JP2001199760A - Ceramic, method of producing the same and baking unit therefor - Google Patents

Ceramic, method of producing the same and baking unit therefor

Info

Publication number
JP2001199760A
JP2001199760A JP2000002659A JP2000002659A JP2001199760A JP 2001199760 A JP2001199760 A JP 2001199760A JP 2000002659 A JP2000002659 A JP 2000002659A JP 2000002659 A JP2000002659 A JP 2000002659A JP 2001199760 A JP2001199760 A JP 2001199760A
Authority
JP
Japan
Prior art keywords
fired
firing
chamber
microwaves
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000002659A
Other languages
Japanese (ja)
Other versions
JP3404345B2 (en
Inventor
Sadaji Takayama
定次 高山
Masatoshi Mizuno
正敏 水野
Seizou Ohata
成造 尾畑
Tadashi Shimada
忠 島田
Motoyasu Sato
元泰 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATL INST FOR FUSION SCIENCE
Gifu Prefecture
Original Assignee
NATL INST FOR FUSION SCIENCE
Gifu Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATL INST FOR FUSION SCIENCE, Gifu Prefecture filed Critical NATL INST FOR FUSION SCIENCE
Priority to JP2000002659A priority Critical patent/JP3404345B2/en
Publication of JP2001199760A publication Critical patent/JP2001199760A/en
Application granted granted Critical
Publication of JP3404345B2 publication Critical patent/JP3404345B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide ceramics capable of being produced in such a state that the time required for being baked is decreased, to provide a method of producing the same, and to provide a baking unit therefor. SOLUTION: This baking unit for producing ceramics is equipped with a chamber 11 of which the inner surface is made of a material capable of reflecting the microwaves, wherein a baking section 15 which is partitioned with heat-insulating walls 14 allowing the microwaves to transmit is installed in the chamber 11. And the ceramic article is obtained by irradiating a material to be baked 16 arranged in the baking section 15 with the microwaves generated from a microwave oscillator 12 and baking. The material to be baked 16 comprises a molded material which is obtained by molding a ceramic material into a prescribed shape, or a product which is obtained by baking the molded material but not covering it with a glaze, or a product which is obtained by covering the molded or unglazed material with the glaze.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、陶磁器、その製
造方法及び製造装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic, a method of manufacturing the same, and a manufacturing apparatus.

【0002】[0002]

【従来の技術】従来、陶磁器などの焼成体を製造する場
合には、電気炉やガス炉等の焼成炉の中に被焼成体を配
置して炉内を加熱することによる被焼成体の焼成が行わ
れている。この場合、被焼成体を外部から加熱すること
になるので、被焼成体の表面と内部とで温度差が生じや
すく、熱歪み等の弊害を発生するおそれがある。このた
め、被焼成体の表面から内部への熱伝導によって熱平衡
を保てるよう、徐々に炉内の温度を上昇させることが通
常行われている。しかし、そのために焼成に要する時間
が長くなるという問題があった。
2. Description of the Related Art Conventionally, when a fired body such as a ceramic is manufactured, the fired body is placed in a firing furnace such as an electric furnace or a gas furnace and the inside of the furnace is heated to fire the fired body. Has been done. In this case, since the object to be fired is heated from the outside, a temperature difference is likely to occur between the surface and the inside of the object to be fired, which may cause adverse effects such as thermal distortion. For this reason, it is common practice to gradually raise the temperature in the furnace so as to maintain thermal equilibrium by heat conduction from the surface of the object to be fired to the inside. However, there is a problem in that the time required for firing becomes long.

【0003】そこで、このような問題点を解決する方法
として、マイクロ波を使って被焼成体を焼成する焼成体
の製造方法が提案されている。(特開昭60−2213
67号公報、特開平3−257072号公報、特開平3
−267304号公報、特開平4−92870号公報、
特開平9−183669号公報)
Therefore, as a method for solving such a problem, there has been proposed a method for manufacturing a fired body in which a fired body is fired using microwaves. (Japanese Patent Laid-Open No. 60-2213)
No. 67, Japanese Unexamined Patent Publication No. 3-257070, Japanese Unexamined Patent Publication No.
-267304, JP-A-4-92870,
JP-A-9-183669)

【0004】[0004]

【発明が解決しようとする課題】ところが、上記の各公
報の焼成体は、いずれもファインセラミック材料を原料
とするものであり、粘土、長石、珪石等を含んだ陶磁器
材料を原料とする焼成体については開示されていない。
However, the fired bodies disclosed in the above publications each use a fine ceramic material as a raw material, and a fired body obtained from a ceramic material containing clay, feldspar, silica stone and the like. Is not disclosed.

【0005】これは、陶磁器材料を原料とする焼成体の
場合には、焼成温度付近で大量の液相を生じてマイクロ
波の吸収が急激に増大する結果、焼成体に熱暴走が起こ
ると考えられているためである。従って、陶磁器材料を
原料とする焼成体、即ち陶磁器の製造にマイクロ波によ
る焼成を適用するのは困難であり、炉内を徐々に加熱し
て焼成する方法が最善であるとの考えが大勢を占めてお
り、その適用について充分な検討がなされていないのが
現状である。
[0005] This is thought to be because, in the case of a fired body made of a ceramic material, a large amount of liquid phase is generated near the firing temperature, and the absorption of microwaves rapidly increases, resulting in thermal runaway of the fired body. It is because it is. Therefore, it is difficult to apply microwave firing to the manufacture of a fired body made of ceramic material, that is, ceramic, and it is generally believed that the method of firing the furnace by gradually heating the furnace is the best. At present, its application has not been sufficiently studied.

【0006】この発明は、上記のような従来技術に存在
する問題点に着目してなされたものである。その目的と
するところは、焼成に要する時間の短縮を図ることがで
きる陶磁器、その製造方法及び製造装置を提供すること
にある。
The present invention has been made by paying attention to the problems existing in the prior art as described above. It is an object of the present invention to provide a porcelain which can reduce the time required for firing, a method for manufacturing the same, and a manufacturing apparatus therefor.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1に記載の発明の陶磁器は、陶磁器材料を
原料とし、所定形状に成形された成形体若しくは成形体
を素焼きしたもの又はこれらに施釉をしたものよりなる
被焼成体をマイクロ波で焼成してなることを要旨とす
る。
In order to achieve the above object, the ceramic according to the first aspect of the present invention comprises a ceramic material as a raw material, and a molded article or a green body molded into a predetermined shape. Alternatively, the gist is that the object to be fired, which is formed by glazing them, is fired by microwaves.

【0008】請求項2に記載の発明の陶磁器の製造方法
は、陶磁器材料を所定形状の成形体に成形し、その成形
体若しくは成形体を素焼きしたもの又はこれらに施釉を
したものよりなる被焼成体にマイクロ波を照射して焼成
することを要旨とする。
According to a second aspect of the present invention, there is provided a method for manufacturing a porcelain, wherein the porcelain material is formed into a molded body having a predetermined shape, and the molded body or the molded body is baked or glazed. The gist is that the body is irradiated with microwaves and fired.

【0009】請求項3に記載の発明の陶磁器の製造方法
は、請求項2に記載の発明において、焼成の過程で、被
焼成体に10〜85%の液相が生じることを要旨とす
る。請求項4に記載の発明の陶磁器の製造方法は、請求
項2又は請求項3に記載の発明において、内面がマイク
ロ波を反射可能なチャンバの内部に、マイクロ波の透過
を許容する断熱隔壁によって区画された焼成室を設け、
その焼成室内に配設される陶磁器材料よりなる被焼成体
に対してマイクロ波を照射することを要旨とする。
A third aspect of the present invention is directed to the method of manufacturing a porcelain according to the second aspect, wherein a liquid phase of 10 to 85% is generated in the object to be fired in the course of firing. According to a fourth aspect of the present invention, there is provided the ceramic manufacturing method according to the second or third aspect, wherein a heat insulating partition which allows transmission of microwaves is provided inside a chamber whose inner surface is capable of reflecting microwaves. Set up a divided firing chamber,
The gist is to irradiate the object to be fired made of a ceramic material disposed in the firing chamber with microwaves.

【0010】請求項5に記載の発明の陶磁器の製造装置
は、内面がマイクロ波を反射可能なチャンバと、マイク
ロ波の透過を許容する断熱隔壁により前記チャンバの内
部を区画して設けられた焼成室と、その焼成室内に配設
される陶磁器材料よりなる被焼成体に対してマイクロ波
を照射するマイクロ波発生手段とを備えたことを特徴と
する陶磁器の製造装置。
According to a fifth aspect of the present invention, there is provided a porcelain manufacturing apparatus, wherein the inside of the chamber is partitioned by a chamber whose inner surface is capable of reflecting microwaves and a heat-insulating partition wall which allows transmission of microwaves. An apparatus for manufacturing ceramics, comprising: a chamber; and microwave generating means for irradiating a microwave to a body to be fired made of a ceramic material disposed in the firing chamber.

【0011】[0011]

【発明の実施の形態】以下、この発明の実施形態を図面
に基づいて詳細に説明する。図1は実施形態の陶磁器の
製造装置の全体構成を示す概念図である。この陶磁器の
製造装置は、密閉容器よりなるチャンバ11を備えてい
る。チャンバ11は、少なくとも内面がマイクロ波を反
射可能な材料で形成されている。このマイクロ波を反射
可能な材料としては、例えばステンレス鋼が挙げられ
る。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a conceptual diagram showing the entire configuration of the ceramic manufacturing apparatus of the embodiment. This ceramic manufacturing apparatus includes a chamber 11 formed of a closed container. At least the inner surface of the chamber 11 is formed of a material capable of reflecting microwaves. As a material capable of reflecting the microwave, for example, stainless steel can be used.

【0012】チャンバ11には、マイクロ波発生手段と
してのマイクロ波発振器12が導波管13を介して接続
されており、マイクロ波発振器12から出力されるマイ
クロ波は導波管13内を経由してチャンバ11内に入射
されるようになっている。マイクロ波発振器12から出
力されるマイクロ波の周波数は、好ましくは0.9〜1
00GHzである。この周波数が0.9GHz未満で
は、マイクロ波の波長が装置及び後述する被焼成体16
の寸法より著しく長くなるため好ましくない。逆に、1
00GHzを超えるとマイクロ波発振器12が高価とな
るため好ましくない。中でも、安価なマイクロ波発振器
12を利用することができるため、2.45GHzがさ
らに好ましい。
A microwave oscillator 12 as a microwave generating means is connected to the chamber 11 via a waveguide 13, and a microwave output from the microwave oscillator 12 passes through the waveguide 13. Thus, the light enters the chamber 11. The frequency of the microwave output from the microwave oscillator 12 is preferably 0.9 to 1
00 GHz. If this frequency is less than 0.9 GHz, the wavelength of the microwaves is
It is not preferable because the length is significantly longer than the size of Conversely, 1
If the frequency exceeds 00 GHz, the microwave oscillator 12 becomes expensive, which is not preferable. Among them, 2.45 GHz is more preferable because an inexpensive microwave oscillator 12 can be used.

【0013】前記チャンバ11内には、断熱隔壁14に
よって区画された焼成室15が設けられ、この焼成室1
5内には被焼成体16を配設することができるようにな
っている。断熱隔壁14は、断熱性を有しマイクロ波の
透過を許容する材料によって形成されている。この断熱
性を有しマイクロ波の透過を許容する材料としては、ア
ルミナファイバーや発泡アルミナなどが挙げられる。
In the chamber 11, a baking chamber 15 partitioned by a heat insulating partition 14 is provided.
An object to be fired 16 can be disposed in the inside of the element 5. The heat insulating partition 14 is formed of a material having heat insulating properties and allowing transmission of microwaves. Examples of the material having the heat insulating property and allowing the transmission of microwaves include alumina fiber and foamed alumina.

【0014】前記被焼成体16は陶磁器材料を所定形状
に成形した成形体よりなるものである。ここで陶磁器材
料とは、陶磁器の原料として従来から用いられているも
のであれば特に限定されない。具体的には、粘土、長
石、陶石、珪石、カオリン、アルミナから選ばれる二種
以上を少なくとも含むもの、好ましくは少なくとも粘
土、長石、珪石の三種を含むもの等が挙げられる。ま
た、陶石を単身で陶磁器材料として用いてもよい。さら
には、粘土及びカオリンの少なくとも一種を40〜60
質量%、長石を25〜40質量%、珪石を20〜35質
量%含むものが好ましい。
The body 16 to be fired is made of a ceramic material formed into a predetermined shape. Here, the ceramic material is not particularly limited as long as it has been conventionally used as a raw material for ceramics. Specific examples include those containing at least two types selected from clay, feldspar, porcelain stone, silica stone, kaolin, and alumina, and preferably those containing at least three types of clay, feldspar, and silica stone. Further, the pottery stone may be used alone as a pottery material. Further, at least one of clay and kaolin is used in an amount of 40 to 60.
It is preferable to contain 25 to 40% by mass of feldspar and 20 to 35% by mass of silica stone.

【0015】また、チャンバ11内のマイクロ波の入射
する位置にはマイクロ波をチャンバ11内に分散させる
ための球状のリフレクタ17が設けられている。さら
に、陶磁器の製造装置は、焼成室15内に配設される被
焼成体16の表面温度を計測するための熱電対18と赤
外線温度計(図示略)とを備えている。なお、断熱隔壁
14とチャンバ11には、赤外線温度計測用の覗き穴1
9,20が設けられている。
Further, a spherical reflector 17 for dispersing microwaves in the chamber 11 is provided at a position where the microwaves are incident in the chamber 11. Further, the ceramic manufacturing apparatus is provided with a thermocouple 18 for measuring the surface temperature of the object 16 disposed in the firing chamber 15 and an infrared thermometer (not shown). The heat insulating partition 14 and the chamber 11 are provided with a peephole 1 for infrared temperature measurement.
9 and 20 are provided.

【0016】次に、この陶磁器の製造装置を使用した陶
磁器の製造方法について説明する。陶磁器を製造する場
合には、まず陶磁器材料を所定形状の成形体に成形し、
その成形体よりなる被焼成体16を焼成室15内に配設
する。続いて、焼成室15内に配設された被焼成体16
に対して、マイクロ波発振器12から出力されるマイク
ロ波を照射する。マイクロ波発振器12から出力される
マイクロ波は、導波管13を経由してチャンバ11内に
入射し、リフレクタ17で分散された後、チャンバ11
の内面で多重反射しながら断熱隔壁14を透過して被焼
成体16に吸収される。そして、その結果、被焼成体1
6が発熱し、焼成温度にまで達すると被焼成体16が焼
成して陶磁器が得られる。
Next, a description will be given of a method of manufacturing a ceramic using the ceramic manufacturing apparatus. In the case of manufacturing ceramics, first, the ceramic material is molded into a molded body of a predetermined shape,
The fired body 16 made of the molded body is disposed in the firing chamber 15. Subsequently, the firing target 16 disposed in the firing chamber 15
Is irradiated with a microwave output from the microwave oscillator 12. The microwave output from the microwave oscillator 12 enters the chamber 11 via the waveguide 13 and is dispersed by the reflector 17.
The light passes through the heat-insulating partition wall 14 while undergoing multiple reflections on the inner surface of the substrate, and is absorbed by the body 16 to be fired. Then, as a result, the fired body 1
6 generates heat, and when the temperature reaches the firing temperature, the fired body 16 is fired to obtain a ceramic.

【0017】この被焼成体16の焼成の過程において、
被焼成体16には10〜85%の液相が生じることが好
ましい。これが10%未満であると、良好な陶磁器が得
られないおそれがある。逆に、85%を超えると軟化に
よる変形が生じるため好ましくない。
In the process of firing the object 16,
It is preferable that a liquid phase of 10 to 85% is generated in the object 16 to be fired. If this is less than 10%, good porcelain may not be obtained. Conversely, if it exceeds 85%, deformation due to softening occurs, which is not preferable.

【0018】以上のように、この実施形態によれば次の
ような効果が発揮される。・ 陶磁器材料よりなる被焼
成体16は、マイクロ波発振器12から出力されるマイ
クロ波を吸収して発熱することによって焼成して陶磁器
となる。このとき、マイクロ波は被焼成体16の表面、
内部に関わらず均一に吸収されるため、被焼成体16の
外部から加熱を行う従来の電気炉やガス炉の場合のよう
に、被焼成体16の表面と内部とで温度差が生じるおそ
れがない。
As described above, according to this embodiment, the following effects are exhibited. The fired body 16 made of a ceramic material absorbs the microwave output from the microwave oscillator 12 and generates heat to be fired to become a ceramic. At this time, the microwave is applied to the surface of the body 16 to be fired,
Since it is absorbed uniformly regardless of the inside, there is a possibility that a temperature difference may occur between the surface and the inside of the body 16 as in the case of a conventional electric furnace or gas furnace that heats the body 16 from the outside. Absent.

【0019】ただし、陶磁器材料を構成する各成分毎に
マイクロ波の吸収に差があるため、焼成の過程では、そ
れに伴う温度勾配が被焼成体16内には多数形成され
る。従って、この場合も従来と同様に徐々に加熱する必
要がある。しかし、この温度勾配は、被焼成体16内の
粒子間におけるミクロな熱伝導によって熱平衡に達せら
れるものであり、被焼成体16の表面と内部との間で形
成される温度勾配が表面から内部へのマクロな熱伝導に
よって熱平衡に達せられる場合に比べれば、非常に速や
かに熱平衡が達せられることは明らかである。よって、
従来に比べて昇温速度を大きくすることが可能であり、
焼成に要する時間を大幅に短縮することができる。この
ため、焼成の際のエネルギー消費量を従来の電気炉やガ
ス炉の場合に比べて抑えることができる。
However, since there is a difference in the absorption of microwaves for each component constituting the ceramic material, a large number of temperature gradients are formed in the body 16 during the firing process. Therefore, also in this case, it is necessary to gradually heat as in the conventional case. However, this temperature gradient is such that thermal equilibrium is reached by microscopic heat conduction between the particles in the fired body 16, and the temperature gradient formed between the surface and the inside of the fired body 16 changes from the surface to the inside. It is clear that the thermal equilibrium can be reached very quickly compared to the case where the thermal equilibrium is reached by macroscopic heat conduction to the substrate. Therefore,
It is possible to increase the heating rate compared to the past,
The time required for firing can be greatly reduced. For this reason, the energy consumption at the time of baking can be suppressed compared with the case of the conventional electric furnace or gas furnace.

【0020】特に、碍子などの肉厚の陶磁器を製造する
場合、従来の方法では表面から内部への熱伝導に一層の
時間がかかるために焼成に要する時間もさらに長くなっ
ていた。しかし、この実施形態では、被焼成体16の表
面と内部とで温度差が生じにくいので、肉厚の陶磁器を
製造する場合であっても焼成に要する時間を大幅に短縮
することができる。
In particular, when manufacturing thick ceramics such as insulators, the conventional method requires more time for heat conduction from the surface to the inside, so that the time required for firing is further increased. However, in this embodiment, a temperature difference is hardly generated between the surface and the inside of the body 16 to be fired, so that the time required for firing can be greatly reduced even in the case of manufacturing a thick porcelain.

【0021】また、焼成の過程で被焼成体16が速やか
に熱平衡に達するため、被焼成体16内に形成される温
度勾配に起因する熱歪み等の弊害を防ぐことができると
ともに、均一な焼成が可能である。
Further, since the body 16 to be fired quickly reaches thermal equilibrium during the firing process, it is possible to prevent adverse effects such as thermal distortion caused by a temperature gradient formed in the body 16 to be fired, and to achieve uniform firing. Is possible.

【0022】・ 焼成の過程で、被焼成体16に10〜
85%の液相が生じることにより、良好な陶磁器を得る
ことができる。さらに、液相は固相に比べてマイクロ波
の吸収効率が高くなるので、被焼成体16全体としての
マイクロ波の吸収効率を高めることができる。従って、
被焼成体16を速やかに加熱することが可能である。
In the course of firing, 10 to 10
By producing 85% of the liquid phase, good ceramics can be obtained. Furthermore, since the liquid phase has a higher microwave absorption efficiency than the solid phase, the microwave absorption efficiency of the entire fired body 16 can be increased. Therefore,
The object to be fired 16 can be quickly heated.

【0023】・ マイクロ波はチャンバ11の内面を多
重反射しながら被焼成体16に照射されるため、被焼成
体16に対して一様にマイクロ波を照射することができ
る。 ・ 断熱性を有する断熱隔壁14の働きにより、被焼成
体16の温度がチャンバ11内の温度に影響されるのを
防ぐことができる。このため、マイクロ波発振器12か
ら出力されるマイクロ波を調節することによって被焼成
体16の温度を容易に制御することができる。また、断
熱隔壁14が断熱性を有するため、断熱隔壁14の内側
の表面温度や焼成室15内の温度を、焼成の過程で次第
に被焼成体16の温度にほぼ等しくすることができる。
このため、被焼成体16の温度が放射冷却によって低下
するのを抑制することができる。
Since the microwave is applied to the object 16 while being reflected multiple times on the inner surface of the chamber 11, the object 16 can be uniformly irradiated with the microwave. The function of the heat insulating partition 14 having heat insulating properties can prevent the temperature of the fired body 16 from being affected by the temperature in the chamber 11. Therefore, by adjusting the microwave output from the microwave oscillator 12, the temperature of the body 16 to be fired can be easily controlled. Further, since the heat insulating partition 14 has heat insulating properties, the surface temperature inside the heat insulating partition 14 and the temperature inside the firing chamber 15 can be gradually made substantially equal to the temperature of the object 16 during firing.
For this reason, it can suppress that the temperature of the to-be-fired body 16 falls by radiation cooling.

【0024】[0024]

【実施例】次に、実施例及び比較例を挙げて前記実施形
態をさらに具体的に説明する。 (実施例1、実施例2)粘土(カオリン)38.4質量
%、長石31.5質量%、アルミナ30.1質量%より
なる陶磁器材料を四角板状に成形し、その成形体から被
焼成体16を形成した。そして、この被焼成体16を図
1に示す実施形態の陶磁器の製造装置を使って焼成し、
陶磁器を得た。ただし、実施例1と実施例2では粒径の
異なるアルミナを使用した。このとき、マイクロ波発振
器12から出力されるマイクロ波の周波数は84GHz
に設定し、約20℃/分の昇温速度で焼成温度(122
0℃)まで加熱し、その温度で30分間保持して焼成を
行った。なお、チャンバ11にはステンレス鋼製のもの
を、また断熱隔壁14にはアルミナファイバーで厚さ4
cmに形成したものを使用した。
Next, the embodiment will be described more specifically with reference to examples and comparative examples. (Examples 1 and 2) A ceramic material composed of 38.4% by mass of clay (kaolin), 31.5% by mass of feldspar, and 30.1% by mass of alumina was formed into a square plate shape, and fired from the formed body. Body 16 was formed. Then, the object 16 to be fired is fired using the ceramic manufacturing apparatus of the embodiment shown in FIG.
Obtained porcelain. However, in Example 1 and Example 2, alumina having different particle sizes was used. At this time, the frequency of the microwave output from the microwave oscillator 12 is 84 GHz.
At a heating rate of about 20 ° C./min.
(0 ° C.) and kept at that temperature for 30 minutes to perform firing. The chamber 11 is made of stainless steel, and the heat insulating partition 14 is made of alumina fiber having a thickness of 4 mm.
cm was used.

【0025】得られた陶磁器について、吸水率、かさ密
度、曲げ強度を測定した結果を表1に示すとともに、X
線回折を行った結果を表2に示す。また、実施例1につ
いて、焼成の際の「時間」と「被焼成体16の温度」と
の関係を表す時間−温度曲線を図2に示す。
The results of measuring the water absorption, the bulk density, and the bending strength of the obtained porcelain are shown in Table 1.
Table 2 shows the results of the line diffraction. FIG. 2 shows a time-temperature curve representing the relationship between “time” and “temperature of the body 16 to be fired” during firing in Example 1.

【0026】(実施例3)実施例1において、陶磁器材
料を粘土44.0質量%、長石36.0質量%、珪石2
0.0質量%よりなるものに変更し、焼成温度を115
0℃に変更した以外は実施例1と同様に焼成、測定を行
った。その結果を表1及び表2に示す。
Example 3 In Example 1, 44.0% by mass of clay, 36.0% by mass of feldspar, and 2% by mass of porcelain were used.
0.0 mass%, and the firing temperature was 115
The firing and measurement were performed in the same manner as in Example 1 except that the temperature was changed to 0 ° C. The results are shown in Tables 1 and 2.

【0027】(実施例4)実施例3において、陶磁器材
料を粘土33.0質量%、長石27.0質量%、珪石4
0.0質量%よりなるものに変更した以外は実施例3と
同様に行った。その結果を表1及び表2に示す。
Example 4 In Example 3, 33.0% by mass of clay, 27.0% by mass of feldspar and 4% of silica stone were used.
The same operation as in Example 3 was performed except that the composition was changed to 0.0% by mass. The results are shown in Tables 1 and 2.

【0028】(比較例1、比較例2)従来の電気炉を使
い、実施例1及び実施例2と同一の被焼成体16を、約
2℃/分の昇温速度で1220℃まで加熱し、1220
℃で60分間保持して焼成を行った。得られた陶磁器に
ついて、吸水率、かさ密度、曲げ強度を測定した結果を
表1に示す。また、比較例1の時間−温度曲線を図2に
示す。
(Comparative Example 1 and Comparative Example 2) Using a conventional electric furnace, the same object 16 to be fired as in Examples 1 and 2 was heated to 1220 ° C. at a rate of about 2 ° C./min. , 1220
Calcination was performed by holding at 60 ° C. for 60 minutes. Table 1 shows the results of measuring the water absorption, the bulk density, and the bending strength of the obtained porcelain. FIG. 2 shows a time-temperature curve of Comparative Example 1.

【0029】(比較例3)比較例1において、被焼成体
16に実施例3と同一のものを使用するように変更し、
焼成温度を1150℃に変更した以外は比較例1と同様
に行った。その結果を表1に示す。
(Comparative Example 3) In Comparative Example 1, the object to be fired 16 was changed to use the same one as in Example 3,
The same operation as in Comparative Example 1 was performed except that the firing temperature was changed to 1150 ° C. Table 1 shows the results.

【0030】(比較例4)比較例3において、被焼成体
16に実施例4と同一のものを使用するように変更した
以外は比較例3と同様に行った。その結果を表1に示
す。
Comparative Example 4 Comparative Example 3 was carried out in the same manner as in Comparative Example 3 except that the object 16 to be fired was changed to the same one as in Example 4. Table 1 shows the results.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 表1の結果より、実施例1〜4の吸水率、かさ密度、曲
げ強度は、それぞれ比較例1〜4のそれと比較して、同
等ないしは優れていることが示された。このことから、
焼成にマイクロ波を用いることで、従来の電気炉の場合
に比べて昇温速度を約10倍に上げることができ、さら
に焼成温度に保持する時間を半分に短縮できることが示
された。
[Table 2] From the results in Table 1, it was shown that the water absorption, the bulk density, and the bending strength of Examples 1 to 4 were equal to or better than those of Comparative Examples 1 to 4, respectively. From this,
It was shown that by using microwaves for firing, the rate of temperature rise can be increased about 10 times compared to the case of a conventional electric furnace, and the time for maintaining the firing temperature can be reduced to half.

【0033】なお、前記実施形態を次のように変更して
構成することもできる。 ・ 実施形態では、陶磁器材料を所定形状に成形した成
形体よりなるものを被焼成体16として用いたが、所望
により、その成形体を素焼きしたもの、又は成形体に施
釉をしたもの、又は素焼きした成形体に施釉をしたもの
よりなるものを被焼成体16として用いてもよい。この
ように構成した場合でも、実施形態の場合と同様に焼成
することが可能である。
The above embodiment can be modified as follows. In the embodiment, a molded body obtained by molding a ceramic material into a predetermined shape is used as the body 16 to be fired, but if desired, the molded body is unglazed, or the molded body is glazed or unglazed. The object to be baked 16 may be made of an article obtained by applying a glaze to the formed article. Even in the case of such a configuration, it is possible to perform firing similarly to the case of the embodiment.

【0034】・ 焼成室15の内部に、ヒータを設けて
もよい。このように構成した場合、断熱隔壁14の内側
の表面温度や焼成室15内の温度を、被焼成体16の温
度にほぼ等しくすることができる。このため、放射冷却
による被焼成体16の温度低下を一層抑制することがで
きる。
A heater may be provided inside the firing chamber 15. With this configuration, the surface temperature inside the heat insulating partition 14 and the temperature inside the firing chamber 15 can be made substantially equal to the temperature of the object 16 to be fired. Therefore, it is possible to further suppress a decrease in the temperature of the fired body 16 due to the radiation cooling.

【0035】・ 陶磁器材料として、美濃焼、有田焼、
瀬戸焼などの原料を用いてもよい。なお、前記実施形態
より把握される技術的思想について以下に記載する。 ・ 前記マイクロ波の周波数を0.9〜100GHzと
することを特徴とする請求項2から請求項5のいずれか
一項に記載の陶磁器の製造方法。このように構成した場
合、被焼成体を確実かつ安価に焼成することができる。
As ceramic materials, Mino ware, Arita ware,
Raw materials such as Seto ware may be used. The technical idea grasped from the above embodiment will be described below. The method according to any one of claims 2 to 5, wherein the microwave has a frequency of 0.9 to 100 GHz. With this configuration, the object to be fired can be fired reliably and inexpensively.

【0036】・ 前記陶磁器材料は、粘土及びカオリン
の少なくとも一種を40〜60質量%、長石を25〜4
0質量%、珪石を20〜35質量%含むものである請求
項1に記載の陶磁器。このように構成した場合、粘土及
びカオリンの少なくとも一種と長石と珪石とをバランス
よく含んだ陶磁器について、焼成に要する時間を短縮す
ることができる。
The ceramic material comprises 40 to 60% by mass of at least one of clay and kaolin, and 25 to 4% of feldspar.
The porcelain according to claim 1, which contains 0% by mass and 20 to 35% by mass of silica stone. With such a configuration, the time required for firing can be reduced for a ceramic containing at least one of clay and kaolin, feldspar and silica stone in a well-balanced manner.

【0037】[0037]

【発明の効果】この発明は、以上のように構成されてい
るため、次のような効果を奏する。請求項1に記載の発
明の陶磁器によれば、焼成に要する時間の短縮を図るこ
とができる。
The present invention is configured as described above, and has the following effects. According to the porcelain of the first aspect, the time required for firing can be reduced.

【0038】請求項2に記載の発明の陶磁器の製造方法
によれば、陶磁器の焼成に要する時間を短縮することが
できる。請求項3に記載の発明の陶磁器の製造方法によ
れば、請求項2に記載の発明の効果に加え、良好な陶磁
器を得ることができる。さらに、焼成時に被焼成体を速
やかに加熱することが可能である。
According to the method for manufacturing ceramics according to the second aspect of the present invention, the time required for firing the ceramics can be reduced. According to the method for manufacturing ceramics according to the third aspect, in addition to the effects of the invention according to the second aspect, good ceramics can be obtained. Further, it is possible to quickly heat the object to be fired during firing.

【0039】請求項4に記載の発明の陶磁器の製造方法
によれば、請求項2又は請求項3に記載の発明の効果に
加え、断熱隔壁の断熱効果により焼成時に被焼成体内に
生じる温度差を一層小さく抑えることができるため、よ
り短時間での焼成が可能である。
According to the method of manufacturing the porcelain according to the fourth aspect of the present invention, in addition to the effect of the second or third aspect of the present invention, the temperature difference generated in the fired body during firing due to the heat insulating effect of the heat insulating partition. Can be further reduced, so that firing in a shorter time is possible.

【0040】請求項5に記載の発明の陶磁器の製造装置
によれば、陶磁器の焼成に要する時間を短縮することが
できる。
According to the apparatus for manufacturing ceramics according to the fifth aspect of the present invention, the time required for firing the ceramics can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施形態の陶磁器の製造装置の全体構成を示
す概念図。
FIG. 1 is a conceptual diagram showing an overall configuration of a ceramic manufacturing apparatus according to an embodiment.

【図2】 実施例1及び比較例1の時間−温度曲線を示
すグラフ。
FIG. 2 is a graph showing time-temperature curves of Example 1 and Comparative Example 1.

【符号の説明】[Explanation of symbols]

11…チャンバ、12…マイクロ波発生手段としてのマ
イクロ波発振器、14…断熱隔壁、15…焼成室、16
…被焼成体。
11: chamber, 12: microwave oscillator as microwave generating means, 14: heat insulating partition, 15: firing chamber, 16
... the object to be fired.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水野 正敏 岐阜県多治見市星ヶ台3丁目11番地 岐阜 県セラミックス技術研究所 内 (72)発明者 尾畑 成造 岐阜県多治見市星ヶ台3丁目11番地 岐阜 県セラミックス技術研究所 内 (72)発明者 島田 忠 岐阜県多治見市星ヶ台3丁目11番地 岐阜 県セラミックス技術研究所 内 (72)発明者 佐藤 元泰 岐阜県土岐市下石町322−6 文部省核融 合科学研究所 内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masatoshi Mizuno 3-11 Hoshigadai, Tajimi-shi, Gifu Inside the Gifu Prefectural Ceramics Research Institute (72) In-flight Naruzo Obata 3-11 Hoshigadai, Tajimi-shi, Gifu Address: Gifu Prefectural Ceramics Research Institute (72) Inventor Tadashi Shimada 3-11 Hoshigadai, Tajimi-shi, Gifu Prefecture Gifu Prefectural Ceramics Research Institute (72) Inventor Motoyasu Sato 322-6 Shimoishi-cho, Toki City, Gifu Prefecture Ministry of Education, Culture and Science Institute

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 陶磁器材料を原料とし、所定形状に成形
された成形体若しくは成形体を素焼きしたもの又はこれ
らに施釉をしたものよりなる被焼成体をマイクロ波で焼
成してなることを特徴とする陶磁器。
1. A ceramic material is used as a raw material, and a molded body formed into a predetermined shape, a molded body obtained by sintering the molded body, or a body to be baked formed by glazing the molded body is microwave-fired. Pottery.
【請求項2】 陶磁器材料を所定形状の成形体に成形
し、その成形体若しくは成形体を素焼きしたもの又はこ
れらに施釉をしたものよりなる被焼成体にマイクロ波を
照射して焼成することを特徴とする陶磁器の製造方法。
2. A method in which a ceramic material is formed into a molded body having a predetermined shape, and the molded body or a green body obtained by sintering the molded body or a body to be glazed is irradiated with microwaves and fired. Characteristic method of manufacturing ceramics.
【請求項3】 焼成の過程で、被焼成体に10〜85%
の液相が生じることを特徴とする請求項2に記載の陶磁
器の製造方法。
3. In the course of firing, 10 to 85%
3. The method according to claim 2, wherein a liquid phase is generated.
【請求項4】 内面がマイクロ波を反射可能なチャンバ
の内部に、マイクロ波の透過を許容する断熱隔壁によっ
て区画された焼成室を設け、その焼成室内に配設される
陶磁器材料よりなる被焼成体に対してマイクロ波を照射
することを特徴とする請求項2又は請求項3に記載の陶
磁器の製造方法。
4. A firing chamber defined by a heat-insulating partition wall permitting microwave transmission inside a chamber whose inner surface is capable of reflecting microwaves, and a firing target made of a ceramic material disposed in the firing chamber. The method for producing ceramics according to claim 2, wherein the body is irradiated with microwaves.
【請求項5】 内面がマイクロ波を反射可能なチャンバ
と、マイクロ波の透過を許容する断熱隔壁により前記チ
ャンバの内部を区画して設けられた焼成室と、その焼成
室内に配設される陶磁器材料よりなる被焼成体に対して
マイクロ波を照射するマイクロ波発生手段とを備えたこ
とを特徴とする陶磁器の製造装置。
5. A chamber whose inner surface is capable of reflecting microwaves, a firing chamber provided by partitioning the interior of the chamber by a heat-insulating partition that allows microwave transmission, and a ceramic provided in the firing chamber. An apparatus for manufacturing ceramics, comprising: a microwave generating means for irradiating a microwave to a material to be fired made of a material.
JP2000002659A 2000-01-11 2000-01-11 Method and apparatus for manufacturing ceramics Expired - Lifetime JP3404345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000002659A JP3404345B2 (en) 2000-01-11 2000-01-11 Method and apparatus for manufacturing ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000002659A JP3404345B2 (en) 2000-01-11 2000-01-11 Method and apparatus for manufacturing ceramics

Publications (2)

Publication Number Publication Date
JP2001199760A true JP2001199760A (en) 2001-07-24
JP3404345B2 JP3404345B2 (en) 2003-05-06

Family

ID=18531737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000002659A Expired - Lifetime JP3404345B2 (en) 2000-01-11 2000-01-11 Method and apparatus for manufacturing ceramics

Country Status (1)

Country Link
JP (1) JP3404345B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100366572C (en) * 2005-11-25 2008-02-06 长沙隆泰科技有限公司 Microwave sintering process of packed cadmium selenium red glaze

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100366572C (en) * 2005-11-25 2008-02-06 长沙隆泰科技有限公司 Microwave sintering process of packed cadmium selenium red glaze

Also Published As

Publication number Publication date
JP3404345B2 (en) 2003-05-06

Similar Documents

Publication Publication Date Title
US6512216B2 (en) Microwave processing using highly microwave absorbing powdered material layers
EP1421040B1 (en) Method for processing ceramics using electromagnetic energy
JP5450331B2 (en) Method and apparatus for uniformly heating glass and / or glass ceramic using infrared radiation
US5077461A (en) Far-infra-red heater
JPH0849983A (en) Method and equipment for treating ceramic
ZA200205010B (en) Hybrid method for firing of ceramics.
US4140887A (en) Method for microwave heating
Sudiana et al. Synthesis and Characterization of Microwave Sintered Silica Xerogel Produced from Rice Husk Ash
WO2004073037A3 (en) Process and system for thermally uniform materials processing
Sudiana et al. Effect of microwave radiation on the properties of sintered oxide ceramics
US20130040082A1 (en) Compounds and compositions for susceptor materials
AU2914697A (en) Method of drying a porous body
ES2593095B1 (en) COMPACT CERAMIC MATERIAL WITH A LOW LEVEL OF INTERNAL VOLTAGES AND ITS USE AS A CONSTRUCTION MATERIAL IN COATINGS AND SOILS
JP2001199760A (en) Ceramic, method of producing the same and baking unit therefor
JP2002130960A (en) Baking furance, burned product, and method for manufacturing the same
Goldstein et al. Sintering of PZT powders in MW furnace at 2· 45 GHz
JP2002130955A (en) Continuous baking furance, burned product and method for manufacturing the same
CN108395273A (en) A kind of production technology improving foamed ceramic partition plate fire endurance
JP2003277157A (en) Kiln
JPH07315915A (en) Orientated alumina sintered compact
JPH0130076B2 (en)
TR201806780T4 (en) A household appliance assembly comprising a home appliance board and a method for producing a home appliance board.
RU2361374C2 (en) Microwave oven to produce ceramic pigments, method of furnace application
Gunkov et al. Influence of the scale factor and heating rate on dense ceramics homogenization structure
Paunescu et al. Experimental manufacture of heat insulating plates by expanding the glass waste in the microwave field

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3404345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150228

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term