .

【0034】このときの加工用パルス電圧の電圧値と印
加時間は、間隙幅W、電解液21の濃度および温度、加
工溝の深さと加工面積とに依存して決定される。
At this time, the voltage value and the application time of the processing pulse voltage are determined depending on the gap width W, the concentration and temperature of the electrolytic solution 21, the depth of the processing groove, and the processing area.

【0035】例えば、30°Cで35%のNaCl水溶
液を電解液21として用い、間隙幅Wを500μmとし
たとき、2V×1Aでデューティー1/5のパルス電圧
を印加したところ、6μm深さの動圧溝が約3秒で形成
できた。
For example, when a 35% NaCl aqueous solution is used as the electrolytic solution 21 at 30 ° C. and the gap width W is set to 500 μm, a pulse voltage of 2V × 1 A and a duty of 5 is applied. A dynamic pressure groove was formed in about 3 seconds.

【0036】このようにしてステンレス鋼材11に動圧
溝が形成されたならば、ステンレス鋼材11を加工タン
ク22から取り出して、ステンレス鋼材11の外周面に
形成されているレジスト層12を有機溶剤で洗浄し、所
定の動圧溝が形成された流体動圧軸受を得ることができ
る。
After the dynamic pressure grooves are formed in the stainless steel material 11 in this manner, the stainless steel material 11 is taken out of the processing tank 22 and the resist layer 12 formed on the outer peripheral surface of the stainless steel material 11 is washed with an organic solvent. The fluid dynamic pressure bearing in which the predetermined dynamic pressure grooves are formed by washing can be obtained.

【0037】以上、図2及び図3を参照してアキシャル
軸受についての製造方法の一例を説明したが、スラスト
軸受についてもこれと同様の方法で製造することができ
る。すなわち、図1に示した方法を用いることにより円
板状の部材の平面に微小な動圧溝を同様にして形成する
ことができる。そして、いずれの場合においても次のよ
うな利点を得ることができる。
As described above, an example of a method for manufacturing an axial bearing has been described with reference to FIGS. 2 and 3, but a thrust bearing can also be manufactured by the same method. That is, by using the method shown in FIG. 1, minute dynamic pressure grooves can be similarly formed on the plane of the disk-shaped member. In any case, the following advantages can be obtained.

【0038】ステンレス鋼材11の外周面11Aには、
レジスト層12の窓として形成される動圧溝パターン1
5に従って動圧溝が電解エッチングで高寸法精度で形成
される。ここで、加工用電極23の内周面23Aには加
工しようとする動圧溝のパターンを形成する必要がな
く、円滑面のままでよいので、加工用電極23の形成が
極めて簡単で済む。
On the outer peripheral surface 11A of the stainless steel material 11,
Dynamic pressure groove pattern 1 formed as a window in resist layer 12
According to 5, dynamic pressure grooves are formed with high dimensional accuracy by electrolytic etching. Here, it is not necessary to form the pattern of the dynamic pressure groove to be processed on the inner peripheral surface 23A of the processing electrode 23, and the smooth surface may be left, so that the formation of the processing electrode 23 is extremely simple.

【0039】このように、ステンレス鋼材11に形成さ
れる動圧溝の形状はレジスト層12のパターニングによ
って略定められるので、加工間隙Gの間隙幅Wの値はあ
る程度大きくても動圧溝の形成における寸法精度に影響
を与えることがない。したがって、間隙幅Wを電解液2
1の流量を管理しやすい値にすることが可能となる。特
に加工間隙G内に電解液21の流れを強制的に作らなく
てもよいので、その分コストの低減を図ることができ
る。勿論、図3には示していないが、加工間隙Gに電解
液21を強制的に流すための噴流装置を設け、これによ
り加工速度をより一層向上させるようにした構成を採用
してもよい。
As described above, since the shape of the dynamic pressure groove formed in the stainless steel material 11 is substantially determined by the patterning of the resist layer 12, the dynamic pressure groove can be formed even if the value of the gap width W of the working gap G is relatively large. Does not affect the dimensional accuracy at Therefore, the gap width W is
It is possible to set the flow rate of 1 to a value that is easy to manage. In particular, since the flow of the electrolytic solution 21 does not have to be forcibly generated in the processing gap G, the cost can be reduced accordingly. Of course, although not shown in FIG. 3, a configuration may be adopted in which a jet device for forcibly flowing the electrolytic solution 21 into the processing gap G is provided, thereby further improving the processing speed.

