JP2001199702A - Apparatus for hydrogen generation, method of operation thereof and fuel cell system using the apparatus - Google Patents

Apparatus for hydrogen generation, method of operation thereof and fuel cell system using the apparatus

Info

Publication number
JP2001199702A
JP2001199702A JP2000005502A JP2000005502A JP2001199702A JP 2001199702 A JP2001199702 A JP 2001199702A JP 2000005502 A JP2000005502 A JP 2000005502A JP 2000005502 A JP2000005502 A JP 2000005502A JP 2001199702 A JP2001199702 A JP 2001199702A
Authority
JP
Japan
Prior art keywords
gas
condensed water
section
fuel cell
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000005502A
Other languages
Japanese (ja)
Other versions
JP2001199702A5 (en
Inventor
Yutaka Yoshida
豊 吉田
Takeshi Tomizawa
猛 富澤
Tomomichi Asou
智倫 麻生
Kunihiro Ukai
邦弘 鵜飼
Akira Maenishi
晃 前西
Kiyoshi Taguchi
清 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000005502A priority Critical patent/JP2001199702A/en
Priority to KR10-2001-7010129A priority patent/KR100399993B1/en
Priority to EP00987776A priority patent/EP1162679A4/en
Priority to KR10-2003-7009473A priority patent/KR100427165B1/en
Priority to CNB008043825A priority patent/CN1178322C/en
Priority to US09/914,376 priority patent/US6797420B2/en
Priority to PCT/JP2000/009363 priority patent/WO2001048851A1/en
Priority to CNB2004100422902A priority patent/CN1280933C/en
Publication of JP2001199702A publication Critical patent/JP2001199702A/en
Publication of JP2001199702A5 publication Critical patent/JP2001199702A5/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To solve a problem that it takes long time before the temperature of the catalyst in a cleaning section reaches the active temperature since condensed water accumulates in a pass way and heat is required for vaporizing the accumulated condensed water when the operation is stopped in a short time after the start of the operation and thereafter the operation is restarted in a hydrogen generation apparatus comprising a reforming section, a degeneration section and the cleaning section. SOLUTION: A discharging port for the condensed water is formed in the pass way of the generated gas, and the condensed water is discharged from the port. Further, the open motion of the shut-off valve is limited in a specific time to prevent the discharge of hydrogen gas in the middle way of the generation. The motion of the shut-off valve is synchronized with the operation for the purge inside the pass way for the generated gas by an inert gas, which is performed before start-up, so that the condensed water in the pass way is surely discharged through the pushing out to the discharging port for the condensed water with high pressure in the purge before start-up. The effluent which is discharged from the discharging port for the condensed water is led to a recovery section for condensed water recovered from the discharge gas of a polymer electrolyte type fuel cell, and the effluent is recovered without draining outside.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、天然ガス、LP
G、ガソリン、ナフサ、灯油、メタノール等炭化水素系
物質と水と空気とを原料として、燃料電池等の水素利用
機器に供給するための水素を発生する装置に関する。
The present invention relates to natural gas, LP
The present invention relates to a device that generates hydrogen to be supplied to a hydrogen utilization device such as a fuel cell, using a hydrocarbon-based substance such as G, gasoline, naphtha, kerosene, and methanol, water and air as raw materials.

【0002】[0002]

【従来の技術】化石燃料に替わるエネルギー源の有力候
補の一つとして水素が注目されているが、その有効利用
のためには水素パイプライン等、社会インフラの整備が
必要とされている。その一つの方法として、天然ガス、
その他化石燃料、アルコール等現状既に構築されている
運送、搬送等のインフラを利用し、水素を必要とする場
所でそれら燃料を改質して水素を発生させる方法が検討
されている。
2. Description of the Related Art Hydrogen has attracted attention as one of the promising energy sources to replace fossil fuels, but it is necessary to improve social infrastructure such as hydrogen pipelines for its effective use. One way is to use natural gas,
In addition, a method of generating hydrogen by reforming the fuel at a place where hydrogen is needed by utilizing the already established transportation and transportation infrastructure such as fossil fuel and alcohol is being studied.

【0003】例えば、中小規模でのオンサイト発電装置
として、燃料電池のための天然ガス(都市ガス)改質技
術、自動車の動力源用の燃料電池のためのメタノール改
質技術等が、様々な形で提案されている。それらの原料
を改質して水素を発生させるためには高温での触媒反応
が用いられ、代表的な方法として水蒸気改質方法、部分
酸化を併用したオートサーマル方法がある。
For example, various on-site power generators for small and medium-scale applications include natural gas (city gas) reforming technology for fuel cells and methanol reforming technology for fuel cells for automobile power sources. Proposed in form. In order to generate hydrogen by reforming these raw materials, a catalytic reaction at a high temperature is used, and typical methods include a steam reforming method and an autothermal method using partial oxidation in combination.

【0004】しかし、改質反応は高温で進行するため生
成物としての水素とともに、その反応平衡から副生成物
として一酸化炭素(以下COと記述)、二酸化炭素(以
下CO2と記述)が生成する。生成した水素を燃料電池
に適用するとき、特に高分子電解質型燃料電池では、副
生成物であるCOは燃料電池の電極を被毒して、その性
能を著しく劣化させるため、極力低濃度にしておく必要
がある。そのため、改質反応部の下流側に、変成反応
部、CO浄化部を付加して、CO濃度を数十ppmにま
で低下させる方法を採用するのが一般的である。この一
連の反応で、改質部で生成される10%程度の濃度のC
Oは、変成部で1%前後まで低減され、さらにCO浄化
部で数十ppmまで低減され、燃料電池に供給される。
However, since the reforming reaction proceeds at a high temperature, along with hydrogen as a product, carbon monoxide (hereinafter referred to as CO) and carbon dioxide (hereinafter referred to as CO2) are produced as by-products from the reaction equilibrium. . When applying the generated hydrogen to a fuel cell, especially in a polymer electrolyte fuel cell, the by-product CO poisons the electrode of the fuel cell and significantly degrades its performance. Need to be kept. Therefore, it is common to employ a method of adding a shift reaction section and a CO purification section downstream of the reforming reaction section to reduce the CO concentration to several tens of ppm. In this series of reactions, the C concentration of about 10% generated in the reforming section
O is reduced to about 1% in the shift section, and further reduced to several tens ppm in the CO purification section, and supplied to the fuel cell.

【0005】[0005]

【発明が解決しようとする課題】燃料電池、特に高分子
電解質型燃料電池に水素を供給するための水素発生器
は、従来例に示したように、改質反応、変成反応、CO
浄化反応を経由するのが一般的である。各反応における
一般的な触媒温度は、改質部が650〜750℃、変性
部が200〜350℃、浄化部が100〜200℃であ
り、特に浄化部はその温度領域に達しないとCOを数十
ppmまで低減することができないので、燃料電池につ
なぐことができない。
A hydrogen generator for supplying hydrogen to a fuel cell, particularly a polymer electrolyte fuel cell, comprises a reforming reaction, a shift reaction,
It is common to go through a purification reaction. The general catalyst temperature in each reaction is 650 to 750 ° C. in the reforming section, 200 to 350 ° C. in the denaturing section, and 100 to 200 ° C. in the purifying section. Since it cannot be reduced to tens of ppm, it cannot be connected to a fuel cell.

【0006】従って燃料電池の起動時間は、浄化部の触
媒温度の立ち上がり時間で律速される。変性部は、改質
反応の終了後の廃熱で触媒が活性温度に達し反応を開始
する。またCO浄化部は、変性反応の終了後の廃熱で活
性温度に達し反応を開始する。しかし、この構成では運
転操作方法により、水素ガス生成の際の凝縮水が経路内
にたまり、触媒温度の立ち上がり時間を遅らせることが
ある。
Accordingly, the start-up time of the fuel cell is limited by the rise time of the catalyst temperature in the purifying section. In the denaturing section, the catalyst reaches the activation temperature by the waste heat after the end of the reforming reaction, and starts the reaction. Further, the CO purifying section reaches the activation temperature by the waste heat after the end of the denaturation reaction and starts the reaction. However, in this configuration, depending on the operation method, condensed water during the generation of hydrogen gas may accumulate in the passage, and the rise time of the catalyst temperature may be delayed.

【0007】たとえば、運転開始後、短時間で運転を停
止した時、変性部及び浄化部の温度が十分に上昇してい
ないとき、改質部で改質されたガス(以降、改質ガスと
よぶ)、及びその後、変性部で変性されたガス(以降、
変性ガスとよぶ)の水分が凝縮し、凝縮水となって浄化
部下部にたまる。その状態で再運転したとき、たまった
凝縮水を蒸発させるために熱が必要となるため、浄化触
媒を活性温度にまで昇温させる時間が長くかかる。
For example, when the operation is stopped for a short time after the start of operation, when the temperatures of the reforming section and the purifying section are not sufficiently increased, the gas reformed in the reforming section (hereinafter referred to as reformed gas). ), And then the gas modified in the modification section (hereinafter, referred to as
Water (denatured gas) is condensed and condensed water accumulates in the lower part of the purification unit. When the operation is restarted in that state, since heat is required to evaporate the accumulated condensed water, it takes a long time to raise the temperature of the purification catalyst to the activation temperature.

【0008】本発明はそれらの点に鑑みて成されたもの
であり、浄化部の触媒活性温度に到達するまでの時間を
短縮することを目的としたものである。
The present invention has been made in view of these points, and has as its object to reduce the time required to reach the catalyst activation temperature of the purifying section.

【0009】[0009]

【課題を解決するための手段】本発明の水素生成装置は
上記課題を解決するために、原料供給部と、水供給部
と、空気供給部と、前記原料と水とを反応させる改質触
媒体を具備した改質部と、一酸化炭素と水とを反応させ
る変成触媒体を具備した変成部と、一酸化炭素を酸化す
る浄化触媒体を具備した浄化部と、前記浄化部を通過し
た生成ガスを排出する生成ガス排出部と、前記原料供給
部と前記改質部と前記変成部と前記浄化部と前記生成ガ
ス排出部とを連通するガス通気経路とを構成要素とする
水素生成装置において、前記改質部、前記変性部、前記
浄化部、前記生成ガス排出部または前記ガス通気経路の
少なくとも一カ所に凝縮水排出口を設けたことを特徴と
する。
In order to solve the above-mentioned problems, a hydrogen generator of the present invention has a raw material supply section, a water supply section, an air supply section, and a reforming catalyst for reacting the raw material with water. A reforming section having a medium, a shift section having a shift catalyst for reacting carbon monoxide with water, a shift section having a shift catalytic body for oxidizing carbon monoxide, and passing through the shift section. A hydrogen generation apparatus including a product gas discharge unit that discharges product gas, and a gas ventilation path that communicates the raw material supply unit, the reforming unit, the shift unit, the purification unit, and the product gas discharge unit. Wherein a condensed water discharge port is provided in at least one of the reforming section, the reforming section, the purification section, the generated gas discharge section, and the gas ventilation path.

【0010】このとき、凝縮水排出口に開閉弁を設けた
ことが有効である。
At this time, it is effective to provide an on-off valve at the condensed water discharge port.

【0011】また、起動時の一定時間、凝縮水排出口の
開閉弁の開動作を行うことが望ましい。
It is desirable that the opening / closing valve of the condensed water discharge port be opened for a certain period of time at the time of startup.

【0012】また、起動前に、不活性ガス注入によるパ
ージ運転始動と凝縮水排出口の開閉弁の開動作とを同期
させることが有効である。
Further, it is effective to synchronize the start of the purge operation due to the injection of the inert gas and the opening operation of the on-off valve of the condensed water discharge port before starting.

【0013】また本発明は、水素発生装置が生成する水
素ガスと、酸化剤ガスとを燃料とする高分子電解質型燃
料電池を用いた燃料電池システムであって、前記高分子
電解質型燃料電池が排出する排ガスから水を回収する水
回収部を設け、前記水素発生装置に設けた凝縮水排出口
から排出される排出水を前記水回収部に導入することを
特徴とする。これにより、燃料電池からの排出水を外部
に垂れ流すことなく回収するものである。このとき、水
回収部よりも上部に水素発生装置の凝縮水排出口を設け
ることにより、重力で水の流れが生じ、水回収部への水
の回収を容易にすることができる。
Further, the present invention is a fuel cell system using a polymer electrolyte fuel cell that uses hydrogen gas generated by a hydrogen generator and an oxidizing gas as fuel, wherein the polymer electrolyte fuel cell is used. A water recovery unit for recovering water from discharged exhaust gas is provided, and discharged water discharged from a condensed water discharge port provided in the hydrogen generator is introduced into the water recovery unit. Thus, the water discharged from the fuel cell is collected without dripping to the outside. At this time, by providing the condensed water discharge port of the hydrogen generator above the water recovery unit, the flow of water is generated by gravity, and the water can be easily recovered to the water recovery unit.

【0014】[0014]

【発明の実施の形態】(実施の形態1)本発明の第1の
実施の形態を図1とともに説明する。
(Embodiment 1) A first embodiment of the present invention will be described with reference to FIG.

【0015】図1に、本実施形態の水素発生装置の概略
構成を示した。1は内部に改質触媒としてルテニウムを
用い、これをアルミナに担持したものを充填した改質
部、2は変成触媒として白金をCeO2に担持したもの
を充填した変成部、3はCO浄化触媒として白金−ルテ
ニウムの混合物をアルミナに担持してものを充填したC
O浄化部である。触媒を担持する担体は形状として粒
状、ペレット状、ハニカム状等から、材質はセラミッ
ク、耐熱性金属等から適宜選択できるものである。4は
燃料供給部であり、天然ガス(都市ガス)、LPG等の
気体状炭化水素燃料あるいはガソリン、灯油、メタノー
ル等の液体状炭化水素系燃料が用いられる。5は水供給
部、6は水蒸気発生部であり、7は改質部への水蒸気供
給部A、8は変性部への水蒸気供給部Bである。9は加
熱部であり、改質部1の触媒と水蒸気発生部6を加熱す
る。10は不活性ガスによるパージガス供給部であり、
起動前に水素生成経路内の可燃性ガスのパージを行う。
11は浄化部3への浄化用空気供給部、12浄化部下部
に設けた凝縮水排出口、13は生成水素リッチガス出口
である。
FIG. 1 shows a schematic configuration of the hydrogen generator of the present embodiment. Reference numeral 1 denotes a reforming section in which ruthenium is used as a reforming catalyst and which is loaded with alumina supported on alumina; 2 is a metamorphic section in which platinum is supported on CeO 2 as a conversion catalyst; and 3 is a CO purification catalyst. As a mixture of platinum-ruthenium supported on alumina and filled with C
O purification unit. The carrier for supporting the catalyst can be appropriately selected from granules, pellets, honeycombs, and the like, and the material can be appropriately selected from ceramics, heat-resistant metals, and the like. Reference numeral 4 denotes a fuel supply unit, which uses a gaseous hydrocarbon fuel such as natural gas (city gas) or LPG or a liquid hydrocarbon fuel such as gasoline, kerosene, or methanol. Reference numeral 5 denotes a water supply section, 6 denotes a steam generation section, 7 denotes a steam supply section A to the reforming section, and 8 denotes a steam supply section B to the denaturation section. A heating unit 9 heats the catalyst of the reforming unit 1 and the steam generating unit 6. 10 is a purge gas supply unit using an inert gas,
Before starting, the combustible gas in the hydrogen generation path is purged.
Reference numeral 11 denotes a purifying air supply unit to the purifying unit 3, 12 a condensed water discharge port provided below the purifying unit, and 13 denotes a generated hydrogen rich gas outlet.

【0016】起動時の動作を以下に説明する。加熱部9
により、改質部1と水蒸気発生部6を加熱する。改質部
1を所定レベルまで加熱後、燃料供給部4から燃料を改
質部1へ、水供給部5から水を水蒸気発生部6へとそれ
ぞれ供給を開始させる。水蒸気発生部6で発生した水蒸
気のうち一部は水蒸気供給部7へ、一部は水蒸気供給部
8へ供給される。水蒸気供給部7より改質部1へ供給さ
れた水蒸気と燃料供給部4から供給された燃料とが混合
し、改質触媒部へ達し改質反応が開始される。改質ガス
は水蒸気供給部8より供給された水蒸気と混合され、変
性反応を行うために変性部に達する。変性ガスは浄化用
空気供給部11より供給された空気と混合され、浄化部
3へ達し浄化され、水素リッチガスとなって生成水素リ
ッチガス出口13より排出される。
The operation at the time of startup will be described below. Heating unit 9
Thereby, the reforming section 1 and the steam generating section 6 are heated. After heating the reforming section 1 to a predetermined level, supply of fuel from the fuel supply section 4 to the reforming section 1 and supply of water from the water supply section 5 to the steam generation section 6 are started. Part of the steam generated by the steam generator 6 is supplied to the steam supply unit 7 and part of the steam is supplied to the steam supply unit 8. The steam supplied from the steam supply section 7 to the reforming section 1 and the fuel supplied from the fuel supply section 4 are mixed, reach the reforming catalyst section, and the reforming reaction is started. The reformed gas is mixed with the steam supplied from the steam supply unit 8 and reaches the denaturation unit for performing a denaturation reaction. The modified gas is mixed with the air supplied from the purification air supply unit 11, reaches the purification unit 3, is purified, becomes a hydrogen-rich gas, and is discharged from the generated hydrogen-rich gas outlet 13.

【0017】以上の構成では、たとえば、運転開始後短
時間で運転を停止した時では、変性部及び浄化部の温度
が十分に上昇していないので、改質ガス及び変性ガスの
水分が凝縮し、凝縮水となってたとえば浄化部下部にた
まる。その状態で再運転すると、たまった凝縮水を蒸発
させるために熱が必要となるため、浄化触媒を活性温度
にまで昇温させる時間が長くかかる。それを防ぐために
本実施の形態では、凝縮水排出口12を設け、凝縮水を
排出させる。
In the above configuration, for example, when the operation is stopped in a short time after the start of the operation, the temperatures of the reforming section and the purifying section are not sufficiently increased, so that the reformed gas and the moisture of the modified gas are condensed. As condensed water, for example, accumulates in the lower part of the purification unit. If the operation is restarted in this state, since heat is required to evaporate the accumulated condensed water, it takes a long time to raise the temperature of the purification catalyst to the activation temperature. In order to prevent this, in the present embodiment, a condensed water discharge port 12 is provided to discharge the condensed water.

【0018】(実施の形態2)本発明の第2の実施の形
態を図2とともに説明する。
(Embodiment 2) A second embodiment of the present invention will be described with reference to FIG.

【0019】図2に、本実施形態の水素発生装置の概略
構成を示した。本実施の形態では、第1の実施形態にプ
ラスして凝縮水排出口12に開閉弁を設け、開閉動作を
容易に行える構成とした。
FIG. 2 shows a schematic configuration of the hydrogen generator of the present embodiment. In the present embodiment, an opening / closing valve is provided at the condensed water discharge port 12 in addition to the first embodiment, so that the opening / closing operation can be easily performed.

【0020】(実施の形態3)本発明の第3の実施形態
では、第2の実施形態において、運転開始時及び再運転
開始時の一定時間、開閉弁の開動作を行う。一定時間の
規定は、開動作開始からの時間を測定して規定する方
法、または凝縮水排出口12近傍部の凝縮水有無の判断
をするに適当な位置の温度情報をもとに規定する方法と
がある。これにより、凝縮水がなくなったにもかかわら
ず開閉弁が開き放しになり生成途中の水素リッチガスが
排出してしまうことを防ぐことができる。
(Embodiment 3) In a third embodiment of the present invention, in the second embodiment, the opening / closing valve is opened for a certain period of time at the start of operation and at the start of restart. The prescribed time is defined by measuring the time from the start of the opening operation or by defining the temperature based on temperature information at an appropriate position for judging the presence or absence of condensed water near the condensed water discharge port 12. There is. Accordingly, it is possible to prevent the on-off valve from being opened and the hydrogen-rich gas being generated being discharged even though the condensed water has disappeared.

【0021】(実施の形態4)本発明の第4の実施形態
では、第2の実施例において、起動前に、不活性ガス注
入によるパージ運転始動と凝縮水排出口の開閉弁の開動
作とを同期させる。すなわちパージ運転開始とともに開
閉弁を開とし、パージ運転終了とともに開閉弁を閉にす
る。これにより、運転開始及び再運転開始前に確実に、
パージ運転による高圧力で経路内の凝縮水を凝縮水排出
口へ押し出し排出することができる。
(Embodiment 4) In a fourth embodiment of the present invention, in the second embodiment, before the start, the purge operation is started by injecting an inert gas and the opening / closing operation of the opening / closing valve of the condensed water outlet is performed. To synchronize. That is, the on-off valve is opened when the purge operation starts, and the on-off valve is closed when the purge operation ends. This ensures that before starting operation and restarting operation,
The condensed water in the passage can be pushed out and discharged to the condensed water discharge port at a high pressure by the purge operation.

【0022】(実施の形態5)本発明の第5の実施形態
を図3で説明する。14は高分子電解質型燃料電池、1
5は酸化剤ガス供給部、16は凝縮水回収タンク、17
は凝縮器である。加熱部9により、改質部1と水蒸気発
生部6を加熱する。改質部1を所定レベルまで加熱後、
燃料供給部4から燃料を改質部1へ、水供給部5から水
を水蒸気発生部6へとそれぞれ供給を開始させる。水蒸
気発生部6で発生した水蒸気のうち一部は水蒸気供給部
7へ、一部は水蒸気供給部8へ供給される。水蒸気供給
部7より改質部1へ供給された水蒸気と燃料供給部4か
ら供給された燃料とが混合し、改質触媒部へ達し改質反
応される。改質ガスは水蒸気供給部8より供給された水
蒸気と混合され、変成反応を行うために変成部に達す
る。
(Embodiment 5) A fifth embodiment of the present invention will be described with reference to FIG. 14 is a polymer electrolyte fuel cell, 1
5 is an oxidizing gas supply unit, 16 is a condensed water recovery tank, 17
Is a condenser. The heating section 9 heats the reforming section 1 and the steam generating section 6. After heating the reforming unit 1 to a predetermined level,
The supply of fuel from the fuel supply unit 4 to the reforming unit 1 and the supply of water from the water supply unit 5 to the steam generation unit 6 are started. Part of the steam generated by the steam generator 6 is supplied to the steam supply unit 7 and part of the steam is supplied to the steam supply unit 8. The steam supplied from the steam supply unit 7 to the reforming unit 1 and the fuel supplied from the fuel supply unit 4 are mixed, reach the reforming catalyst unit, and undergo a reforming reaction. The reformed gas is mixed with the steam supplied from the steam supply unit 8, and reaches the shift unit for performing the shift reaction.

【0023】変成ガスは浄化空気供給部11より供給さ
れた空気と混合され、浄化部3へ達し浄化され、水素リ
ッチガスとなって生成水素リッチガス出口13より排出
される。生成水素リッチガスと酸化剤ガス供給部15よ
り供給された酸化剤ガスとを用いて、高分子電解質型燃
料電池14で発電が行われ、高分子電解質型燃料電池1
4から排出されるガスは凝縮器17により水分が凝縮さ
れ、凝縮水回収部16に回収される。この構成におい
て、凝縮水排出口12から排出される凝縮水を凝縮水回
収タンク16に導入する。これにより排出水を外部に垂
れ流すことなく回収することができる。このとき、凝縮
水回収部16よりも凝縮水排出口12のほうが上部にな
る構成とする。これにより、重力で水の流れが生じ、凝
縮水の回収がしやすなる。
The metamorphic gas is mixed with the air supplied from the purified air supply unit 11, reaches the purification unit 3, is purified, becomes a hydrogen-rich gas, and is discharged from the generated hydrogen-rich gas outlet 13. Using the generated hydrogen-rich gas and the oxidizing gas supplied from the oxidizing gas supply unit 15, power generation is performed in the polymer electrolyte fuel cell 14, and the polymer electrolyte fuel cell 1
The gas discharged from 4 is condensed with water by a condenser 17 and collected by a condensed water collecting unit 16. In this configuration, the condensed water discharged from the condensed water discharge port 12 is introduced into the condensed water recovery tank 16. As a result, the discharged water can be collected without dripping to the outside. At this time, the condensed water discharge port 12 is configured to be higher than the condensed water recovery unit 16. Thereby, a flow of water is generated by gravity, and condensed water is easily collected.

【0024】[0024]

【発明の効果】本発明による効果を以下に示す。The effects of the present invention will be described below.

【0025】1.改質部、変成部、浄化部、生成ガス排
出部または前記ガス通気経路の少なくとも一カ所中に凝
縮水排出口を設けたことにより、運転開始後短時間で運
転を停止しその後再運転を行う時等に経路中にたまる凝
縮水を抜くことができ、浄化部の触媒活性温度に到達す
るまでの時間すなわち燃料電池の起動時間を短縮でき
る。
1. By providing a condensed water discharge port in at least one of the reforming section, the shift section, the purification section, the generated gas discharge section or the gas ventilation path, the operation is stopped in a short time after the start of the operation, and then restarted. Condensed water that accumulates in the passage at times or the like can be drained, and the time required to reach the catalyst activation temperature of the purification unit, that is, the startup time of the fuel cell can be reduced.

【0026】2.凝縮水排出口部に開閉弁を設けること
により、開閉動作を容易に行うことができる。
2. By providing an on-off valve at the condensed water discharge port, the on-off operation can be easily performed.

【0027】3.開閉弁の開動作を運転開始時及び再運
転開始時の一定時間と規定することにより、凝縮水がな
くなったにもかかわらず、開閉弁が開き放しになり生成
途中のガスが排出してしまうことを防ぐことができる。
3. By defining the opening operation of the on-off valve as a fixed time at the start of operation and at the start of re-operation, even if condensed water is exhausted, the on-off valve is left open and the gas being generated is discharged. Can be prevented.

【0028】4.開閉弁の動作は運転開始前及び再運転
開始前に行う不活性ガスによる生成ガスの生成経路内の
パージ運転に同期させることにより、運転開始及び再運
転開始前に確実に、パージ運転による高圧力で経路内の
凝縮水を凝縮水排出口へ押し出し排出することができ
る。
4. The operation of the on-off valve is synchronized with the purge operation in the generation path of the generated gas by the inert gas performed before the start of the operation and before the restart of the operation, so that the high pressure by the purge operation can be surely obtained before the start of the operation and the restart of the operation , The condensed water in the path can be pushed out to the condensed water discharge port and discharged.

【0029】5.高分子電解質型燃料電池から排出され
るガスから回収した凝縮水回収部に、凝縮水排出口から
排出される排出水を導入することにより排出水を外部に
垂れ流すことなく回収することができる。このとき、凝
縮水回収部よりも凝縮水排出口のほうを上部に構成する
ことにより、重力で水の流れが生じ、凝縮水回収部へ回
収しやすくできる。
5. By introducing the discharged water discharged from the condensed water discharge port into the condensed water collecting section recovered from the gas discharged from the polymer electrolyte fuel cell, the discharged water can be collected without dripping to the outside. At this time, by forming the condensed water discharge port on the upper side of the condensed water recovery section, the flow of water is generated by gravity, and the water can be easily collected in the condensed water recovery section.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態である水素発生装置の
構成を示した図
FIG. 1 is a diagram showing a configuration of a hydrogen generator according to a first embodiment of the present invention.

【図2】本発明の第2の実施形態である水素発生装置の
構成を示した図
FIG. 2 is a diagram showing a configuration of a hydrogen generator according to a second embodiment of the present invention.

【図3】本発明の第5の実施形態である燃料電池システ
ムの構成を示した図
FIG. 3 is a diagram showing a configuration of a fuel cell system according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 改質部 2 変成部 3 CO浄化部 4 燃料供給部 5 水供給部 6 水蒸気発生部 7 水蒸気供給部A 8 水蒸気供給部B 9 加熱部 10 パージガス供給部 11 浄化空気供給部 12 凝縮水排出口 13 水素リッチガス生成出口 14 高分子電解質型燃料電池 15 酸化剤ガス供給部 16 凝縮水回収部 17 凝縮器 DESCRIPTION OF SYMBOLS 1 Reforming part 2 Metamorphic part 3 CO purification part 4 Fuel supply part 5 Water supply part 6 Steam generation part 7 Steam supply part A 8 Steam supply part B 9 Heating part 10 Purge gas supply part 11 Purified air supply part 12 Condensed water discharge port 13 Hydrogen-rich gas generation outlet 14 Polymer electrolyte fuel cell 15 Oxidant gas supply section 16 Condensed water recovery section 17 Condenser

───────────────────────────────────────────────────── フロントページの続き (72)発明者 麻生 智倫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 鵜飼 邦弘 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 前西 晃 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 田口 清 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4G040 EA02 EA03 EA06 EA07 EB41 EB43 EB45 5H026 AA06 5H027 AA06 BA01 BA17 MM12  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Chinori Aso 1006 Kadoma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Inventor Kunihiro Ukai 1006 Odaka Kadoma Kadoma City, Osaka Matsushita Electric Industrial Co. (72) Inventor Akira Maenishi 1006 Kadoma, Kazuma, Osaka Pref. Matsushita Electric Industrial Co., Ltd. (72) Inventor Kiyoshi Taguchi 1006 Odaka, Kazuma Kadoma, Osaka Pref. Matsushita Electric Industrial Co., Ltd. EA03 EA06 EA07 EB41 EB43 EB45 5H026 AA06 5H027 AA06 BA01 BA17 MM12

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 原料供給部と、水供給部と、空気供給部
と、前記原料と水とを反応させる改質触媒体を具備した
改質部と、一酸化炭素と水とを反応させる変成触媒体を
具備した変成部と、一酸化炭素を酸化する浄化触媒体を
具備した浄化部と、前記浄化部を通過した生成ガスを排
出する生成ガス排出部と、前記原料供給部と前記改質部
と前記変成部と前記浄化部と前記生成ガス排出部とを連
通するガス通気経路とを構成要素とする水素生成装置に
おいて、前記改質部、前記変成部、前記浄化部、前記生
成ガス排出部または前記ガス通気経路の少なくとも一カ
所に凝縮水排出口を設けたことを特徴とする水素生成装
置。
1. A raw material supply unit, a water supply unit, an air supply unit, a reforming unit including a reforming catalyst for reacting the raw material with water, and a conversion unit for reacting carbon monoxide with water. A shift section provided with a catalyst, a purification section provided with a purification catalyst for oxidizing carbon monoxide, a product gas discharge section discharging the product gas passing through the purification section, the raw material supply section and the reforming section. A hydrogen gas generator that includes a gas passage that communicates with a gas generator, a gas converter, a purifier, and a generated gas discharge unit. A hydrogen generator, wherein a condensed water discharge port is provided in at least one of the section and the gas ventilation path.
【請求項2】 凝縮水排出口に開閉弁を設けたことを特
徴とする請求項1記載の水素発生装置。
2. The hydrogen generator according to claim 1, wherein an on-off valve is provided at the condensed water discharge port.
【請求項3】 起動時の一定時間、凝縮水排出口の開閉
弁の開動作を行うことを特徴とする請求項2記載の水素
発生装置の運転方法。
3. The method for operating a hydrogen generator according to claim 2, wherein the opening / closing valve of the condensed water discharge port is opened for a certain period of time upon startup.
【請求項4】 起動前に、不活性ガス注入によるパージ
運転始動と凝縮水排出口の開閉弁の開動作とを同期させ
ることを特徴とする請求項2または3記載の水素発生装
置の運転方法。
4. The method for operating a hydrogen generator according to claim 2, wherein the purge operation start by injecting an inert gas and the opening operation of the on-off valve of the condensed water discharge port are synchronized before starting. .
【請求項5】 請求項1または2記載の水素発生装置が
生成する水素ガスと、酸化剤ガスとを燃料とする高分子
電解質型燃料電池を用いた燃料電池システムであって、
前記高分子電解質型燃料電池が排出する排ガスから水を
回収する水回収部を設け、前記水素発生装置に設けた凝
縮水排出口から排出される排出水を前記水回収部に導入
することを特徴とする燃料電池システム。
5. A fuel cell system using a polymer electrolyte fuel cell using a hydrogen gas generated by the hydrogen generator according to claim 1 and an oxidant gas as fuel,
A water recovery unit for recovering water from exhaust gas discharged by the polymer electrolyte fuel cell is provided, and discharged water discharged from a condensed water discharge port provided in the hydrogen generator is introduced into the water recovery unit. And fuel cell system.
JP2000005502A 1999-12-28 2000-01-14 Apparatus for hydrogen generation, method of operation thereof and fuel cell system using the apparatus Withdrawn JP2001199702A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2000005502A JP2001199702A (en) 2000-01-14 2000-01-14 Apparatus for hydrogen generation, method of operation thereof and fuel cell system using the apparatus
KR10-2001-7010129A KR100399993B1 (en) 1999-12-28 2000-12-27 Power generation device
EP00987776A EP1162679A4 (en) 1999-12-28 2000-12-27 Power generation device and operation method therefor
KR10-2003-7009473A KR100427165B1 (en) 1999-12-28 2000-12-27 Hydrogen generator
CNB008043825A CN1178322C (en) 1999-12-28 2000-12-27 Power generation device and operation method therefor
US09/914,376 US6797420B2 (en) 1999-12-28 2000-12-27 Power generation device and operation method therefor
PCT/JP2000/009363 WO2001048851A1 (en) 1999-12-28 2000-12-27 Power generation device and operation method therefor
CNB2004100422902A CN1280933C (en) 1999-12-28 2000-12-27 Power generation device and operation method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000005502A JP2001199702A (en) 2000-01-14 2000-01-14 Apparatus for hydrogen generation, method of operation thereof and fuel cell system using the apparatus

Publications (2)

Publication Number Publication Date
JP2001199702A true JP2001199702A (en) 2001-07-24
JP2001199702A5 JP2001199702A5 (en) 2007-01-25

Family

ID=18534162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000005502A Withdrawn JP2001199702A (en) 1999-12-28 2000-01-14 Apparatus for hydrogen generation, method of operation thereof and fuel cell system using the apparatus

Country Status (1)

Country Link
JP (1) JP2001199702A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179402A (en) * 2000-12-11 2002-06-26 Toyota Motor Corp Reforming device
JP2005108649A (en) * 2003-09-30 2005-04-21 Aisin Seiki Co Ltd Stopping method of fuel cell system, start-up method of fuel cell system and fuel cell system
JP2005243251A (en) * 2004-02-24 2005-09-08 Aisin Seiki Co Ltd Fuel cell system
JP2005276621A (en) * 2004-03-25 2005-10-06 Aisin Seiki Co Ltd Fuel cell system
JP2005281009A (en) * 2004-03-26 2005-10-13 Aisin Seiki Co Ltd Reforming apparatus
JP2006523177A (en) * 2003-04-04 2006-10-12 テキサコ ディベラップメント コーポレイション Autothermal reforming in fuel processors using non-ignitable shift catalysts
JP2010202446A (en) * 2009-03-03 2010-09-16 Jx Nippon Oil & Energy Corp Hydrogen production apparatus and fuel cell system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179402A (en) * 2000-12-11 2002-06-26 Toyota Motor Corp Reforming device
JP2006523177A (en) * 2003-04-04 2006-10-12 テキサコ ディベラップメント コーポレイション Autothermal reforming in fuel processors using non-ignitable shift catalysts
JP4902859B2 (en) * 2003-04-04 2012-03-21 テキサコ ディベラップメント コーポレイション Autothermal reforming in fuel processors using non-ignitable shift catalysts
JP2005108649A (en) * 2003-09-30 2005-04-21 Aisin Seiki Co Ltd Stopping method of fuel cell system, start-up method of fuel cell system and fuel cell system
JP2005243251A (en) * 2004-02-24 2005-09-08 Aisin Seiki Co Ltd Fuel cell system
JP2005276621A (en) * 2004-03-25 2005-10-06 Aisin Seiki Co Ltd Fuel cell system
JP2005281009A (en) * 2004-03-26 2005-10-13 Aisin Seiki Co Ltd Reforming apparatus
JP4490717B2 (en) * 2004-03-26 2010-06-30 アイシン精機株式会社 Reformer
JP2010202446A (en) * 2009-03-03 2010-09-16 Jx Nippon Oil & Energy Corp Hydrogen production apparatus and fuel cell system

Similar Documents

Publication Publication Date Title
WO2006073150A1 (en) Method of starting solid oxide fuel cell system
WO2001097312A1 (en) Fuel cell power generation system, and fuel cell power generation interrupting method
JP2001199702A (en) Apparatus for hydrogen generation, method of operation thereof and fuel cell system using the apparatus
JP2017103218A (en) Solid oxide type fuel battery system
JP2007157407A (en) Fuel reforming system
JP2003272691A (en) Fuel cell generating device and operating method of fuel cell generating device
JP2001180908A (en) Hydrogen generator and its starting and stopping process
JP2010116304A (en) Reforming apparatus, fuel cell system, and method for operating reforming apparatus
JP3856423B2 (en) Starting method of hydrogen generator
JP3473900B2 (en) Hydrogen generator
JP2006076839A (en) Hydrogen purification system and fuel cell system using the same
JPH1143303A (en) Reforming unit
JP4442163B2 (en) Fuel cell system
JP2008130266A (en) Circulation method of condensed water in fuel cell system
JP2007246376A (en) Hydrogen generation apparatus
JP2004031025A (en) Operation method of desulfurizer for fuel cell power generation device
JP2009263199A (en) Carbon monoxide gas generation apparatus and method
JP2005332834A (en) Fuel cell power generation system and method of controlling fuel cell power generation system
JP2004296102A (en) Fuel cell system and fuel cell system stopping method
JP2006169013A (en) Hydrogen producing apparatus, fuel cell system and method of operating the same
JP2011256059A (en) Method for operating hydrogen generator and fuel cell system
JP2003183008A (en) Hydrogen generating apparatus
JP2993507B2 (en) Fuel cell power generation system
JP2008123864A (en) Fuel cell system and its operation control method
JP2001176533A (en) Fuel cell system and fuelcell cogeneration hot-water supply system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061205

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070112

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20071129