JP2001199749A - Surface modification method for blast furnace slag and modified blast furnace slag - Google Patents

Surface modification method for blast furnace slag and modified blast furnace slag

Info

Publication number
JP2001199749A
JP2001199749A JP2000003725A JP2000003725A JP2001199749A JP 2001199749 A JP2001199749 A JP 2001199749A JP 2000003725 A JP2000003725 A JP 2000003725A JP 2000003725 A JP2000003725 A JP 2000003725A JP 2001199749 A JP2001199749 A JP 2001199749A
Authority
JP
Japan
Prior art keywords
slag
blast furnace
sulfuric acid
furnace slag
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000003725A
Other languages
Japanese (ja)
Inventor
Hiroyuki Toubou
博幸 當房
Masato Kumagai
正人 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2000003725A priority Critical patent/JP2001199749A/en
Publication of JP2001199749A publication Critical patent/JP2001199749A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1055Coating or impregnating with inorganic materials
    • C04B20/107Acids or salts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique for the efficient modification of blast furnace slag to suppress the alkalization of water by the dissolution of Ca ion in the case of using the slag in an environment in contact with water. SOLUTION: Water granulated or slowly cooled blast furnace slag is brought into contact with a sulfuric acid solution having a sulfuric acid concentration of 250-1,500 mol/m3 to form a gypsum dihydrate layer having a thickness of 30-150 μm on the outer surface of the blast furnace slag.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、高炉スラグの改
質に関し、特に高炉水砕スラグまたは高炉徐冷スラグを
土木用等に利用する場合に、スラグが雨水等の周辺水と
接触してもアルカリ性の水を発生しないようにするため
の高炉スラグの改質方法および改質処理された高炉スラ
グに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to blast furnace slag reforming, and particularly when granulated blast furnace slag or slowly cooled blast furnace slag is used for civil engineering, even if the slag comes into contact with surrounding water such as rainwater. The present invention relates to a blast furnace slag reforming method for preventing generation of alkaline water and a blast furnace slag subjected to a reforming treatment.

【0002】[0002]

【従来の技術】高炉スラグは、高炉で鉄鉱石を還元して
銑鉄を製造する際に、銑鉄1t当たり約300kg発生
し、その量は日本国内だけで年間約2300万tにも達
する。この高炉スラグは、冷却方法によって、水で急冷
したガラス質の水砕スラグと、大気中で冷却した結晶質
の徐冷スラグとに大別できる。水砕スラグはその大部分
が高炉セメント等のセメント原料向けとして使用される
が、一部はその軽量性を活かして土工用としての用途に
も用いられている。一方、徐冷スラグは大部分が道路用
路盤材として利用されている。このように、水砕スラグ
や徐冷スラグは、いずれも地面下で使用される場合が多
い。
2. Description of the Related Art Blast furnace slag generates about 300 kg per ton of pig iron when iron ore is reduced in a blast furnace to produce pig iron, and the amount reaches about 23 million tons annually in Japan alone. The blast furnace slag can be roughly classified into vitrified granulated slag quenched with water and crystalline slow-cooled slag cooled in the air, depending on the cooling method. Most of the granulated slag is used for cement raw materials such as blast furnace cement, but part of the granulated slag is also used for earthworks due to its light weight. On the other hand, most of the gradually cooled slag is used as a roadbed material. Thus, the granulated slag and the slowly cooled slag are often used under the ground.

【0003】ところで、高炉スラグがセメント原料や強
度の高い路盤材として使用されるのは、高炉スラグが潜
在的に水硬性を有しており、アルカリで刺激されると水
和により固まる性質があるからである。こうした有用な
特性をそなえている高炉スラグは、一方で、スラグ中に
CaO分を40%以上含むために、セメント・コンクリー
トと同様に、水と接触したときに一部のCaイオンが溶け
出し、地下水や水田などの水をアルカリ性にするという
問題がある。上述したように、高炉スラグが地面下で使
用される場合、雨水、地下水等の周辺水と接触する可能
性が大きいので、高炉スラグに対しては、このような水
のアルカリ性化を極力抑制するように処置することが望
ましい。
By the way, blast furnace slag is used as a cement raw material or a high-strength roadbed material because blast furnace slag has a potential to be hydraulically hardened and hardens by hydration when stimulated with alkali. Because. Blast furnace slag with these useful properties, on the other hand,
Since it contains 40% or more of CaO, there is a problem that, as in the case of cement concrete, some Ca ions are dissolved when it comes into contact with water, and the water in groundwater, paddy fields and the like becomes alkaline. As described above, when the blast furnace slag is used under the ground, there is a large possibility that the blast furnace slag comes into contact with surrounding water such as rainwater and groundwater. Therefore, for the blast furnace slag, such alkalinization of water is suppressed as much as possible. It is desirable to treat as follows.

【0004】このようなCa溶出によるアルカリ水発生の
抑制対策として、特開平10−53441号公報には、硫酸に
よりpH=4.5 〜5.0 に調整した水を、スラグ1tあた
り5〜10dmを、2日に1回の頻度で、例えば5か
月といった長期間にわたり噴霧する方法を提案してい
る。
As a countermeasure for suppressing the generation of alkaline water due to such Ca elution, Japanese Patent Application Laid-Open No. Hei 10-53441 discloses that water adjusted to pH = 4.5 to 5.0 with sulfuric acid, 5 to 10 dm 3 per ton of slag, A method of spraying once a day for a long period of time, for example, five months, is proposed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな長期間の処理では、スラグの処理量に限界があると
いう問題があった。そこで、この発明の目的は、高炉ス
ラグを短時間の簡単な処理で表面を改質することによ
り、これが水と接する環境で使用された場合に、Caイオ
ンの溶出を抑制して、水のアルカリ性化(pHの上昇)
を効率的に抑制するための技術を提案することにある。
However, in such a long-term treatment, there is a problem that the amount of slag to be treated is limited. Therefore, an object of the present invention is to modify the surface of blast furnace slag by a simple treatment in a short time, thereby suppressing the elution of Ca ions when the blast furnace slag is used in an environment that comes in contact with water, thereby reducing the alkalinity of water. (Increase in pH)
It is to propose a technology for suppressing the noise efficiently.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、発明者らは、高炉スラグを適正濃度の硫酸溶液に浸
漬することにより、スラグ表面に2水セッコウ(CaSO
・2HO)が短時間で形成すること、この2水セッ
コウは中性で強固な物質であるため、水と接触してもス
ラグ表面からのCaイオンの溶出を効果的に抑制できるこ
とを知見した。このような知見に基づいて完成した本発
明は、水砕または徐冷した高炉スラグを、硫酸濃度が2
50〜1500mol/mである硫酸溶液と接触させ
ることにより、前記高炉スラグの外表面に30〜150
μm厚の2水セッコウの皮膜を生成させることを特徴と
する、高炉スラグの表面改質方法である。また、本発明
は、この表面改質方法で得られる水砕または徐冷した高
炉スラグであって、スラグの外表面が30〜150μm
厚の2水セッコウの皮膜で覆われていることを特徴とす
る、改質高炉スラグである。
In order to achieve the above-mentioned object, the present inventors immerse blast furnace slag in a sulfuric acid solution having an appropriate concentration to form two-water gypsum (CaSO 4) on the slag surface.
4 · 2H 2 O) that is formed in a short time, since the two gypsum is a rigid material in neutral, that when in contact with water can be effectively suppressed elution of Ca ions from the surface of the slag I learned. The present invention, which has been completed on the basis of such findings, uses granulated or slowly cooled blast furnace slag having a sulfuric acid concentration of 2%.
By contacting with a sulfuric acid solution of 50 to 1500 mol / m 3 , the outer surface of the blast furnace slag is 30 to 150 mol / m 3.
This is a method for modifying the surface of blast furnace slag, which comprises forming a film of gypsum two-water gypsum. Further, the present invention is a granulated or slowly cooled blast furnace slag obtained by this surface modification method, wherein the outer surface of the slag is 30 to 150 μm.
A modified blast furnace slag characterized by being covered with a thick two-water gypsum film.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態を上記
発明をなすに至った経緯とともに説明する。発明者ら
は、高炉水砕スラグを硫酸溶液で溶解し、スラグ中のCa
分をセッコウとし、その他のSiO、Al、MgO等
の成分を分離回収する実験を行っていた。この実験の過
程で、濃硫酸を用いた場合には高炉スラグは速やかに溶
解して無水セッコウを生成してしまい、他の成分をも溶
解した。しかし、硫酸濃度を次第に薄くしていくと、あ
る濃度範囲の硫酸溶液では2水セッコウが生成し、さら
に薄くしていくとスラグの溶解が進まないことがわかっ
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described below together with the circumstances leading to the invention. The inventors dissolve the granulated blast furnace slag with a sulfuric acid solution, and remove the Ca in the slag.
The experiment was conducted to separate and collect other components such as SiO 2 , Al 2 O 3 , and MgO by using gypsum as the component. In the course of this experiment, when concentrated sulfuric acid was used, the blast furnace slag was quickly dissolved to form anhydrous gypsum, and other components were also dissolved. However, it was found that when the sulfuric acid concentration was gradually reduced, gypsum dihydrate was generated in a sulfuric acid solution within a certain concentration range, and when the sulfuric acid concentration was further reduced, the slag did not dissolve.

【0008】発明者らは、このような濃度範囲の硫酸溶
液中に浸漬した高炉水砕スラグから2水セッコウが生成
する点に着目して調査した。まず、2水セッコウの生成
を確認した状況を述べる。上記中間濃度の硫酸溶液中で
は、セッコウ粉が沈殿することはなく、元の粒子形状を
保っていた。この粒子を硫酸溶液中から取り出して乾燥
すると、元の水砕スラグの外観とは異なり表面が白色を
呈した。そして、この水砕スラグの断面を観察したとこ
ろ、図1に示すように、水砕スラグの表面にはほぼ一様
な厚みの皮膜形成が確認できた。そこで、発明者らは皮
膜物質を同定するためにX線回折により分析したとこ
ろ、2水セッコウのピークのみが検出された。発明者ら
は、また水砕スラグはほぼ100%ガラス質の物質であ
ることを確認していた。これらのことから、検出された
2水セッコウはスラグ皮膜の構成物質であることが明ら
かとなった。
[0008] The inventors of the present invention have focused on the fact that two-water gypsum is generated from granulated blast furnace slag immersed in a sulfuric acid solution having such a concentration range. First, the situation in which the formation of two-water gypsum was confirmed will be described. In the sulfuric acid solution having the above-mentioned intermediate concentration, gypsum powder did not precipitate and the original particle shape was maintained. When the particles were taken out of the sulfuric acid solution and dried, the surface was white unlike the appearance of the original granulated slag. And when the cross section of this granulated slag was observed, as shown in FIG. 1, formation of a film with a substantially uniform thickness on the surface of the granulated slag was confirmed. Then, when the inventors analyzed by X-ray diffraction in order to identify the film substance, only the peak of gypsum in water was detected. The inventors have also confirmed that the granulated slag is almost 100% vitreous material. From these, it became clear that the detected two-water gypsum was a constituent material of the slag film.

【0009】次に、2水セッコウの生成速度に及ぼす硫
酸濃度の影響を調べるため、水砕スラグ、徐冷スラグを
用いて以下の実験を行った。20℃、250〜2000
mol/mの硫酸溶液500g中に、1.18〜2.36mm
に篩い分けた水砕スラグ100gを浸漬し、最大300
分までの時間浸漬した後、ろ過して水砕スラグと硫酸溶
液を分離した。次いで、分離した水砕スラグを40℃で
2日間乾燥した後、JIS R 9101のセッコウの
化学分析方法の三酸化イオウの定量方法によりSO
濃度を測定することにより、2水セッコウの生成の程度
を表すこととした。得られた結果を、硫酸溶液に浸漬し
た時間とSO濃度との関係で示すと図2となった。図
2から、浸漬開始後60分間は生成反応が急速に進み、
それ以後は反応は殆ど進まなくなること、また硫酸の濃
度が高いほど2水セッコウの生成量は多くなることがわ
かる。さらにまた、発明者らは、硫酸濃度が2000m
ol/mではセッコウの生成量は多いが、セッコウが
スラグの表面から剥がれ落ち、スラグ粒子と分離しやす
くなり、表面に付着しているセッコウも柔らかく剥離し
て皮膜を形成しないことを確認した。こうした実験を重
ねた結果、強固な2水セッコウの皮膜を形成するために
は、硫酸濃度を250〜1500mol/mの範囲と
すればよいことがわかった。
Next, in order to investigate the effect of the concentration of sulfuric acid on the production rate of two-water gypsum, the following experiment was performed using granulated slag and slowly cooled slag. 20 ° C, 250-2000
1.18 to 2.36 mm in 500 g of a sulfuric acid solution of mol / m 3
100g of granulated slag that has been sieved to a maximum of 300
After immersion for up to a minute, the mixture was filtered to separate the granulated slag and the sulfuric acid solution. Next, the separated granulated slag was dried at 40 ° C. for 2 days, and then the concentration of SO 4 was measured by the method for quantifying sulfur trioxide in the gypsum chemical analysis method of JIS R 9101 to determine the production of gypsum in water. The degree was indicated. FIG. 2 shows the obtained results in relation to the time of immersion in the sulfuric acid solution and the SO 4 concentration. From FIG. 2, the generation reaction rapidly progressed for 60 minutes after the start of immersion,
It can be seen that the reaction hardly proceeds thereafter, and that the higher the concentration of sulfuric acid, the greater the amount of gypsum dihydrate produced. Furthermore, the inventors have found that the sulfuric acid concentration is 2000 m
The amount of gypsum generated was large at ol / m 3 , but it was confirmed that the gypsum peeled off from the slag surface and was easily separated from the slag particles, and the gypsum adhering to the surface was also softly peeled off to form no film. . As a result of repeated experiments, it was found that the concentration of sulfuric acid should be in the range of 250 to 1500 mol / m 3 in order to form a strong film of gypsum dihydrate.

【0010】発明者らは、上記実験で得られた硫酸溶液
に浸漬したスラグを樹脂に埋め込み、研磨して断面を観
察し、スラグ表面に形成した2水セッコウからなる皮膜
厚みを測定した。得られた硫酸溶液中の浸漬時間と皮膜
厚みの関係を図3に示す。なお、図中の各プロットは粒
子表面における5点の皮膜厚み測定値の平均値とした。
図2に示したSO濃度から予測されるように、極めて
短時間で皮膜が形成し、また皮膜の厚みの進行は濃度に
より異なる。この結果から、皮膜は極めて短時間で形成
できること、硫酸溶液の濃度をコントロールすることに
より、皮膜の厚みを制御できることがわかった。
The inventors embedded the slag immersed in the sulfuric acid solution obtained in the above experiment in a resin, polished the resin, observed the cross section, and measured the thickness of the gypsum film formed on the slag surface. FIG. 3 shows the relationship between the immersion time in the obtained sulfuric acid solution and the film thickness. Each plot in the figure is an average value of the measured values of the film thickness at five points on the particle surface.
As expected from the SO 4 concentration shown in FIG. 2, the film is formed in a very short time, and the progress of the film thickness depends on the concentration. From these results, it was found that the film could be formed in an extremely short time and that the thickness of the film could be controlled by controlling the concentration of the sulfuric acid solution.

【0011】以上の方法で硫酸溶液に浸漬したスラグか
ら、Caイオンが溶出する状況を調査した。ここでのCaイ
オンの溶出試験は、土壌環境の測定試験と同様、質量比
で、0ラグ:純水=1:10の比率でスラグを水ととも
にポリ容器に入れ、6時間振とう後、溶液のpHを測定
することにより行った。ここで、溶出試験に用いたサン
プルは、硫酸溶液で処理した後、ろ過し、乾燥したもの
と、さらに、ろ過後のサンプルに付着残留している硫酸
を洗浄し、ろ過、乾燥したものを対象とした。なお、洗
浄の方法は、スラグを10倍の純水中に入れ、1分間か
き混ぜることとした。
[0011] The situation where Ca ions were eluted from the slag immersed in the sulfuric acid solution by the above method was investigated. The Ca ion dissolution test is carried out in the same manner as the soil environment measurement test, by putting slag in a plastic container together with water at a mass ratio of 0 lag: pure water = 1: 10, shaking for 6 hours, The measurement was performed by measuring the pH of the solution. Here, the samples used for the dissolution test were treated with a sulfuric acid solution, filtered and dried, and furthermore, the sulfuric acid remaining on the sample after filtration was washed, filtered and dried. And Note that the washing method was such that the slag was put in pure water 10 times and stirred for 1 minute.

【0012】硫酸溶液中の浸漬時間とpHの関係を図4
に示す。図4から以下のことが明らかとなった。硫酸浸
漬処理する前のスラグの溶出試験後のpHは10.4とアル
カリ性であったが、硫酸溶液で処理すると処理時間が3
0分に満たない短時間でもpHは9以下となる。処理時
に用いる硫酸の濃度を250〜1000mol/m
すれば、排水基準のpH=5〜9の範囲に入る。ただ
し、1000mol/m 以上のような高濃度の硫酸で
処理する場合には、洗浄しないと硫酸がスラグに付着残
留してpHが5以下まで低下するので、高濃度の硫酸で
硫酸処理する場合には、その後に洗浄処理を行うことが
必要である。
FIG. 4 shows the relationship between the immersion time in a sulfuric acid solution and the pH.
Shown in The following has become clear from FIG. Sulfuric acid immersion
The pH of the slag before the pickling treatment after the dissolution test was 10.4
The treatment time was 3 times when treated with sulfuric acid solution.
The pH becomes 9 or less even in a short time of less than 0 minutes. During processing
The concentration of sulfuric acid used for 250 to 1000 mol / m3When
If it does, it will fall in the range of pH = 5-9 of drainage standard. However
And 1000 mol / m 3With such high concentration of sulfuric acid
When processing, sulfuric acid remains on the slag unless it is washed.
To lower the pH to 5 or less.
In the case of sulfuric acid treatment, cleaning treatment may be performed after that.
is necessary.

【0013】発明者らは、さらに詳細な実験を重ねた結
果、高炉スラグが水砕スラグ、徐冷スラグのいずれの場
合であっても、そのスラグ表面に30〜150μm厚の
2水セッコウからなる皮膜を形成すれば、スラグからの
Caイオン溶出が効果的に抑制でき、また2水セッコウ自
身も中性で安定しているために、水質を中性に保つこと
ができることがわかった。なお、皮膜厚が150μmを
超えるとセッコウ層の強度がなく、スラグへの付着性も
弱くなり、スラグからはがれてしまう。また、このよう
な2水セッコウからなる30〜150μm厚の皮膜をス
ラグ表面に形成するには、硫酸濃度が250〜1500
mol/mの硫酸溶液中に浸漬すればよいこともわか
った。硫酸溶液への浸漬時間は、上記皮膜厚が形成され
る時間に設定すればよいが、一般には30〜300mi
nの範囲、とくに水砕スラグでは30〜90min、徐
冷スラグでは60〜180minの範囲で、硫酸濃度に
応じて選択するのが好ましい。なお、徐冷スラグについ
て行った同様な実験の結果を、図5〜7に示す。このよ
うに、徐冷スラグにおいても2水セッコウの生成傾向は
水砕スラグと同様であるが、水砕スラグに比べると、そ
の生成速度はやや遅くなる。
As a result of further detailed experiments, the inventors have found that, regardless of whether granulated blast furnace slag is granulated slag or slow-cooled slag, the slag surface is made of two-water gypsum having a thickness of 30 to 150 μm. If a film is formed,
It was found that the elution of Ca ions could be effectively suppressed, and the water gypsum itself was neutral and stable, so that the water quality could be kept neutral. If the film thickness exceeds 150 μm, the gypsum layer has no strength, the adhesion to the slag becomes weak, and the gypsum layer comes off from the slag. Further, in order to form such a 30-150 μm thick film made of two-water gypsum on the slag surface, the sulfuric acid concentration must be 250-1500.
It was also found that the immersion in a sulfuric acid solution of mol / m 3 was sufficient. The immersion time in the sulfuric acid solution may be set to a time at which the film thickness is formed, but is generally 30 to 300 mi.
It is preferable to select a range in accordance with the concentration of sulfuric acid in the range of n, particularly in the range of 30 to 90 min for granulated slag, and in the range of 60 to 180 min for slowly cooled slag. In addition, the result of the similar experiment performed about the slow cooling slag is shown in FIGS. As described above, the generation tendency of two-water gypsum is similar to that of the granulated slag also in the gradually cooled slag, but the generation rate is slightly slower than that of the granulated slag.

【0014】[0014]

【実施例】1方向が斜路になったピットに高炉水砕スラ
グ(粒径5mm以下)または高炉徐冷スラグ(粒径10
mm以下)10tを積み付けた後、ピット(浸漬槽)内
に硫酸濃度250〜1500mol/mの硫酸溶液2
0mを入れ、スラグを硫酸溶液中に浸漬した。この浸
漬処理を開始してから1時間後に、ピット内の硫酸溶液
をポンプを用いて硫酸槽に排出し、スラグと硫酸を分離
した。硫酸を排出した後、斜路よりショベルでピット内
に入り、スラグをすくい、もう一つのピット(洗浄槽)
に移した。洗浄槽内に処理後スラグを積み付けた後、水
を20m入れて15分間後にこの水を排出した。水が
完全に排出された後、スラグをショベルで掻き出し、改
質処理を終えた。
EXAMPLE A blast furnace granulated slag (particle size 5 mm or less) or a blast furnace slow cooling slag (particle size 10
mm or less), a sulfuric acid solution having a sulfuric acid concentration of 250 to 1500 mol / m 3 in a pit (immersion tank).
0 m 3 was added, and the slag was immersed in the sulfuric acid solution. One hour after the start of the immersion treatment, the sulfuric acid solution in the pit was discharged to a sulfuric acid tank using a pump, and slag and sulfuric acid were separated. After discharging the sulfuric acid, enter the pit with a shovel from the ramp, scoop slag, and another pit (washing tank)
Moved to After stacking the slag after the treatment in the washing tank, 20 m 3 of water was put in, and the water was discharged after 15 minutes. After the water was completely drained, the slag was scraped off with a shovel to complete the reforming treatment.

【0015】また、比較のために、高炉水砕スラグおよ
び高炉徐冷スラグを10ton山状に積み付け、硫酸で
pH4.5 に調整した水を1ton/hで連続して7日間
散水した場合と、高炉水砕スラグおよび高炉徐冷スラグ
を未処理のまま10ton山状に積み付け1ヵ月放置し
た場合のものを比較材とした。
For comparison, the granulated blast furnace slag and the slowly cooled blast furnace slag were piled up in a 10-ton mountain shape, and water adjusted to pH 4.5 with sulfuric acid was sprinkled continuously at 1 ton / h for 7 days. The blast furnace granulated slag and the blast furnace slow-cooled slag were untreated and piled up in a 10-ton mountain shape and left for one month.

【0016】以上の方法で改質処理したスラグの表面に
形成した皮膜厚(平均値)を測定するとともに、このス
ラグを用いて質量比でスラグ:純水=1:10の比率で
5mm以下のスラグを水とともにポリ容器に入れ、6時
間振とう後、溶液のpHを測定する溶出試験を実施し
た。これらの改質処理条件および処理後スラグの特性を
表1および表2にまとめて示す。表1, 表2から、改質
処理を行わないスラグの溶出試験後のpHは、水砕スラ
グで10.5、徐冷スラグで11.0であった。これに対し、本
発明法により処理したスラグの溶出試験後のpHは、6.
5 〜8.6 と中性とみなされる良好な水質範囲にあった。
一方、比較のために行ったpH4.5 の水を散水処理した
場合でもpH9.6 , 9.8 であり、pH9以下とはならな
かった。
The thickness (average value) of the film formed on the surface of the slag modified by the above-described method is measured, and the slag is used to measure the mass ratio of slag: pure water = 1: 10 to 5 mm or less. The slag was placed in a plastic container together with water, shaken for 6 hours, and then a dissolution test for measuring the pH of the solution was performed. Tables 1 and 2 collectively show the conditions of the reforming treatment and the characteristics of the slag after the treatment. From Tables 1 and 2, the pH after the dissolution test of the slag not subjected to the reforming treatment was 10.5 for the granulated slag and 11.0 for the slowly cooled slag. In contrast, the pH of the slag treated by the method of the present invention after the dissolution test was 6.
The water quality range was 5 to 8.6 and considered to be neutral.
On the other hand, even when water of pH 4.5, which was used for comparison, was sprinkled, the pH was 9.6 and 9.8, and did not become 9 or less.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【発明の効果】以上説明したように、この発明によれ
ば、高炉スラグの短時間の処理により、水と接触したと
きのCaの溶出を抑制して、水をアルカリ性にすることが
ない高炉スラグへと改質できる。また、この発明によれ
ば、中性で安定な2水セッコウの皮膜を形成した高炉ス
ラグを提供できるので、水と接する場所であっても、安
心して、土工用、道路用などの材料として使用できる。
As described above, according to the present invention, the treatment of blast furnace slag in a short time suppresses the elution of Ca when it comes into contact with water, and does not make the water alkaline. Can be modified to Further, according to the present invention, it is possible to provide a blast furnace slag in which a neutral and stable two-water gypsum film is formed. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】硫酸溶液中に浸漬した後の水砕スラグの粒子構
造を示す顕微鏡組織である。
FIG. 1 is a microstructure showing the particle structure of granulated slag after being immersed in a sulfuric acid solution.

【図2】水砕スラグを硫酸溶液中へ浸漬した時間と2水
セッコウ生成量との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the time during which granulated slag is immersed in a sulfuric acid solution and the amount of two-water gypsum produced.

【図3】水砕スラグを硫酸溶液中へ浸潰した時間と2水
セッコウ皮膜厚みとの関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the time during which granulated slag was immersed in a sulfuric acid solution and the thickness of a two-water gypsum film.

【図4】硫酸溶液中に浸漬処理した水砕スラグを用いて
溶出試験したときのpHの経時変化を示すグラフであ
る。
FIG. 4 is a graph showing a change over time in pH when an elution test is performed using granulated slag immersed in a sulfuric acid solution.

【図5】徐冷スラグを硫酸溶液中へ浸漬した時間と2水
セッコウ生成量との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the time during which a slowly cooled slag is immersed in a sulfuric acid solution and the amount of gypsum produced in 2 water.

【図6】徐冷スラグを硫酸溶液中へ浸潰した時間と2水
セッコウ皮膜厚みとの関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the time of immersing a slowly cooled slag in a sulfuric acid solution and the thickness of a gypsum dihydrate film.

【図7】硫酸溶液中に浸漬処理した徐冷スラグを用いて
溶出試験したときのpHの経時変化を示すグラフであ
る。
FIG. 7 is a graph showing a time-dependent change in pH when an elution test is performed using a slowly cooled slag immersed in a sulfuric acid solution.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水砕または徐冷した高炉スラグを、硫酸
濃度が250〜1500mol/mである硫酸溶液と
接触させることにより、前記高炉スラグの外表面に30
〜150μm厚の2水セッコウの皮膜を生成させること
を特徴とする、高炉スラグの表面改質方法。
1. A granulated or slowly cooled blast furnace slag is brought into contact with a sulfuric acid solution having a sulfuric acid concentration of 250 to 1500 mol / m 3 , so that the outer surface of the blast furnace slag is 30
A method for modifying the surface of blast furnace slag, which comprises forming a two-water gypsum film having a thickness of 150 μm.
【請求項2】 水砕または徐冷した高炉スラグであっ
て、前記高炉スラグの外表面が30〜150μm厚の2
水セッコウの皮膜で覆われていることを特徴とする、改
質高炉スラグ。
2. A granulated or slowly cooled blast furnace slag, wherein the outer surface of the blast furnace slag has a thickness of 30 to 150 μm.
A modified blast furnace slag characterized by being covered with a coating of water gypsum.
JP2000003725A 2000-01-12 2000-01-12 Surface modification method for blast furnace slag and modified blast furnace slag Pending JP2001199749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000003725A JP2001199749A (en) 2000-01-12 2000-01-12 Surface modification method for blast furnace slag and modified blast furnace slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000003725A JP2001199749A (en) 2000-01-12 2000-01-12 Surface modification method for blast furnace slag and modified blast furnace slag

Publications (1)

Publication Number Publication Date
JP2001199749A true JP2001199749A (en) 2001-07-24

Family

ID=18532622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000003725A Pending JP2001199749A (en) 2000-01-12 2000-01-12 Surface modification method for blast furnace slag and modified blast furnace slag

Country Status (1)

Country Link
JP (1) JP2001199749A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282432A (en) * 2005-03-31 2006-10-19 Taihei Kogyo Co Ltd Method for treating water-granulated blastfurnace slag
JP2013103849A (en) * 2011-11-11 2013-05-30 Univ Of Tokyo Cement admixture and cement composition
CN114380561A (en) * 2022-02-23 2022-04-22 中交二公局萌兴工程有限公司 Coal-fired furnace slag-based foam light soil and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323326A (en) * 1976-08-17 1978-03-03 Nippon Steel Corp Modified blast furnace slag production apparatus
JPS541486B2 (en) * 1971-12-20 1979-01-25
JPS54149398A (en) * 1978-05-17 1979-11-22 Hamada Juko Method of producing roadbed material from steel slag
JPS5515985A (en) * 1978-07-21 1980-02-04 Hamada Juko High basic slag dust prevention
JPS58167709A (en) * 1982-03-29 1983-10-04 Nippon Kokan Kk <Nkk> Method of reforming converter furnace slag
JPS6036357A (en) * 1983-08-08 1985-02-25 日新製鋼株式会社 Steel slag treatment
JPH0672746A (en) * 1992-08-25 1994-03-15 Kawasaki Steel Corp Method for reforming steel making slag
JPH0692697A (en) * 1992-09-16 1994-04-05 Kawasaki Steel Corp Method for modifying slag of steel manufacture
JPH1053441A (en) * 1996-08-02 1998-02-24 Nisshin Steel Co Ltd Modification of iron slag

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541486B2 (en) * 1971-12-20 1979-01-25
JPS5323326A (en) * 1976-08-17 1978-03-03 Nippon Steel Corp Modified blast furnace slag production apparatus
JPS54149398A (en) * 1978-05-17 1979-11-22 Hamada Juko Method of producing roadbed material from steel slag
JPS5515985A (en) * 1978-07-21 1980-02-04 Hamada Juko High basic slag dust prevention
JPS58167709A (en) * 1982-03-29 1983-10-04 Nippon Kokan Kk <Nkk> Method of reforming converter furnace slag
JPS6036357A (en) * 1983-08-08 1985-02-25 日新製鋼株式会社 Steel slag treatment
JPH0672746A (en) * 1992-08-25 1994-03-15 Kawasaki Steel Corp Method for reforming steel making slag
JPH0692697A (en) * 1992-09-16 1994-04-05 Kawasaki Steel Corp Method for modifying slag of steel manufacture
JPH1053441A (en) * 1996-08-02 1998-02-24 Nisshin Steel Co Ltd Modification of iron slag

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282432A (en) * 2005-03-31 2006-10-19 Taihei Kogyo Co Ltd Method for treating water-granulated blastfurnace slag
JP2013103849A (en) * 2011-11-11 2013-05-30 Univ Of Tokyo Cement admixture and cement composition
CN114380561A (en) * 2022-02-23 2022-04-22 中交二公局萌兴工程有限公司 Coal-fired furnace slag-based foam light soil and preparation method thereof

Similar Documents

Publication Publication Date Title
Sainudin et al. Performance of concrete containing mussel shell (Perna viridis) ash under effect of sodium chloride curing
JP6662046B2 (en) Method for producing solidified body containing mud
JP2008100915A (en) Method for manufacturing siliceous acid fertilizer
CN109095877B (en) Soil body curing agent, preparation method thereof and soil curing method
CN113860792B (en) Magnesium oxychloride cement modifier, preparation method thereof and magnesium oxychloride cement
JP2001199749A (en) Surface modification method for blast furnace slag and modified blast furnace slag
JP6044565B2 (en) Acid soil improvement material
KR19980080729A (en) METHOD AND APPARATUS FOR MANUFACTURING CHLORIDE OXIDE-CONTAINING MATERIALS
TWI682916B (en) Method of manufacturing binder material, cured mortar and cured mortar forming by thereof
JP4736157B2 (en) Solidification method of steelmaking slag
JP2003120041A (en) Repair method for concrete deteriorated by salt damage
JP2002179451A (en) Concrete or mortar using slag aggregate
JP4092667B2 (en) Method for converting iron-containing residues into artificial rock
JP3221564B2 (en) Method for treating chromium oxide-containing material
JP5470699B2 (en) Detoxification method for heavy metal-containing basic waste
JP2010150095A (en) Method for producing civil engineering and building material
JP2009233490A (en) Method of treating incinerated residue
Devi et al. A Study on Application of Pickling Sludge in Pavements Tiles
KR100878682B1 (en) Method for controlling formation of strong alkaline steel-making slag dissolution water
KR100674623B1 (en) Calcium based material handling method for inhibiting ph increase of calcium based dissolution water
JP4796423B2 (en) Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same
JP2004292206A (en) Good-quality aggregate for concrete, and method of manufacturing the same
SU1209636A1 (en) Binder
JP6686982B2 (en) Method for reducing chromium oxide-containing substance and method for manufacturing civil engineering material
JP2005095809A (en) Treatment method for concrete scrap

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100511