【0040】[0040]

【発明の効果】本発明によれば、上述の如く、加工用電
極側に溝パターンを形成する必要がないので、加工用電
極の形成が簡単となる。また、被加工材表面に形成した
皮膜を所要の加工溝に相応した寸法形状にパターニング
した上で電解エッチングを行うようにしたので、加工さ
れる溝の寸法形状が、加工間隙の幅によって影響を受け
にくく、動圧溝の如き微小な溝加工を高寸法精度にて実
現することができる。このため、被加工材と加工用電極
との間の距離は比較的大きくすることが可能となり、加
工間隙の電解液を強制的に流動させなくても済み、コス
トの低減に役立つほか、電解液の流量管理が容易となる
等の種々の優れた効果を奏する。
According to the present invention, as described above, since it is not necessary to form a groove pattern on the processing electrode side, the formation of the processing electrode is simplified. In addition, since the film formed on the surface of the workpiece is subjected to electrolytic etching after being patterned into a size and shape corresponding to the required processing groove, the size and shape of the groove to be processed is affected by the width of the processing gap. It is hard to receive, and it is possible to realize fine groove processing such as a dynamic pressure groove with high dimensional accuracy. For this reason, the distance between the workpiece and the processing electrode can be made relatively large, so that the electrolytic solution in the processing gap does not need to be forced to flow, which contributes to cost reduction and also helps to reduce the cost. And various other excellent effects such as easy flow control.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法により被加工物の表面に微小溝加
工を施す場合の一実施形態を説明するための説明図。
FIG. 1 is an explanatory diagram for explaining an embodiment in a case where microgroove processing is performed on the surface of a workpiece by the method of the present invention.

【図2】本発明による流体動圧軸受の製造方法の実施の
形態の一例を説明するための一部工程図。
FIG. 2 is a partial process diagram for explaining an example of an embodiment of a method of manufacturing a fluid dynamic bearing according to the present invention.

【図3】図2に示した工程によって得られた軸部材を電
解エッチングするための電解加工装置の一例を一部断面
して示す概略構成図。
FIG. 3 is a schematic configuration diagram showing a partial cross section of an example of an electrolytic processing apparatus for electrolytic etching a shaft member obtained by the process shown in FIG. 2;

【図4】従来の電解エッチング方法を説明するための説
明図。
FIG. 4 is an explanatory diagram for explaining a conventional electrolytic etching method.

【符号の説明】[Explanation of symbols]

1 被加工物 1A 表面 1B 微小溝 2 レジスト層 2A 窓 3 加工用電極 3A 平坦面 4 加工間隙 5 電解液 6 パルス電圧発生器 11 ステンレス鋼材 11A 外周面 12 レジスト層 14 炭酸ガスレーザ装置 14A レーザ光 20 電解加工装置 21 電解液 22 加工タンク 23 加工用電極 23A 内周面 24 直流電源 25 スイッチ 26 オン/オフコントローラ 27 電解液再処理装置 G 加工間隙 DESCRIPTION OF SYMBOLS 1 Workpiece 1A Surface 1B Micro groove 2 Resist layer 2A Window 3 Processing electrode 3A Flat surface 4 Processing gap 5 Electrolytic solution 6 Pulse voltage generator 11 Stainless steel 11A Outer peripheral surface 12 Resist layer 14 Carbon dioxide gas laser device 14A Laser beam 20 Electrolysis Processing device 21 Electrolyte solution 22 Processing tank 23 Processing electrode 23A Inner peripheral surface 24 DC power supply 25 Switch 26 On / off controller 27 Electrolyte solution reprocessing device G Processing gap

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 被加工物の表面に溝パターンを形成する
ための加工方法であって、 前記被加工物の表面に皮膜を形成し固定する工程と、 レーザ光によって前記皮膜の前記溝パターンに対応する
部分を除去する工程と、 前記被加工物に加工用電極を対向させ、前記被加工物と
前記加工用電極との間の加工間隙に電解液を介在させて
パルス電圧を印加し、前記被加工物の加工面をエッチン
グする工程と、 前記皮膜を除去する工程とを備えて成ることを特徴とす
る微小溝加工方法。
1. A processing method for forming a groove pattern on a surface of a work, comprising: forming a film on the surface of the work and fixing the film; Removing the corresponding part, facing the processing electrode to the workpiece, applying a pulse voltage with an electrolytic solution interposed in a processing gap between the workpiece and the processing electrode, A microgroove processing method, comprising: a step of etching a processed surface of a workpiece; and a step of removing the film.
【請求項2】 前記皮膜が昇華性色素を含有する有機皮
膜である請求項1記載の微小溝加工方法。
2. The method according to claim 1, wherein the film is an organic film containing a sublimable dye.
【請求項3】 流体動圧軸受部材の軸受面に動圧溝を形
成するための流体動圧軸受の製造方法であって、 前記軸受面に皮膜を形成し固定する工程と、 レーザ光によって前記皮膜の前記動圧溝に対応する部分
を除去する工程と、 前記軸受面に加工用電極を対向させ前記軸受面と前記加
工用電極との間の加工間隙に電解液を介在させてパルス
電圧を印加し前記軸受面をエッチングする工程と、 前記皮膜を除去する工程とを備えて成ることを特徴とす
る流体動圧軸受の製造方法。
3. A method of manufacturing a fluid dynamic pressure bearing for forming a dynamic pressure groove on a bearing surface of a fluid dynamic pressure bearing member, comprising: forming a film on the bearing surface and fixing the film; Removing a portion of the film corresponding to the dynamic pressure groove, and a pulse voltage by interposing an electrolytic solution in a machining gap between the bearing surface and the machining electrode with the machining electrode facing the bearing surface. A method for manufacturing a fluid dynamic bearing, comprising: a step of applying and etching the bearing surface; and a step of removing the film.
【請求項4】 前記皮膜が昇華性色素を含有する有機皮
膜である請求項3記載の流体動圧軸受の製造方法。
4. The method according to claim 3, wherein the coating is an organic coating containing a sublimable dye.
【請求項5】 前記除去する工程において前記流体動圧
軸受部材を加熱した状態で前記皮膜のパターニングを行
うようにした請求項3記載の流体動圧軸受の製造方法。
5. The method of manufacturing a fluid dynamic bearing according to claim 3, wherein in the removing step, the film is patterned while the fluid dynamic bearing member is heated.
【請求項6】 前記加熱のための温度は80°C〜10
0°Cの範囲内である請求項5記載の流体動圧軸受の製
造方法。
6. The temperature for heating is 80 ° C. to 10 ° C.
The method for manufacturing a fluid dynamic bearing according to claim 5, wherein the temperature is within a range of 0 ° C.
JP2000009184A 2000-01-18 2000-01-18 Micro-groove machining method and fluid dynamic pressure bearing manufacturing method Expired - Fee Related JP4369583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000009184A JP4369583B2 (en) 2000-01-18 2000-01-18 Micro-groove machining method and fluid dynamic pressure bearing manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000009184A JP4369583B2 (en) 2000-01-18 2000-01-18 Micro-groove machining method and fluid dynamic pressure bearing manufacturing method

Publications (2)

Publication Number Publication Date
JP2001200400A true JP2001200400A (en) 2001-07-24
JP4369583B2 JP4369583B2 (en) 2009-11-25

Family

ID=18537363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000009184A Expired - Fee Related JP4369583B2 (en) 2000-01-18 2000-01-18 Micro-groove machining method and fluid dynamic pressure bearing manufacturing method

Country Status (1)

Country Link
JP (1) JP4369583B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097543A (en) * 2001-09-25 2003-04-03 Koyo Seiko Co Ltd Dynamic pressure bearing and its manufacturing method
JP2006118608A (en) * 2004-10-21 2006-05-11 Ntn Corp Method of forming dynamic pressure generation part
JP2007040536A (en) * 2006-10-16 2007-02-15 Jtekt Corp Dynamic pressure bearing and its manufacturing method
KR101138755B1 (en) * 2009-09-30 2012-04-24 서울대학교산학협력단 Metal Manufacture Method and Apparatus Using Laser Masking and Electrochemical Etching
US8186882B2 (en) 2006-06-30 2012-05-29 Renishaw Plc Gas bearing and fabrication method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107470726A (en) * 2017-08-21 2017-12-15 广东工业大学 A kind of electrolytic machining device of the profound and subtle groove of surface of workpiece

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097543A (en) * 2001-09-25 2003-04-03 Koyo Seiko Co Ltd Dynamic pressure bearing and its manufacturing method
JP2006118608A (en) * 2004-10-21 2006-05-11 Ntn Corp Method of forming dynamic pressure generation part
US8186882B2 (en) 2006-06-30 2012-05-29 Renishaw Plc Gas bearing and fabrication method
US8511898B2 (en) 2006-06-30 2013-08-20 Renishaw Plc Gas bearing and fabrication method
JP2007040536A (en) * 2006-10-16 2007-02-15 Jtekt Corp Dynamic pressure bearing and its manufacturing method
KR101138755B1 (en) * 2009-09-30 2012-04-24 서울대학교산학협력단 Metal Manufacture Method and Apparatus Using Laser Masking and Electrochemical Etching

Also Published As

Publication number Publication date
JP4369583B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
Kawanaka et al. Mirror-like finishing by electrolyte jet machining
JP4744653B2 (en) Electrochemical processing method and apparatus for workpiece
US6638414B2 (en) Electrode design for electrochemical machining of grooves
Kunieda et al. Electrochemical micromachining using flat electrolyte jet
Chen et al. Electrochemical micromachining of micro-dimple arrays on the surface of Ti-6Al-4V with NaNO 3 electrolyte
JP4369583B2 (en) Micro-groove machining method and fluid dynamic pressure bearing manufacturing method
EP0563744B1 (en) Method of electrochemical fine processing
JP2003097543A (en) Dynamic pressure bearing and its manufacturing method
Skoczypiec Electrochemical methods of micropart’s manufacturing
US20040094515A1 (en) Wire electric-discharge machining method and device
Chun et al. Comparison between wire mesh and plate electrodes during wide-pattern machining on invar fine sheet using through-mask electrochemical micromachining
Vinod Kumaar et al. A study on the effect of oxalic acid electrolyte on stainless steel (316L) through electrochemical micro-machining
JP3829300B2 (en) Dynamic pressure groove machining method
Datta Electrochemical micromachining
JP4245748B2 (en) Method and apparatus for forming hydrodynamic groove of hydrodynamic bearing
Zhou et al. Fabrication of microstructures on GaAs with pulsed electrochemical wet stamping
JP3750268B2 (en) Manufacturing method of tool electrode for electric discharge machining
JPH0593300A (en) Electrolytic etching method
KR20020027072A (en) Fabrication Of A Cylindrical Micro Probe by Electrochemical Machining Process
JP2007040536A (en) Dynamic pressure bearing and its manufacturing method
JP2879124B2 (en) Finishing method by electrolytic processing
Datta Microfabrication by through-mask electrochemical micromachining
KR20020060663A (en) Groove processing method of fluid herringbone grooved journal bearing by using a laser
JP4568884B2 (en) Electrochemical etching with the reaction liquid flowing on the machined surface
JP3191700B2 (en) Wet treatment method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090828

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091104

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees