JP2001198569A - Pressurized floating separation method and device - Google Patents

Pressurized floating separation method and device

Info

Publication number
JP2001198569A
JP2001198569A JP2000006838A JP2000006838A JP2001198569A JP 2001198569 A JP2001198569 A JP 2001198569A JP 2000006838 A JP2000006838 A JP 2000006838A JP 2000006838 A JP2000006838 A JP 2000006838A JP 2001198569 A JP2001198569 A JP 2001198569A
Authority
JP
Japan
Prior art keywords
nozzle
pressurized
stock solution
cross
flotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000006838A
Other languages
Japanese (ja)
Other versions
JP3641178B2 (en
Inventor
Kenichiro Kosakai
健一郎 小堺
Mikio Ishizaki
三喜夫 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Uhde Chlorine Engineers Japan Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp Ltd filed Critical Chlorine Engineers Corp Ltd
Priority to JP2000006838A priority Critical patent/JP3641178B2/en
Publication of JP2001198569A publication Critical patent/JP2001198569A/en
Application granted granted Critical
Publication of JP3641178B2 publication Critical patent/JP3641178B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a pressurized flotation separation method which enables the separation and removal of agglomerated suspended substances in a raw liquid by forming a descending flow of the raw liquid to be treated and an ascending flow of fine bubbles, uniformly and countercurrently bringing the liquid into contact with the bubbles, and effectively floating and separation the suspended substances without breaking a flocculated material being easily broken. SOLUTION: In the pressurized flotation separation method comprising supplying the raw liquid to be treated from the upper part of a pressurized flotation separation tank, simultaneously forming fine bubbles from the lower part by introducing pressurized water containing dissolved gas and countercurrently bringing the raw liquid into contact with the fine bubbles, at least one nozzle having a hollow frustum shape, in which the bottom part is used as an ejecting part and which has a form defined by following formula: 8<=A/a<=14 and 12 deg.<=θ<=35 deg. (wherein, A is the cross-sectional area of the pressurized flotation separation tank, a is the cross-sectional area of ejecting part of the nozzle, and θ is the opening degree of the nozzle), is arranged per 10 m2 of the cross-sectional area of the pressurized flotation separation tank, and the raw liquid is supplied while setting the discharging part of the nozzle in the upward direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は加圧浮上分離方法及
びその装置に関し、詳しくは被処理原液の供給を所定に
行うことにより原液中に含有する懸濁物等の浮上分離除
去率を向上できる加圧浮上分離方法及びその装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure flotation method and an apparatus therefor, and more particularly, to a method of supplying a stock solution to be treated in a predetermined manner, thereby improving the rate of flotation separation of suspended substances and the like contained in the stock solution. The present invention relates to a pressure flotation separation method and an apparatus therefor.

【0002】[0002]

【従来の技術】上水、下水、中水、工場用水・廃水等の
処理において、液中の油分や懸濁物質を分離除去するた
め、遠心力を利用する遠心分離や重力を利用する沈降分
離及び浮上分離の技術は操作も簡便であり、経済性にも
富むため幅広く適用されている。沈降分離は被処理原液
(殆どの場合は水である)中の懸濁物質の沈降・沈澱に
より分離する方法であり、浮上分離は被処理原液の中に
含まれる懸濁物質を液面上に浮上させて除去する方法で
ある。原液より大きな比重を有する懸濁物質は沈降分離
でき、また、原液より小さな比重を有する懸濁物質であ
れば自然浮上して浮上分離できる。しかし、藻類、活性
汚泥等のフロック状に凝集した嵩高い懸濁物質は沈降分
離も浮上分離も容易でないため、微細気泡を付着させた
り包含させて見かけ比重を小さくして強制的に浮上させ
て分離する。この場合、微細気泡は、懸濁物質に容易に
付着等するように、また、気泡上昇による乱れがフロッ
クを破壊しないように、通常、平均粒径30〜150μ
mと小さくする。
2. Description of the Related Art In the treatment of clean water, sewage, medium water, industrial water and waste water, etc., centrifugal separation using centrifugal force and sedimentation using gravity are used to separate and remove oil and suspended substances in the liquid. The technique of flotation separation is also widely applied because the operation is simple and the economy is high. Sedimentation is a method in which suspended substances in a liquid to be treated (in most cases, water) are separated by sedimentation and sedimentation. Flotation is a method in which suspended substances contained in a liquid to be treated are placed on the liquid surface. It is a method of removing by floating. A suspended substance having a specific gravity larger than that of the stock solution can be separated by sedimentation, and a suspended substance having a specific gravity smaller than that of the stock solution can be naturally floated and floated and separated. However, floc-like flocculated suspended substances such as algae and activated sludge are not easy to settle and separate by flotation.For this reason, fine bubbles are attached or included to reduce the apparent specific gravity and forcedly float. To separate. In this case, the fine bubbles usually have an average particle size of 30 to 150 μm so that the fine bubbles easily adhere to the suspended substance or the like and the disturbance due to the rising of the bubbles does not destroy the floc.
m.

【0003】上記のような小さな粒径の微細気泡を発生
させる方法としては、従来から各種の方式が採用されて
いる。例えば、機械的せん断力によって微細化させた
り、微細な多孔板等のスパージャーから噴出させる等の
方式がある。しかし、最も好ましい方式としては、加圧
水(液)に空気を溶解させた空気溶解加圧水を大気下の
処理系内へ導入することで微細気泡を放出する方式であ
り、加圧浮上分離法としてよく知られている。また、分
離除去しようとする懸濁物質に対しては、凝集剤を添加
して凝集させより大きなフロックに成長させることで、
微細気泡との接触効率を向上させると共に微細気泡の付
着等合体が容易となるように処理される。被処理原液と
空気溶解加圧水との接触方式としては各種方式がある。
[0003] As a method for generating fine bubbles having a small particle diameter as described above, various methods have conventionally been adopted. For example, there is a method of making finer by mechanical shearing force, or ejecting from a sparger such as a fine perforated plate. However, the most preferred method is a method in which fine bubbles are released by introducing air-dissolved pressurized water in which air is dissolved in pressurized water (liquid) into a treatment system under the atmosphere, which is well known as a pressurized flotation method. Have been. In addition, for suspended substances that are to be separated and removed, by adding a flocculant and flocculating to grow into larger flocs,
The treatment is performed so as to improve the contact efficiency with the fine bubbles and to facilitate the adhesion and the like of the fine bubbles. There are various methods for contacting the stock solution to be treated with the air-dissolved pressurized water.

【0004】従来の一般的方式としては、例えば、図4
に概要説明断面図を示したように、円筒形槽の加圧浮上
分離槽40を用い被処理原液41に空気溶解加圧水42
を混合して、加圧浮上分離槽40の中央給液筒43底部
から上方向へ噴出して浮上させる方式がある。この場
合、空気溶解加圧液から放出された微細気泡と被処理原
液とは中央給液筒43内を共に上昇しながら並流接触
し、被処理原液中の懸濁物質は気泡を付着又は包含して
合体する。また、中央給液筒43頂部から流出する微細
気泡と気泡と合体した懸濁物質は、更に上昇し処理液と
分離され液面表面に到達して、スキマー44により掻き
集められて浮上物排出部45に流入して排出口46より
処理系外に排出される。一方、処理液は図中矢印にて示
したように下方向に流下し加圧浮上分離槽40下部に配
置された多孔板等の流出板を経て処理水流出口47から
処理系外に流出する。
[0004] As a conventional general method, for example, FIG.
As shown in the schematic cross-sectional view, a pressurized flotation tank 40 of a cylindrical tank is used to apply air-dissolved pressurized water 42
There is a method in which the water is mixed and jetted upward from the bottom of the central liquid supply tube 43 of the pressurized floating separation tank 40 to float the liquid. In this case, the fine bubbles released from the air-dissolved pressurized liquid and the stock solution to be processed come into contact in parallel while rising together in the central liquid supply cylinder 43, and the suspended substance in the stock solution to be processed adheres or contains bubbles. And unite. In addition, the suspended matter combined with the fine bubbles and the bubbles flowing out from the top of the central liquid supply tube 43 further rises and is separated from the processing solution, reaches the surface of the liquid surface, is scraped by the skimmer 44, and is lifted by the floating material discharge portion 45. And is discharged from the processing system through the discharge port 46. On the other hand, the processing liquid flows downward as indicated by the arrow in the figure, and flows out of the processing system from the processing water outlet 47 through an outflow plate such as a perforated plate disposed below the pressurized flotation tank 40.

【0005】また、図5に概要説明断面図を示したよう
に、加圧浮上分離槽50を接触域51と分離域52とに
分割して用い、被処理原液を接触域51の上部又は下部
から供給し、処理水の一部を循環して加圧して空気を導
入し空気溶解塔54において空気溶解加圧液として用い
て接触域51下部に導入する方式がある。この方式にお
いて、図5において破線で示したように被処理原液53
に空気溶解加圧液を混入して接触域51の上部への導入
する場合は、上記図4の方式と同様に供給された被処理
原液53と微細気泡とは並流混合接触であり、また、空
気溶解加圧液を下部へ導入する場合は向流混合接触で接
触効率は並流時より向上する。いずれの空気溶解加圧液
の導入であっても、液表面に到達した分離懸濁物質と処
理液とは隣接する分離域52に流入して所定時間保持さ
れ、液表面の分離懸濁物質をスキーマ等で回収して処理
系外に排出すると同時に、分離域下方向に流下した処理
水55を分離槽50外に回収する。
[0005] As shown in FIG. 5, a pressurized flotation tank 50 is divided into a contact area 51 and a separation area 52. And air is introduced by circulating and pressurizing a part of the treated water, and is introduced into the lower part of the contact area 51 by using it as an air-dissolving pressurized liquid in the air dissolving tower 54. In this method, as shown by the broken line in FIG.
When the air-dissolved pressurized liquid is mixed and introduced into the upper part of the contact area 51, the raw liquid 53 to be processed and the microbubbles supplied in the same manner as in the method of FIG. When the pressurized air-dissolved liquid is introduced into the lower part, the contact efficiency is improved by the counter-current mixing contact as compared with the co-current flow. Regardless of the introduction of any air-dissolved pressurized liquid, the separated suspended substance and the processing liquid that have reached the liquid surface flow into the adjacent separation area 52 and are held for a predetermined time, so that the separated suspended substance on the liquid surface is removed. At the same time, the wastewater is collected by a schema or the like and discharged out of the processing system, and at the same time, the treated water 55 flowing downward in the separation area is collected outside the separation tank 50.

【0006】[0006]

【発明が解決しようとする課題】上記した加圧浮上分離
方法における処理時間は、主に懸濁物質の移動時間であ
り気泡と合体したフロックの液表面到達に要する時間
で、一般に、約10〜30分である。被処理原液と微細
気泡とを効率よく接触させ、且つ、付着状態を上記の必
要時間だけ維持する必要がある。しかしながら、特に、
上記方式の並流接触方式では、被処理原液と同方向に移
動するため向流接触に比し接触効率が低く微細気泡との
合体が円滑に行われないおそれが有る。また、処理系内
の液流に乱れ等が生じ一旦合体した気泡が乖離すること
も有り、被処理原液に含有される懸濁物質の多くは、一
般に液より比重が大きく気泡が離れた懸濁物質は液表面
に到達できない。通常、凝集フロック化した粗大懸濁物
質は、微細気泡との接触率が増大し付着等気泡との合体
が容易に行われる。また、凝集フロックは、通常、微細
気泡より遥かに大きいので両者は容易に乖離しないと想
定される。
The processing time in the above-mentioned pressure flotation method is mainly the moving time of the suspended substance and the time required to reach the liquid surface of the floc combined with the bubbles, and generally about 10 to 10 minutes. 30 minutes. It is necessary to efficiently contact the stock solution to be treated and the fine bubbles, and to maintain the adhered state for the required time. However, in particular,
In the above-described parallel flow contact method, since the liquid flows in the same direction as the undiluted solution to be treated, the contact efficiency is lower than in the countercurrent contact, and there is a possibility that the coalescing with the fine bubbles may not be performed smoothly. In addition, the liquid flow in the processing system may be disturbed, and the bubbles once coalesced may be separated. Many of the suspended substances contained in the undiluted solution to be processed generally have a higher specific gravity than the liquid and are suspended. The substance cannot reach the liquid surface. In general, the flocculated flocculated large suspended substance has an increased contact ratio with fine bubbles and is easily integrated with bubbles such as adhesion. It is also assumed that the flocculated flocs are usually much larger than the microbubbles, so that they are not easily separated.

【0007】しかし、上記図4における向流接触方式の
採用や攪拌等の流動状態を変化させることにより微細気
泡と凝集フロック懸濁物質との接触効率を向上させよう
としても、フロック破壊を生じないように制限される。
また、微細気泡とフロック状懸濁物質との合体状態は単
なる付着であり、また、両者の比重が被処理原液の比重
に対して懸濁物質は重く微細気泡は軽いため、微細気泡
合体フロック懸濁物質は遊離し易く、浮上分離槽内の液
流の乱れや流体との間の剪断力によって容易に乖離す
る。更に、上記の浮上分離槽を接触域と分離域とに2分
割する方式では分離域に移動するための時間を要するた
め、気泡と合体して液表面に到達した懸濁物質が再び沈
降するおそれもある。被処理原液と微細気泡とを従来の
いずれの方式で接触しても、上記したようなことから汚
濁物質の系外への排出が円滑に行われないことがあり処
理液の濁度上昇、即ち、懸濁物質除去率が低下するとい
う問題があった。特に、上記の図4及び図5における並
流接触方式では、処理水中に流出する懸濁物質の量は凝
集沈殿法による処理水中の懸濁質の量よりも多いのが一
般的である。
However, even if the contact efficiency between the microbubbles and the flocculated floc suspended material is improved by adopting the countercurrent contact system shown in FIG. 4 or changing the flow state such as stirring, floc destruction does not occur. To be limited.
In addition, the coalesced state of the microbubbles and the floc-like suspended substance is merely adhesion, and since the specific gravity of both is larger than the specific gravity of the stock solution to be processed, the suspended substance is heavier and the microbubbles are lighter. Suspended substances are easily released, and easily separated due to turbulence of the liquid flow in the flotation tank or shearing force with the fluid. Further, in the above-mentioned method in which the flotation / separation tank is divided into a contact area and a separation area, a time for moving to the separation area is required. There is also. Even if the untreated solution and the microbubbles are brought into contact with each other by any of the conventional methods, the discharge of the pollutants may not be performed smoothly from the system as described above. However, there was a problem that the suspended matter removal rate was reduced. In particular, in the parallel flow contact method shown in FIGS. 4 and 5, the amount of suspended solids flowing out of the treated water is generally larger than the amount of suspended solids in the treated water by the coagulation sedimentation method.

【0008】上記の問題解決のために種々の工夫が既に
なされている。例えば、発生する微細気泡が懸濁物質フ
ロックに付着しやすいように空気溶解加圧水に界面活性
剤を添加し気泡表面の性質を改質する方法や、浮上フロ
ックを速やかに系外へ排出するための機械的又は構造的
改良等である。しかしながら、懸濁液の性状、懸濁物質
の形態や挙動は複雑であり、それらの適用には対象とす
る被処理原液を用いて凝集試験や小型のパイロットプラ
ントによる分離試験が必要であり、これらの改良は根本
的な解決策とはなり得ていない。そのため、沈殿分離が
困難な懸濁物質を含有する希薄懸濁液に対しても、凝集
加圧浮上分離方法を採用せずに処理が簡便でないにも拘
らず凝集沈殿法を採用する例が多い。
Various devices have already been devised to solve the above problems. For example, a method of adding a surfactant to air-dissolved pressurized water to modify the properties of the air bubble surface so that the generated fine air bubbles easily adhere to the suspended substance floc, and a method for quickly discharging the floating floc out of the system. Mechanical or structural improvements. However, the nature of the suspension, the form and behavior of the suspended substance are complicated, and their application requires an agglutination test using the target stock solution to be treated and a separation test using a small pilot plant. Improvements cannot be a fundamental solution. Therefore, even for a dilute suspension containing a suspended substance that is difficult to precipitate and separate, a coagulation sedimentation method is often used despite the fact that the treatment is not simple without using a coagulation pressure flotation method. .

【0009】一般的に微細気泡と合体した凝集フロック
の上昇速度は凝集フロック単体の沈降速度に比し数倍速
いことから、加圧浮上分離法は沈殿分離法に比し所要面
積が約1/2〜1/5で懸濁物質の除去処理ができ工業
的に好ましいとされる一方、懸濁物質の除去率が低いと
いう欠点が指摘され、従来、懸濁物質含有液の清澄処理
に広く適用されていない。また、上記のように向流式浮
上分離法によれば、沈殿法と同等の懸濁質除去率を達成
できると期待されていたが、向流式浮上分離槽はテスト
装置や小規模装置にしか採用されてこなかった。このよ
うに加圧浮上分離方法は、現時点において、懸濁物質を
含有する懸濁液の清澄処理の目的としては凝集沈殿法に
比して広く普及することなく汚泥の濃縮技術として普及
しているに過ぎない。本発明は、加圧浮上分離法の現状
を鑑み、操作も簡便であり工業的に優れた加圧浮上分離
を懸濁液の清澄処理に用い、懸濁物質の浮上分離除去率
を向上させ、所望の濁度の処理水を得ることを目的に従
来の加圧浮上分離法について鋭意検討した。
Generally, the rising speed of the flocculated floc combined with the microbubbles is several times faster than the sedimentation speed of the flocculated floc alone. While it is industrially preferable that the removal of suspended substances is possible in 2 to 1/5, it is pointed out that the removal rate of suspended substances is low, and it has been widely applied to clarification of suspended substance-containing liquids. It has not been. According to the counter-current flotation method as described above, it was expected that the same suspended solids removal rate as that of the sedimentation method could be achieved.However, the counter-current flotation tank was used for test equipment and small-scale equipment. Only had been adopted. As described above, at present, the pressurized flotation method is widely used as a sludge concentration technique without widespread use as a purpose of clarifying a suspension containing a suspended substance as compared with the coagulation sedimentation method. It's just The present invention, in view of the current state of the pressure flotation method, using a simple operation and industrially excellent pressure flotation for the clarification treatment of the suspension, to improve the flotation removal rate of suspended substances, In order to obtain a treated water having a desired turbidity, the conventional pressure flotation method was studied diligently.

【0010】その結果、例えば、市販されている浮上テ
スター、また、小規模の水処理においては回分式及び連
続的な浮上分離で向流接触方式を採用して高い懸濁物質
除去率が得られているにも拘らず、工業的に大規模な浮
上分離方法においては、前記図5に示したような接触域
と分離域とを分割した水平流式や、図4に示したような
並流式の浮上分離装置が採用されている。大規模な工業
的装置で向流式浮上分離装置が採用されていない原因に
ついて更に検討した結果、パイロットプラント等のテス
ト用の小規模な向流接触式浮上分離装置で得られる懸濁
物質の高除去率を維持するように、スケールアップを適
確に行うための十分な検討、研究及び考察が従来行われ
ていないという実状を知見し、小型の加圧浮上分離装置
から大規模な加圧浮上分離装置まで向流接触式で懸濁物
質を高除去率で清澄処理できる設計方式を見出し本発明
を完成した。
As a result, for example, a commercially available flotation tester, and in a small-scale water treatment, a batch-type and continuous flotation separation employs a countercurrent contact system to obtain a high removal rate of suspended solids. Nevertheless, in an industrial large-scale flotation method, a horizontal flow method in which the contact area and the separation area are divided as shown in FIG. 5 or a co-current flow as shown in FIG. A flotation device of the type is employed. As a result of further study on the reason why the countercurrent flotation device is not used in large-scale industrial equipment, it was found that the amount of suspended solids obtained by a small countercurrent contact flotation device for testing such as pilot plants was high. In order to maintain the removal rate, we learned that there was no sufficient study, research, and consideration to perform scale-up properly so far, and from a small pressurized flotation separator to a large-scale pressurized flotation The present inventors have found a design method capable of clarifying a suspended substance at a high removal rate by a countercurrent contact method up to a separation device, and completed the present invention.

【0011】[0011]

【課題を解決するための手段】本発明は、加圧浮上分離
槽の上方部から凝集剤を添加してなる被処理原液を供給
すると共に下方部からガス溶解加圧水を導入して微細気
泡を発生させ、前記原液と微細気泡とを向流接触させる
加圧浮上分離方法であって、錘台体で底部を吐出部とし
下記(1)〜(2)式で示される形態を有するノズル
を、前記加圧浮上分離槽断面積10m当たり少なくと
も1個配設して前記吐出部を上向きにして前記原液を供
給することを特徴とする加圧浮上分離方法が提供され
る。但し、下記(1)〜(2)式において、Aが前記加
圧浮上分離槽の断面積であり、aが前記ノズル吐出部の
断面積であり、θが前記ノズルの開度である。 8≦A/a≦14 (1) 12°≦θ≦35° (2)
According to the present invention, a raw solution to be treated containing a coagulant is supplied from an upper part of a pressurized flotation tank, and gas-dissolved pressurized water is introduced from a lower part to generate fine bubbles. A pressurized flotation method in which the stock solution and the microbubbles are brought into countercurrent contact with each other, wherein the nozzle having a frustum with a bottom as a discharge section and having a form represented by the following formulas (1) and (2) is provided. A pressure flotation method is provided, wherein at least one unit is provided per 10 m 2 in cross section of the pressure flotation / separation tank, and the undiluted solution is supplied with the discharge part facing upward. However, in the following equations (1) and (2), A is the cross-sectional area of the pressurized flotation tank, a is the cross-sectional area of the nozzle discharge section, and θ is the opening of the nozzle. 8 ≦ A / a ≦ 14 (1) 12 ° ≦ θ ≦ 35 ° (2)

【0012】本発明によれば、加圧浮上分離装置であっ
て分離槽の横断面中心部に錘台体で底部を吐出部とし下
記(1)〜(2)式で示される形態を有する被処理原液
供給ノズルを、前記吐出部を上向きにして前記加圧浮上
分離槽断面積10m当たり少なくとも1個配設し、前
記ノズルの垂直下方部にガス溶解加圧水導入口及び阻流
板を配置すると共に前記ガス溶解加圧水導入口がオリフ
ィスノズルであり前記阻流板に向って噴射可能に配置さ
れてなることを特徴とする加圧浮上分離装置が提供され
る。但し、下記(1)〜(2)式において、Aが前記加
圧浮上分離槽の断面積であり、aが前記ノズル吐出部の
断面積であり、θが前記ノズルの開度である。 8≦A/a≦14 (1) 12°≦θ≦35° (2)
According to the present invention, there is provided a pressure-flotation / separation apparatus having a frustum at the center of the cross section of a separation tank, a bottom having a discharge section, and having a form represented by the following formulas (1) and (2). At least one processing stock solution supply nozzle is provided per 10 m 2 of the sectional area of the pressurized flotation tank with the discharge section facing upward, and a gas-dissolved pressurized water inlet and a baffle plate are provided vertically below the nozzle. In addition, there is provided a pressure flotation / separation apparatus, wherein the gas-dissolved pressurized water inlet is an orifice nozzle and is disposed so as to be able to jet toward the baffle plate. However, in the following equations (1) and (2), A is the cross-sectional area of the pressurized flotation tank, a is the cross-sectional area of the nozzle discharge section, and θ is the opening of the nozzle. 8 ≦ A / a ≦ 14 (1) 12 ° ≦ θ ≦ 35 ° (2)

【0013】本発明の加圧浮上分離方法は上記のように
構成され、懸濁物質、特に凝集され壊れ易い凝集フロッ
ク含有の被処理原液を浮上分離槽内に所定の錘台体底部
を吐出口とするノズルを用いて一旦上向き吐出で流入さ
せて供給し、その後被処理原液の比重により下降流に転
じさせると同時に、浮上分離槽内の下方から空気加圧溶
解液を所定に放出させ微細気泡を発生させて上昇させ
る。被処理原液と微細気泡とを向流接触させることから
接触効率が大きく凝集フロック状懸濁物質に微細気泡を
容易に付着、包含させ合体させることができる。
The pressure flotation method of the present invention is constituted as described above, and a suspended substance, in particular, a stock solution containing flocculated floc which is flocculated and fragile, is discharged into a flotation tank by discharging a predetermined bottom of a frustum. And then supply it by injecting it upward by means of a nozzle, and then convert it into a downward flow due to the specific gravity of the stock solution to be processed, and simultaneously release the air pressurized solution from below in the flotation separation tank to produce fine bubbles. And raise it. Since the stock solution to be treated and the fine bubbles are brought into countercurrent contact with each other, the contact efficiency is large and the fine bubbles can be easily attached to and contained in the flocculated floc-like suspended solid to be combined.

【0014】更に、被処理原液を供給するノズル形態を
浮上分離槽断面積に応じて設定して配置し、且つ、空気
加圧溶解液を下方に配置する阻流板に当接させて微細気
泡を上昇させることから、浮上分離槽内における被処理
原液の下降流や微細気泡の上昇流に偏流や乱れが生じる
ことがなく均等に保持され、被処理原液と微細気泡との
接触が常に円滑に行われる。また、上記のように被処理
原液と微細気泡とが浮上分離槽内を流通することから、
気泡付着凝集フロック状懸濁物質が液面に到達するま
で、更に、液面に浮上した後も、常時、凝集フロック状
懸濁物質と微細気泡とが効果的に接触状態にあり、懸濁
物質除去率が著しく向上した処理水を得ることができ
る。
Further, the nozzle configuration for supplying the stock solution to be treated is set in accordance with the sectional area of the flotation tank, and the air pressurized solution is brought into contact with a baffle plate disposed below to form fine bubbles. The rising flow of the undiluted solution to be treated and the rising flow of fine bubbles in the flotation tank are uniformly maintained without any drift or turbulence, and the contact between the undiluted solution to be treated and the fine bubbles is always smooth. Done. In addition, since the stock solution to be processed and the fine bubbles flow through the flotation tank as described above,
Until the bubble-attached flocculated floc-like suspended substance reaches the liquid surface, and even after floating on the liquid surface, the flocculated floc-like suspended substance and the fine bubbles are always in effective contact with each other, and the suspended substance It is possible to obtain treated water whose removal rate is significantly improved.

【0015】[0015]

【発明の実施の形態】以下、本発明について詳細に説明
する。先ず、発明者らが小型パイロットプラントからス
ケールアップのための検討を如何に行い本発明に到った
か説明する。即ち、発明者らは、第1に、加圧浮上分離
方法における微細気泡と凝集フロックとの接触及び浮上
距離ついて検討した。図1は、発明者らが試案した本発
明の加圧浮上分離装置の縦断面概念図であり、加圧浮上
分離は浮上分離槽を分割することなく単一槽として浮上
懸濁物質の水平移動が伴わない設計とした。この場合、
微細気泡と凝集フロックが接触する機会が多いほど即ち
接触時間が長いほど望ましく、又、微細気泡と合体した
凝集フロックが液表面まで移動する距離が短いほど望ま
しいことは明白である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. First, how the inventors studied from a small pilot plant for scale-up and reached the present invention will be described. That is, the present inventors first studied the contact between the fine bubbles and the flocculated flocs and the floating distance in the pressure flotation separation method. FIG. 1 is a vertical sectional conceptual view of the pressure flotation apparatus of the present invention, which was proposed by the inventors. In the pressure flotation, the horizontal movement of the suspended suspended material is performed as a single tank without dividing the flotation tank. The design was not accompanied. in this case,
Obviously, the more the fine bubbles and the flocculated floc are in contact with each other, that is, the longer the contact time, and the shorter the distance over which the flocculated flocs combined with the fine bubbles move to the liquid surface, the better.

【0016】従って、図1に示したように浮上分離槽1
0内の上方に凝集フロックを含有する被処理原液1を供
給して降下原液流を生起させると同時に、下方に空気溶
解加圧水2を導入して微細気泡3を発生させ上昇流を生
起させることにより、被処理原液1の下降流4と微細気
泡3の上昇流5とが分離槽のほぼ全域内で常に接触する
状態となり、凝集フロックと微細気泡との合体が容易に
なされ液表面に円滑に浮上させることができる。また、
微細気泡3と合体した凝集フロックが上昇途中で気泡と
乖離した場合でも、常に上昇してくる微細気泡3に接触
することから被処理原液中に含有される懸濁物質が粗大
化された凝集フロックのほぼ100%を液表面に浮上分
離させ得る。更に、液表面に浮上した凝集フロック状懸
濁物質のスカム層は下方から連続的に上昇してくる微細
気泡や浮上フロックにより常に支えられ押上げられる状
態となり再沈降のおそれも殆どない。このため液面上の
スカム層を数時間以上放置する場合でも浮上状態が保持
でき、速やかな排出が困難な状態においても処理液の濁
度が増大して懸濁物質の除去率が低下するおそれがな
い。
Therefore, as shown in FIG.
By supplying the stock solution 1 containing the flocculent floc to the upper part of 0 to generate a descending stock solution flow, and simultaneously introducing air-dissolved pressurized water 2 below to generate fine bubbles 3 and generate an ascending flow. The downward flow 4 of the stock solution 1 to be processed and the upward flow 5 of the fine bubbles 3 are always in contact with each other in almost the entire area of the separation tank, and the coalesced flocs and the fine bubbles are easily combined with each other to smoothly float on the liquid surface. Can be done. Also,
Even when the flocculated floc combined with the fine bubbles 3 is separated from the bubbles during the ascent, the flocculated floc in which the suspended substance contained in the undiluted solution to be treated is coarsened because the floc is always in contact with the rising fine bubbles 3. Can be floated to the liquid surface. Furthermore, the scum layer of the flocculated floc suspended substance floating on the liquid surface is constantly supported and pushed up by the fine bubbles continuously rising from below and the floating flocs, and there is almost no danger of re-sedimentation. For this reason, even when the scum layer on the liquid surface is left for several hours or more, the floating state can be maintained, and even in a state where it is difficult to quickly discharge the scum layer, the turbidity of the processing liquid increases and the removal rate of suspended substances may decrease. There is no.

【0017】発明者らは、次いで、前記したように従来
法で懸濁液の清澄処理として工業的に加圧浮上分離方法
が広く採用されていない原因を究明すると同時に工業的
大型装置へのスケールアップの方法を探るべく、上記考
察に基づく好適な構造の加圧浮上分離槽において採用す
べき被処理原液の供給ノズルについて検討した。即ち、
原液供給ノズルは、加圧浮上分離槽の中央部から供給し
た被処理原液が放射状に内壁周面方向に均等に広りつつ
流れ降下流を生起することを企図する必要がある。その
ため、前記図4に示した従来法での単なる円筒形供給ノ
ズルに替えて、図3に断面説明図を示した外形状が円錐
台体の中空錘台体形状で錘台体底部を吐出口とし、錐体
頂部を切欠いた台部を原液送入口とする錘台体形状ノズ
ルを使用することにした。即ち、原液供給管から錘台体
形状ノズルに供給された被処理原液は、所定に設定され
た錐台形状ノズルの上方向へ広がる傾斜部に沿って上昇
し、円形吐出口の円周部から均一に流出することにな
り、浮上分離槽内壁周面に向って放射状に均等に広がり
ながら流れ降下流となる。
The inventors then investigated the reasons why the pressure flotation method is not widely used as a clarification treatment of the suspension by the conventional method as described above, and at the same time, scaled up to a large industrial device. In order to find a method for improving the pressure, a supply nozzle of the undiluted solution to be treated to be employed in the pressurized flotation tank having a suitable structure based on the above consideration was examined. That is,
It is necessary for the stock solution supply nozzle to consider that the stock solution supplied from the central part of the pressurized flotation tank flows down radially evenly in the circumferential direction of the inner wall while generating a downward flow. Therefore, in place of the simple cylindrical supply nozzle in the conventional method shown in FIG. 4, the outer shape shown in the cross-sectional explanatory view in FIG. It was decided to use a frustum-shaped nozzle having a truncated cone-shaped truncated base as a stock solution inlet. That is, the stock solution to be processed supplied from the stock solution supply pipe to the frustum-shaped nozzle rises along an inclined portion that expands in the upward direction of the frustum-shaped nozzle that is set in a predetermined manner, and from the circumferential portion of the circular discharge port. As a result, the water flows out uniformly and radially and evenly spreads toward the inner surface of the flotation / separation tank, so that it flows down.

【0018】上記のような中空錘台体形状のノズルは水
槽の越流ノズル等において公知であるが、加圧浮上分離
装置等の原水導入において採用されたことはなく本発明
において初めて採用されたものである。本発明におい
て、被処理原液供給ノズルの中空錘台体形状とは外形状
が錐体の頂部を切欠いた錘台体形状を意味し、所定の開
度を有して外表面の面積が小さい程好ましい。下部から
上昇してくる微細気泡がノズル外表面に付着するおそれ
があるためであり、付着した気泡に更に他の気泡が接触
して合体して粗大化するおそれもある。これら粗大化気
泡がノズルから液表面に上昇すると浮上スカム層の破壊
が生じることもあるためである。従って、中空円錘台体
形状が好適に用いられるが、円錐台体形状に近似した正
多角形等の中空角錘台体形状でもよい。本発明の中空錘
台体形状ノズルは、頂台部と被処理原液の供給管とを連
絡し底面部を上向きにして吐出口とする。吐出口が下向
きでは供給被処理原液の下降流が周壁方向に広がらない
ため上昇微細気泡との接触が起こらない。
The hollow frustum-shaped nozzle as described above is known as an overflow nozzle of a water tank, but has not been employed in the introduction of raw water such as a pressurized flotation device or the like and was first employed in the present invention. Things. In the present invention, the hollow frustum shape of the untreated solution supply nozzle refers to a frustum shape in which the outer shape is a truncated cone at the top, and the smaller the outer surface area having a predetermined opening degree, preferable. This is because fine bubbles rising from the lower part may adhere to the outer surface of the nozzle, and other air bubbles may come into contact with the attached bubbles and become coalesced and become coarse. This is because when these coarse bubbles rise from the nozzle to the liquid surface, the floating scum layer may be broken. Therefore, a hollow frustum shape is preferably used, but a hollow frustum shape such as a regular polygon approximating a frustum shape may be used. In the hollow frustum-shaped nozzle of the present invention, the top is connected to the supply pipe of the stock solution to be treated, and the bottom is directed upward to serve as a discharge port. When the discharge port is directed downward, the downward flow of the supplied untreated liquid does not spread in the peripheral wall direction, so that contact with the rising fine bubbles does not occur.

【0019】上記本発明の加圧浮上分離方法において、
前記(1)式がA/a=12であり、前記(2)式が1
5°≦θ≦30°であり、且つ、A≦4.0mである
ことが好ましく、また、前記ノズルが前記加圧浮上分離
槽の横断面中心部に配置され、且つ、前記ガス溶解加圧
水が前記ノズルの垂直下方部に配置された阻流板に向っ
て下方向きに噴射導入することが好ましい。更に、前記
加圧浮上分離槽の断面積が5.0m以上であって、前
記分離槽の単位断面積2.0〜5.0m当たり1の比
率で、前記請求項1又は2記載のAが前記単位断面積
(即ち、A=2.0〜5.0m)であるとした前記ノ
ズルを2以上配置して前記原液を分配供給することが好
ましく、また、前記ノズルを配置する前記単位断面積が
3.0〜4.0mであることがより好ましい。
In the pressure flotation method of the present invention,
Equation (1) is A / a = 12, and equation (2) is 1
It is preferable that 5 ° ≦ θ ≦ 30 ° and A ≦ 4.0 m 2 , and the nozzle is arranged at the center of the cross section of the pressurized flotation tank, and the gas-dissolved pressurized water is used. Is preferably injected downward toward a baffle plate disposed vertically below the nozzle. Furthermore, the cross-sectional area of the upper floatation separation tank is not more 5.0 m 2 or more, the unit ratio of the sectional area 2.0~5.0M 2 per 1 of the separation tank, of claim 1 or 2, wherein It is preferable that two or more nozzles, each of which has A having the unit cross-sectional area (that is, A = 2.0 to 5.0 m 2 ), are arranged to supply the undiluted solution, and the nozzle is arranged. it is more preferred unit sectional area is 3.0~4.0m 2.

【0020】本発明において、加圧浮上分離槽内に被処
理原液を供給する原液供給ノズルは以下の条件に基づき
設計される。即ち、(1)浮上分離槽断面積10m
単位当たり少なくとも1個配設、(2)中空錘台体形状
の底部を吐出口として上向き配置、(3)浮上分離槽断
面積(A)と原液供給ノズル吐出口の断面積(a)の比
率(A/a)=8〜14好ましくは11〜12、(4)
原液供給ノズルの錘台部の開度θ=12〜35°好まし
くは14〜25°である。ノズル形状が中空錘台体形状
でなく従来法の円管ノズル等の場合は、液表面への噴流
が生じ表面の浮上スカム層を乱したり、原水の均一な分
配ができず偏流が生じたりする等の不都合がある。ま
た、吐出口下向きは、上記のように微細気泡との接触が
効果的に行われず好ましくない。また、A/a=8〜1
4の範囲を外れると分離槽内壁周面での微細気泡の流れ
が乱れ、混合循環流やショートパス流が生じ、被処理原
液の下降流と微細気泡上昇流との向流接触が円滑に行え
ず処理水の濁度等の水質が低下する。θ=12〜35°
の範囲を外れ、θが小さすぎると従来の円直管と同様と
なり、一方、θが大きすぎると上記のように下部より上
昇してくる微細気泡の上昇を阻害しスカム層を乱すおそ
れもあるため好ましくない。
In the present invention, the stock solution supply nozzle for supplying the stock solution to be processed into the pressurized flotation tank is designed based on the following conditions. That is, (1) at least one flotation / separation tank with a cross-sectional area of 10 m 2 per unit is disposed, (2) the bottom of the hollow frustum body is disposed upward with a discharge port, and (3) the flotation / separation tank cross-sectional area (A) Ratio (A / a) of the cross-sectional area (a) of the stock solution supply nozzle discharge port = 8 to 14, preferably 11 to 12, (4)
The opening degree θ of the frustum portion of the stock solution supply nozzle is 12 to 35 °, preferably 14 to 25 °. If the nozzle shape is not a hollow frustum shape but a conventional circular nozzle, etc., a jet flows onto the liquid surface, disturbing the floating scum layer on the surface, and uneven distribution due to the inability to uniformly distribute raw water There are inconveniences such as doing. Further, the downward direction of the discharge port is not preferable because the contact with the fine bubbles is not effectively performed as described above. A / a = 8 to 1
Outside of the range 4, the flow of the fine bubbles on the inner peripheral surface of the separation tank is disturbed, and a mixed circulation flow or a short-pass flow is generated, so that the downward flow of the raw liquid to be treated and the upward flow of the fine bubbles can be smoothly countercurrently contacted. The water quality such as the turbidity of the treated water decreases. θ = 12-35 °
If θ is too small, it will be the same as a conventional circular straight tube.On the other hand, if θ is too large, it may hinder the rise of microbubbles rising from the lower part as described above and disturb the scum layer. Therefore, it is not preferable.

【0021】また、A>5mである場合は、上記設計
条件で分離槽断面積の単位断面積2.0〜5.0m
たり1の比率で被処理原液供給ノズルを2以上配置する
ことにより同等の水処理を行うことができる。この場
合、原液供給配管から中空錘台体形状ノズルの錘台部入
口への原液の吐出速度は、凝集フロックが破壊されない
ように原液供給量との兼ね合いにより吐出圧を調整す
る。本発明においては、後記実施例に記載するように種
々試行錯誤の結果、上記錘台体形状ノズルの好適な形態
の設計条件を見出したものである。本発明の設計条件に
従い形成された原液供給ノズルを加圧浮上分離槽に所定
に設置して用いることにより、被処理原液の均一な降下
流を生じさせることができ、下方からの微細気泡の上昇
流との向流接触の接触効率を向上させると共に凝集フロ
ックの沈降もなく処理水の濁度等の水質低下を防止する
ことができるものである。なお、原液供給ノズル吐出口
から液表面迄の距離を原液吐出口径より大きくすること
により、被処理原液の吐出流が浮上スカムに悪影響を与
えることがない。
Further, A> When it is 5 m 2 is placing two or more treated solution feed nozzle at a rate of separation tank unit of cross-sectional area the cross-sectional area 2.0~5.0M 2 per 1 above design conditions Can perform the same water treatment. In this case, the discharge pressure of the undiluted solution from the undiluted solution supply pipe to the frustum portion inlet of the hollow frustum-shaped nozzle is adjusted in accordance with the undiluted solution supply amount so that the flocculated floc is not destroyed. In the present invention, the design conditions of the preferred form of the frustum-shaped nozzle have been found as a result of various trials and errors as described in the examples below. By using the stock solution supply nozzle formed in accordance with the design conditions of the present invention in a predetermined manner in the pressurized flotation tank, a uniform downward flow of the stock solution to be processed can be generated, and the rise of fine bubbles from below It is possible to improve the contact efficiency of the countercurrent contact with the stream and to prevent sedimentation of flocculated flocs and to prevent water quality deterioration such as turbidity of treated water. By making the distance from the stock solution supply nozzle discharge port to the liquid surface larger than the stock solution discharge port diameter, the discharge flow of the stock solution to be processed does not adversely affect the floating scum.

【0022】[0022]

【実施例】以下、本発明について実施例に基づき更に詳
細に説明する。但し、本発明は下記実施例により制限さ
れるものでない。 実施例1及び比較例1 第1に、油分を含む可能性のある厨房排水の処理設備を
計画するに当たり、前処理設備として油分と懸濁物質を
凝集させ、その後、加圧浮上分離して清澄処理するため
に、前記図1の加圧浮上分離槽の構造概念説明図に沿っ
て図3に断面構造説明図を示したパイロットプラントを
製作した。図3において、加圧浮上分離槽20は、透明
プラスチック製の内径30cmφ、高さ3mの中空円筒
形で上部外周面にオーバーフローにより水面上に浮上集
積保持されたスカムを排出するスカム排出部21を配設
した。被処理原液は、予め凝集槽22で凝集剤等を添加
して含有懸濁物質を凝集粗大化しフロックを形成処理し
た後に、原液供給ノズル24と原液供給ラインL1を連
絡し加圧浮上分離槽20の中央部の液面から下方約50
0mm位置に上向きに配置された吐出口23から分離槽
20内に供給した。被処理原液の供給は、凝集槽22液
面と分離槽20の液面のヘッド差を利用して行った。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited by the following examples. Example 1 and Comparative Example 1 First, in planning a treatment facility for kitchen wastewater that may contain oil, the oil and suspended matter are coagulated as pretreatment facilities, and then levitation separated under pressure to clarify. In order to perform the treatment, a pilot plant having a cross-sectional structural explanatory view shown in FIG. 3 was manufactured along the structural conceptual explanatory view of the pressurized flotation tank shown in FIG. In FIG. 3, a pressurized flotation tank 20 has a scum discharge unit 21 for discharging a scum floatingly accumulated and held on the water surface by overflowing to the upper outer peripheral surface in a hollow cylindrical shape of transparent plastic having an inner diameter of 30 cmφ and a height of 3 m. It was arranged. The stock solution to be treated is subjected to a flocculation treatment by adding a flocculant or the like in advance in a flocculation tank 22 to coagulate and coarsen the contained suspended substance to form a floc. About 50 below the liquid level at the center of
The liquid was supplied into the separation tank 20 from the discharge port 23 arranged upward at 0 mm. The supply of the stock solution to be processed was performed using the head difference between the liquid level of the flocculation tank 22 and the liquid level of the separation tank 20.

【0023】一方、分離槽20底部から上方約500m
m位置に阻流板25を配置し、その上方約50mmに空
気溶解加圧水導入ノズル26の放出口27を下向きにし
て配設した。放出口27は先端部をオリフィス状に細く
絞って加圧液が噴出するようにした。この空気溶解加圧
水導入ノズル26の放出口27は、特に制限されるもの
でなく、例えば、多数の噴出小孔を有する多孔板を配し
たものを用いてもよい。また、分離槽20下底部に流下
貯留する処理液をポンプPで抜出し昇圧してガス溶解槽
28に送入すると同時にコンプレサーCで空気をガス溶
解槽28に送入し空気加圧溶解液とする。ガス溶解槽2
8の空気加圧溶解液は、ラインL2から空気溶解加圧水
導入ノズル26に供給し、放出口27から阻流板25に
向って放出されて分離槽20内に微細気泡を発生させ
た。分離槽20下底部の処理液はラインL3から液位調
節堰29を経て系外に排出した。
On the other hand, about 500 m above the bottom of the separation tank 20
The baffle plate 25 was disposed at a position m, and the discharge port 27 of the air-dissolving pressurized water introduction nozzle 26 was disposed approximately 50 mm above the baffle plate 25. The discharge port 27 has its tip portion squeezed into an orifice shape so that the pressurized liquid is ejected. The discharge port 27 of the air-dissolving pressurized water introduction nozzle 26 is not particularly limited. For example, a discharge plate having a large number of ejection holes may be used. Further, the processing liquid flowing down and stored in the lower bottom portion of the separation tank 20 is extracted by the pump P, pressurized and sent to the gas dissolving tank 28, and at the same time, air is sent to the gas dissolving tank 28 by the compressor C to be an air pressurized dissolved liquid. . Gas dissolving tank 2
The air pressurized solution No. 8 was supplied from the line L2 to the air-dissolved pressurized water introduction nozzle 26, was discharged from the discharge port 27 toward the baffle plate 25, and generated fine bubbles in the separation tank 20. The processing liquid at the lower bottom of the separation tank 20 was discharged out of the system from the line L3 through the liquid level regulating weir 29.

【0024】[0024]

【表1】 [Table 1]

【0025】上記パイロットプラントの原液供給ノズル
24として、浮上分離槽20の中央部から供給した被処
理原液が放射状に内周面方向に均等に広りつつ流降下す
ることを企図して、図2に断面説明図を示した外形が円
錐体頂部を切欠いた円錐台体の中空錘台体形状であるノ
ズルを用い、円錐台体底部を吐出口23に、錘台部に原
液供給ラインL1からの供給管とを接合した。形状形態
は、原液供給管からノズル入口部に流入する原液流速
が、凝集フロックが破壊せず且つ沈降しない流速(例え
ば約0.5m/秒)で表1に示した設計条件で形成し
た。一方、比較例1として、錘台体形状の原液供給ノズ
ル24の代りに前記図4に示した従来法と同様の円管形
ノズルを用い吐出口径を原液供給ラインと同一の50m
mφとし、上部に阻流板を設置して下降流を生じさせる
と共に浮上スカムに影響を与えないようにした。また、
上記のように構成したパイロットプラントの操作条件は
下記表1の通りであった。懸濁度50度の厨房排水を清
澄処理した結果、中空錘台体形状ノズルを用いた実施例
1では1.5度であり、従来の円管形ノズルを用いた比
較例1では2.8度であった。この結果から、円錐台形
状ノズルを用いて被処理原液を分離槽内に供給する方式
が加圧浮上分離法による懸濁水の清澄処理に優れること
が分かる。
As the undiluted solution supply nozzle 24 of the pilot plant, the undiluted solution supplied from the center of the flotation tank 20 is designed to flow down while spreading radially evenly in the inner circumferential direction. The nozzle whose outer shape is a hollow frustoconical shape of a truncated cone with a truncated cone at the top is shown in FIG. It was joined with the supply pipe. The shape and shape were formed under the design conditions shown in Table 1 at a flow rate (for example, about 0.5 m / sec) at which the flow rate of the stock solution flowing from the stock solution supply pipe into the nozzle inlet portion did not cause the flocculation floc to break and settle. On the other hand, as Comparative Example 1, a circular tube-shaped nozzle similar to the conventional method shown in FIG. 4 was used in place of the frustum-shaped stock solution supply nozzle 24, and the discharge port diameter was the same as that of the stock solution supply line.
mφ, and a baffle was installed on the upper part to generate a downward flow and not to affect the floating scum. Also,
The operating conditions of the pilot plant configured as described above were as shown in Table 1 below. As a result of clarifying the kitchen wastewater having a suspension degree of 50 degrees, it was 1.5 degrees in Example 1 using the hollow frustum-shaped nozzle, and 2.8 in Comparative Example 1 using the conventional cylindrical nozzle. Degree. From this result, it is understood that the method of supplying the stock solution to be treated into the separation tank using the truncated conical nozzle is excellent in the clarification of the suspension water by the pressure flotation method.

【0026】検証実験1 次に、上記のパイロットプラントにおける結果に基づ
き、スケールアップに係る問題点等を的確に把握するた
めに、同様の構造で同様に透明プラスチック製で、浮上
分離槽20を直径1.2mφ、高さ3mHで直径を4倍
(横断面積を16倍)にスケールアップした実装置と同
等の試験プラントを建設した。この試験プラントを用い
て、先ず、主に、空気溶解加圧水の放出による微細気泡
の発生状態及び被処理原液と微細気泡の2流体の挙動を
観察することにした。操作条件は、上記パイロットプラ
ントと同様になるように調整した。最初に、空気溶解加
圧水の供給方法について検討した。槽径が大きくなった
ことから、また、加圧水の設定圧が槽断面に対して複数
個に分配できる圧力であることから、空気溶解加圧水を
分配配置についても検討した。分配に当たっては供給す
る被処理原液量に対する加圧水の全導入量の比率と加圧
水圧力をそれぞれパイロットプラントと同様に10重量
%と3〜7kg/cmとして空気溶解加圧水導入ノズ
ルを2個と3個に分配した2ケースについて微細気泡の
発生及び上昇状態を観察した。各導入ノズルは、分離槽
横断面円形の中心を通る直線を3等分する2点に2個、
又は、分離槽横断面円形に内接する正三角形の各辺と頂
点からの垂線との3交点に3個をそれぞれ配置した。ま
た、ノズルの1個配置についても同様に観察した。この
結果、何れの場合も微細気泡の発生及び上昇状態に顕著
な変化はなく、スケールアップに伴い空気溶解加圧水の
導入方法を特に問題にする必要がないことが明らかにな
った。
Verification Experiment 1 Next, based on the results of the pilot plant described above, in order to accurately grasp problems related to scale-up, etc., the floatation / separation tank 20 was made of a transparent plastic having the same structure, A test plant equivalent to the actual device with 1.2 mφ, 3 mH in height, and 4 times in diameter (16 times in cross-sectional area) was constructed. Using this test plant, the state of generation of fine bubbles due to the release of air-dissolved pressurized water and the behavior of two fluids, ie, the untreated solution and the fine bubbles, were mainly observed. The operating conditions were adjusted to be the same as in the pilot plant. First, the method of supplying air-dissolved pressurized water was studied. Since the tank diameter became large and the set pressure of the pressurized water was a pressure that could be distributed to a plurality of sections of the tank, the distribution of air-dissolved pressurized water was also studied. At the time of distribution, the ratio of the total amount of pressurized water introduced to the amount of the stock solution to be supplied and the pressurized water pressure are set to 10% by weight and 3 to 7 kg / cm 2 , respectively, as in the pilot plant, so that two and three air-dissolved pressurized water introduction nozzles are used. The occurrence and rising state of fine bubbles were observed for the two cases in which the liquid was distributed. Each introduction nozzle has two points at two points that divide a straight line passing through the center of the circular cross section of the separation tank into three equal parts.
Alternatively, three pieces are arranged at three intersections of each side of the equilateral triangle inscribed in the circular cross section of the separation tank and a perpendicular line from the vertex. In addition, the same observation was performed on the arrangement of one nozzle. As a result, in any case, there was no significant change in the generation and rising state of the fine bubbles, and it became clear that the method of introducing pressurized air-dissolved water did not need to be particularly problematic with the scale-up.

【0027】検証実験2 次に、同じ試験プラントを用い供給原液降下流と微細気
泡の上昇流との流体挙動を観察した。上記空気溶解加圧
水導入観察から導入ノズルはパイロットプラントと同様
に分離槽の下部中心部に1個設置した。また、原液供給
ノズルとしては分離槽20のスケールアップの被処理原
液処理量に合わせ、従来の経験則に基づき前記したよう
にノズル入口部に流入する原液流速が凝集フロックが破
壊せず且つ沈降しないとされている約0.5m/秒とな
るように表2に示した形態条件で、パイロットプラント
で好適となった円錐台形状の供給ノズルを形成し同様に
設置して用いた。操作条件は表1に示したパイロットプ
ラントと同様になるように原液供給量等を調整した。最
初、原液の供給を停止し空気溶解加圧水のみを放出し
た。空気溶解加圧水の放出によりほぼ阻流板25位置か
ら水表面に至る分離槽内全域にほぼ均一な濃度で安定し
た微細気泡の白濁層が形成された。白濁層において微細
気泡が全体としてゆっくり上昇する状況が観察できた。
この段階で被処理原液を供給した。当初、原液を供給す
ることで下降流が生じるので、気泡の上昇速度が遅くな
ると予想した。しかし、それに反して分離槽の内壁周面
部で微細気泡の上昇速度が速くなることが観察され通常
と異なる上昇流が発生していることが明らかとなった。
Verification Experiment 2 Next, using the same test plant, the fluid behavior of the descending flow of the feed stock solution and the rising flow of fine bubbles was observed. From the observation of the introduction of pressurized water dissolved in air, one introduction nozzle was installed at the lower central part of the separation tank as in the pilot plant. Also, as the stock solution supply nozzle, the flow rate of the stock solution flowing into the nozzle inlet portion does not cause the flocculation floc to be destroyed and settled according to the conventional empirical rule in accordance with the amount of the stock solution to be treated in the scale-up of the separation tank 20 as described above. Under the form conditions shown in Table 2 so as to be about 0.5 m / sec, a frustoconical supply nozzle suitable for a pilot plant was formed, installed and used similarly. The operating conditions were adjusted such that the stock solution was supplied so as to be the same as the pilot plant shown in Table 1. First, the supply of the stock solution was stopped and only the air-dissolved pressurized water was discharged. By the release of the pressurized water in the air, a stable cloudy layer of fine bubbles having a substantially uniform concentration was formed over the entire area of the separation tank from the position of the baffle plate 25 to the surface of the water. In the cloudy layer, a situation in which fine bubbles ascended slowly as a whole was observed.
At this stage, the stock solution to be treated was supplied. Initially, it was expected that the rising speed of the bubbles would be slower because the supply of the undiluted solution would cause a downward flow. However, on the contrary, it was observed that the rising speed of the fine bubbles was increased at the inner wall peripheral surface of the separation tank, and it became clear that an unusual rising flow was generated.

【0028】[0028]

【表2】 [Table 2]

【0029】検証実験3 次に、再び原液供給を停止し空気溶解加圧水のみを導入
し安定な気泡白濁層を形成させた後、インクで着色した
原液を供給した。着色原液の一部が分離槽の中心部にお
いて周辺の微細気泡を随伴しながら急速に下降し、分離
槽内壁周面部の気泡が上昇を早めることが観察された。
また、原液が下降するにつれ着色は上部から徐々に下方
に移動して拡散するものと考えたが、着色が上部からだ
けでなく分離槽の中間部からも拡散する様子が観察され
た。これにより分離槽内の流体の流れが、向流接触する
原液の下降流と微細気泡の上昇流だけでなく、部分的な
循環混合流やショートパス流が生じていることも判明し
た。このため、実装置クラスの大規模な向流式加圧浮上
分離法では、原液供給ノズルとして単に円錐台等の錘台
形状を採用しても向流接触効率を必ずしも向上させるこ
とができず、原液供給方法に他の要因を加味して検討す
べきことが判明した。
Verification Experiment 3 Next, the supply of the stock solution was stopped again, and only the air-dissolved pressurized water was introduced to form a stable cloudy white layer. Then, the stock solution colored with ink was supplied. It was observed that a part of the coloring stock solution rapidly descended along with peripheral fine bubbles in the center of the separation tank, and the bubbles on the peripheral surface of the inner wall of the separation tank accelerated rising.
Further, it was considered that the coloring gradually moved downward from the upper part and diffused as the stock solution descended, but it was observed that the coloring diffused not only from the upper part but also from the middle part of the separation tank. As a result, it has been found that the flow of the fluid in the separation tank is not only a downward flow of the undiluted solution and an upward flow of the fine bubbles in contact with each other, but also a partial circulating mixed flow and a short path flow. For this reason, in the large-scale counter-current pressure flotation method of the real device class, even if a frustum shape such as a truncated cone is simply adopted as the stock solution supply nozzle, the counter-current contact efficiency cannot always be improved, It became clear that the stock solution supply method should be considered in consideration of other factors.

【0030】前記パイロットプラントを用いて上記着色
原液による同様の観察をした。その結果、上記のような
混合循環流やショートパス流等の現象は観察されなかっ
た。そのため、パイロットプラントと試験プラントにお
ける原液供給における差異について詳細に検討した。先
ず第一に、浮上分離槽内における流下速度や滞留時間等
の表1に示した操作条件が同一となるように、分離槽の
スケールアップによる容量増大から原液供給量を調整し
て行っているが、原液供給ノズル吐出口から分離槽内に
流出吐出する原液の吐出速度について検討した。即ち、
パイロットプラントにおける原液供給ノズル吐出口から
の原液吐出速度は、浮上する微細気泡量と凝集フロック
を無視すれば、分離槽内における原液下降流量が原液供
給量(Q)と等しいことから、分離槽断面積(A)及び
原液供給ノズル吐出口面積(a)として、Lvi(原液
の吐出速度)/Lvc(空塔速度)=Q/a/Q/Aで
表すことができる。従って、Lvi=Lvc×A/aで
あり、パイロットプラントの流下線速度15m/時=L
vcとして、Lvi=15m/時×π(0.3/2)
/π(0.088/2)=15m/時×11.6=1
74m/時である。これに対し、同様にして求めた試験
プラントでの原液吐出速度Lviは960m/時であ
り、大幅に異なることが明らかとなった。
Using the pilot plant, similar observations were made with the above coloring stock solution. As a result, phenomena such as the mixed circulation flow and the short path flow as described above were not observed. Therefore, the difference in the supply of undiluted solution between the pilot plant and the test plant was examined in detail. First, the feed rate of the undiluted solution is adjusted by increasing the capacity of the separation tank so that the operating conditions shown in Table 1 such as the flow rate and the residence time in the flotation tank become the same. However, the discharge speed of the undiluted solution flowing out of the undiluted solution supply nozzle into the separation tank was examined. That is,
When the stock solution discharge speed from the stock solution supply nozzle discharge port in the pilot plant is neglecting the amount of floating fine bubbles and flocculated floc, the stock solution descending flow rate in the separation tank is equal to the stock solution supply amount (Q). The area (A) and the stock solution supply nozzle discharge port area (a) can be represented by Lvi (stock solution discharge speed) / Lvc (superficial tower speed) = Q / a / Q / A. Therefore, Lvi = Lvc × A / a, and the downstream linear velocity of the pilot plant is 15 m / h = L
As vc, Lvi = 15 m / hour × π (0.3 / 2) 2
/Π(0.088/2) 2 = 15 m / hr × 11.6 = 1
It is 74 m / hour. On the other hand, the undiluted solution discharge speed Lvi in the test plant obtained in the same manner was 960 m / hour, and it was clarified that it was significantly different.

【0031】検証実験4 上記の検討結果に基づき、パイロットプラントにおける
原液吐出速度を大幅に変化させないように、分離槽大型
化に伴う原液供給量の増大を複数の供給ノズルに分割さ
せて対応することを試案し、2、3、4個に分割して原
液供給した。分割供給用の各原液供給ノズルは円錘台形
状で表3に示した形態条件で同一に形成した。これら分
割供給ノズルの配置は、加圧浮上分離槽20の断面に対
し、2個は直線形状、3個は正三角形状、4個は正方形
状にそれぞれ配置した。検証実験1と同様に微細気泡観
察と着色原液下降流観察をそれぞれ繰返し行った。その
結果、2個分割配置でも着色拡散からショートパス流が
大幅に改善され分離槽内壁周面部の微細気泡の乱れが少
なく、3個及び4個に分割配置した場合は殆ど循環混合
流もショートパス流も生じないことが明らかとなった。
Verification experiment 4 Based on the above examination results, the increase in the supply amount of the stock solution accompanying the enlargement of the separation tank should be divided into a plurality of supply nozzles so as not to greatly change the stock solution discharge speed in the pilot plant. And a stock solution was supplied by dividing into two, three, and four pieces. Each stock solution supply nozzle for divided supply was formed in the same shape under the form conditions shown in Table 3 in the shape of a truncated cone. The arrangement of the divided supply nozzles was such that two were arranged in a straight line, three were arranged in a regular triangle, and four were arranged in a square with respect to the cross section of the pressurized flotation tank 20. As in the verification experiment 1, the observation of the microbubbles and the observation of the descending flow of the coloring stock solution were repeatedly performed. As a result, even in the two-part arrangement, the short-pass flow is greatly improved from the color diffusion, the turbulence of the fine bubbles on the inner peripheral surface of the separation tank is small, and when the three-part and four-part arrangements are made, the circulating mixed flow is almost also short-path. It was found that no flow occurred.

【0032】[0032]

【表3】 [Table 3]

【0033】しかし、所定供給量の被処理原液を設定し
た吐出速度値から大幅に変化させることなく複数に分割
して供給するためには、被処理原液を均等に分配するた
めに圧力損失を付加する必要があり、壊れやすい凝集フ
ロック含有の被処理原液を複数の供給ノズルに分割して
供給することは好ましくなく、実用上被処理原液の分割
数は少ない程望ましい。このため分離槽径1.2mφの
実装置プラントに対しても上記パイロットプラントと同
様に1個の供給ノズルで実施するべく、下記実施例に示
すようにノズル形態についてパイロットプラントで用い
た原液供給ノズル形態を参照して種々試行錯誤にて試験
検討した。
However, in order to divide and supply a predetermined amount of stock solution to be processed into a plurality of stock solutions without greatly changing from a set discharge speed value, a pressure loss is added to evenly distribute the stock solution to be processed. Therefore, it is not preferable to divide and supply the stock solution containing the flocculable floc which is easily broken to a plurality of supply nozzles. In practice, the smaller the number of divided stock solutions, the better. For this reason, in order to carry out a single supply nozzle in the same manner as in the pilot plant as in the above-mentioned pilot plant, the undiluted solution supply nozzle used in the pilot plant has the nozzle form as shown in the following example for the actual plant with a separation tank diameter of 1.2 mφ. Various trial and error tests were conducted with reference to the form.

【0034】実施例2 前記試験分離槽と同一の分離槽に、下記表4に示した形
態条件で製作した原液供給ノズルをセットしてパイロッ
トプラントで処理した同様の厨房排水である油分含有懸
濁水を処理した。各供給ノズルを用いて得られた処理水
の濁度を表2に示した。なお、パイロットプラントで使
用した原液供給ノズルの形態条件で形成したノズルを表
4にノズル番号1として示した。また、前記試験プラン
トの検証実験2及び3で用いた表2に示した原液供給ノ
ズルの形態条件を表4にノズル番号12として併せて示
した。これらの結果から、ノズル番号が1(パイロット
プラントと同一形態条件)、2、4及び5の原液供給ノ
ズルを用いた場合は、処理水の濁度が低くスカム層も安
定し向流式加圧浮上分離法により懸濁水の清澄処理が効
果的に行われたことが明らかである。ノズル番号3及び
7のノズルでは処理水の濁度は低く良好であり、スカム
層にやや乱れを生じたが、特に適用に支障はなかった。
ノズル番号8〜10のノズルは、処理水の濁度がやや上
昇気味でスカム層も乱れが見られたが適用できる範囲内
と判定できる。一方、ノズル番号6、11及び12のノ
ズルを用いた場合は、処理水の濁度が高くなりスカム層
も乱れ加圧浮上分離処理による清澄処理が十分に行えな
いことがが分かる。また、錘台体開度(θ)が12°未
満ではノズル吐出口径と原液供給部径との兼ね合いから
錘台体高さが分離槽深さに比し極めて大きくなりすぎる
ことから実用的でないことも明らかになった。
Example 2 An oil-containing suspended water which is the same kitchen wastewater treated in a pilot plant by setting a stock solution supply nozzle manufactured under the form conditions shown in Table 4 below in the same separation tank as the test separation tank. Was processed. Table 2 shows the turbidity of the treated water obtained using each supply nozzle. In addition, the nozzle formed under the form condition of the stock solution supply nozzle used in the pilot plant is shown as nozzle number 1 in Table 4. Further, the configuration conditions of the stock solution supply nozzle shown in Table 2 used in the verification experiments 2 and 3 of the test plant are also shown in Table 4 as the nozzle number 12. From these results, when the stock solution supply nozzles having nozzle numbers of 1 (the same configuration conditions as the pilot plant), 2, 4 and 5 were used, the turbidity of the treated water was low, the scum layer was stable, and the countercurrent pressurization was used. It is clear that the suspension water was clarified effectively by the flotation method. With the nozzles of Nos. 3 and 7, the turbidity of the treated water was low and good, and the scum layer was slightly disturbed, but there was no particular problem in application.
For the nozzles with nozzle numbers 8 to 10, the turbidity of the treated water slightly increased and the scum layer was disturbed, but it can be determined that the turbidity is within the applicable range. On the other hand, when the nozzles of Nos. 6, 11, and 12 are used, the turbidity of the treated water is increased, the scum layer is disturbed, and the fining treatment by the pressure flotation treatment cannot be sufficiently performed. If the frustum opening (θ) is less than 12 °, the height of the frustum becomes extremely large compared to the depth of the separation tank due to the balance between the nozzle discharge port diameter and the diameter of the stock solution supply part, so that it is not practical. It was revealed.

【0035】[0035]

【表4】 [Table 4]

【0036】実施例3 上記試験プラントの円筒形加圧浮上分離槽を2.0m四
方の角筒形状とし、外形状が円錘台体形状の中空円錘台
体で、表5に示した形態条件でA/a=9.8で形成し
た原液供給ノズルを設置した以外は、全く同様に向流接
触式加圧浮上分離処理プラントを設計製作した。このプ
ラントを下記表5に示した操作条件で、試験プラントで
処理した同一の厨房排水を処理した。その結果、得られ
た処理水の濁度は1.0〜1.5度であり所期の性能が
得られた。
Example 3 The cylindrical pressurized flotation tank of the above test plant was a hollow frustum with a 2.0-m2 square shape and an outer shape of a frustum shape. A countercurrent contact pressure flotation plant was designed and manufactured in exactly the same manner except that a stock solution supply nozzle formed at A / a = 9.8 was installed under the conditions. This plant was treated under the operating conditions shown in Table 5 below with the same kitchen wastewater that was treated in the test plant. As a result, the turbidity of the obtained treated water was 1.0 to 1.5 degrees, and the expected performance was obtained.

【0037】[0037]

【表5】 [Table 5]

【0038】[0038]

【発明の効果】本発明の加圧浮上分離法及びその装置
は、外形が錘台体形状の原液供給ノズルを用い、それら
錘台体形状の開度、原液供給管に接続する錘台頂部面積
及び錘台部高さ、また、ノズル吐出口となる底部面積と
分離槽断面積との関係等を所定に特定することで、浮上
分離槽内水平断面に対し供給した比重の大きな被処理原
液の均等な放射状の流出と分散広がりと降下流を可能と
する。また、液表面に浮上したスカム層を乱すことな
く、また、スカム層下方の近距離に被処理原液を供給さ
せることにより微細気泡と結合合体した凝集フロックの
液表面までの移動距離を短くすることができ、確実な浮
上を可能とする。更に、上昇する微細気泡群に対してラ
ットホール流や偏流等の不均一な変則的下降流を生じさ
せないことから供給被処理原液と上昇微細気泡群との接
触効率が向上し、また、微細気泡の上昇によって生じる
随伴上昇流と下降原液流との接触摩擦抵抗を最少にでき
る。更にまた、液表面上に浮上したスカム層を乱すこと
なく安定して長時間保持することができる。
According to the pressure flotation method and the apparatus of the present invention, a stock solution supply nozzle having a truncated cone shape is used, the degree of opening of the frustum shape, and the area of the top of the cone connected to the stock solution supply pipe. And the height of the frustum portion, and the relationship between the bottom area serving as the nozzle outlet and the cross-sectional area of the separation tank and the like are specified in a predetermined manner. Enables uniform radial outflow, dispersion spreading and downflow. In addition, the moving distance of the flocculated floc combined with the microbubbles to the liquid surface is shortened without disturbing the scum layer floating on the liquid surface and by supplying the untreated liquid to a short distance below the scum layer. And assured levitation. Furthermore, the contact efficiency between the raw solution to be supplied and the rising microbubbles is improved by preventing the rising microbubbles from generating an irregular irregular downflow such as rat hole flow or drift. The contact frictional resistance between the accompanying ascending flow and the descending undiluted liquid flow caused by the ascending flow can be minimized. Furthermore, the scum layer floating on the liquid surface can be stably held for a long time without being disturbed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の加圧浮上分離装置の縦断面概念図FIG. 1 is a schematic longitudinal sectional view of a pressure flotation device of the present invention.

【図2】本発明の加圧浮上分離装置パイロットプラント
の断面構造説明図
FIG. 2 is an explanatory sectional view of a pressure flotation device pilot plant of the present invention.

【図3】本発明の加圧浮上分離装置に用いる外形状が円
錐台体の中空錘台体形状で錘台体底部を吐出口とし、錐
体頂部を切欠いた頂台部を原液送入口とする錘台体形状
ノズルの断面説明図
FIG. 3 is a diagram illustrating a hollow frustum of a truncated cone shape used as a pressure flotation separator of the present invention, with a frustum bottom serving as a discharge port, and a truncated cone top serving as a stock solution inlet. Sectional explanatory view of a frustum-shaped nozzle

【図4】従来の並流接触式加圧浮上分離装置の断面説明
FIG. 4 is a cross-sectional explanatory view of a conventional parallel-flow contact pressure flotation device.

【図5】従来の水平移動式加圧浮上分離装置の断面説明
FIG. 5 is an explanatory cross-sectional view of a conventional horizontally movable pressure flotation device.

【符号の説明】[Explanation of symbols]

10、20、40、50 加圧浮上分離槽 53 被処理原液 2、42 空気溶解加圧液 24 被処理原液供給ノズル 23 吐出口 25 阻流板 26 空気溶解加圧液導入ノズル 27 放出口 10, 20, 40, 50 Pressure flotation / separation tank 53 Untreated liquid 2, 42 Air-dissolved pressurized liquid 24 Untreated liquid supply nozzle 23 Discharge port 25 Baffle plate 26 Air-dissolved pressurized liquid introduction nozzle 27 Discharge port

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 加圧浮上分離槽の上方部から被処理原液
を供給すると共に下方部からガス溶解加圧水を導入して
微細気泡を発生させ、前記原液と微細気泡とを向流接触
させる加圧浮上分離方法であって、中空錘台体形状で底
部を吐出部とし下記(1)〜(2)式で示される形態を
有するノズルを、前記加圧浮上分離槽断面積10m
たり少なくとも1個配設して前記吐出部を上向きにして
前記原液を供給することを特徴とする加圧浮上分離方
法。但し、下記(1)〜(2)式において、Aが前記加
圧浮上分離槽の断面積であり、aが前記ノズル吐出部の
断面積であり、θが前記ノズルの開度である。 8≦A/a≦14 (1) 12°≦θ≦35° (2)
1. A pressurization for supplying a stock solution to be processed from an upper portion of a pressurized flotation tank and introducing gas-dissolved pressurized water from a lower portion to generate fine bubbles, and to bring the stock solution and the fine bubbles into countercurrent contact. In the flotation method, at least one nozzle having a hollow frustum shape and having a bottom as a discharge part and having a form represented by the following formulas (1) and (2) per 10 m 2 of the cross-sectional area of the pressurized flotation tank. A pressurized flotation separation method, comprising disposing the undiluted solution with the discharge unit facing upward. However, in the following equations (1) and (2), A is the cross-sectional area of the pressurized flotation tank, a is the cross-sectional area of the nozzle discharge section, and θ is the opening of the nozzle. 8 ≦ A / a ≦ 14 (1) 12 ° ≦ θ ≦ 35 ° (2)
【請求項2】 加圧浮上分離装置であって、分離槽の横
断面中心部に中空錘台体形状で底部を吐出部とし下記
(1)〜(2)式で示される形態を有する被処理原液供
給ノズルを、前記吐出部を上向きにして前記加圧浮上分
離槽断面積10m当たり少なくとも1個配設し、前記
ノズルの垂直下方部にガス溶解加圧水導入口及び阻流板
を配置すると共に前記ガス溶解加圧水導入口がオリフィ
スノズルであり前記阻流板に向って噴射可能に配置され
てなることを特徴とする加圧浮上分離装置。但し、下記
(1)〜(2)式において、Aが前記加圧浮上分離槽の
断面積であり、aが前記ノズル吐出部の断面積であり、
θが前記ノズルの開度である。 8≦A/a≦14 (1) 12°≦θ≦35° (2)
2. A pressurized flotation separation apparatus, comprising a hollow frustum-shaped body at the center of the cross section of the separation tank, a bottom having a discharge section, and having the form shown by the following formulas (1) and (2). At least one undiluted solution supply nozzle is provided per 10 m 2 of the cross-sectional area of the pressurized flotation tank with the discharge section facing upward, and a gas-dissolved pressurized water inlet and a baffle plate are arranged vertically below the nozzle. The pressure flotation / separation apparatus, wherein the gas-dissolved pressurized water inlet is an orifice nozzle and is arranged so as to be able to jet toward the baffle plate. However, in the following formulas (1) and (2), A is the cross-sectional area of the pressurized flotation tank, a is the cross-sectional area of the nozzle discharge section,
θ is the opening of the nozzle. 8 ≦ A / a ≦ 14 (1) 12 ° ≦ θ ≦ 35 ° (2)
JP2000006838A 2000-01-14 2000-01-14 Pressurized flotation separation method and apparatus Expired - Fee Related JP3641178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000006838A JP3641178B2 (en) 2000-01-14 2000-01-14 Pressurized flotation separation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000006838A JP3641178B2 (en) 2000-01-14 2000-01-14 Pressurized flotation separation method and apparatus

Publications (2)

Publication Number Publication Date
JP2001198569A true JP2001198569A (en) 2001-07-24
JP3641178B2 JP3641178B2 (en) 2005-04-20

Family

ID=18535305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000006838A Expired - Fee Related JP3641178B2 (en) 2000-01-14 2000-01-14 Pressurized flotation separation method and apparatus

Country Status (1)

Country Link
JP (1) JP3641178B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012055829A (en) * 2010-09-09 2012-03-22 Japan Organo Co Ltd Floatation apparatus
CN113683210A (en) * 2021-08-28 2021-11-23 安志霞 Floating solar aeration device based on wireless control
JP7450882B2 (en) 2020-07-29 2024-03-18 株式会社片山化学工業研究所 Treatment method for oil-containing wastewater

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012055829A (en) * 2010-09-09 2012-03-22 Japan Organo Co Ltd Floatation apparatus
JP7450882B2 (en) 2020-07-29 2024-03-18 株式会社片山化学工業研究所 Treatment method for oil-containing wastewater
CN113683210A (en) * 2021-08-28 2021-11-23 安志霞 Floating solar aeration device based on wireless control
CN113683210B (en) * 2021-08-28 2023-08-04 深圳能源资源综合开发有限公司 Floating type solar aeration device based on wireless control

Also Published As

Publication number Publication date
JP3641178B2 (en) 2005-04-20

Similar Documents

Publication Publication Date Title
US5462669A (en) Method for dissolved air floatation and similar gas-liquid contacting operations
AU2008266813B2 (en) Process and apparatus for adsorptive bubble separation using a dense foam
US4216085A (en) Flotation method and apparatus
ES2228298T3 (en) PROCEDURE AND DEVICE FOR CLARIFICATION OF LIQUIDS, PARTICULARLY OF WATER, CHARGED WITH SUSPENSION MATTERS.
US6106711A (en) Fluid conditioning system and method
US3820659A (en) Dissolved air clarifier
JPS6139879B2 (en)
KR101336169B1 (en) Water purifying apparatus using sedimentation and dissolved air flotation
US6171488B1 (en) Fluid conditioning system
KR20170028039A (en) Select operation possible type rise and precipitation integrated waste water treatment system
US5580463A (en) Pressurized, sparged flotation column
KR100975366B1 (en) Waste water treatment facilities having micro bubble generator
KR101211654B1 (en) Floatation plant
KR100530772B1 (en) Second sewage treatment apparatus and treatment method thereof
KR101723161B1 (en) Flotation apparatus having circulation structure for treated water
KR101715564B1 (en) Flotation device using high efficiency tank for dissolving a gases into liquids
JP3641178B2 (en) Pressurized flotation separation method and apparatus
US6719911B2 (en) Apparatus and method for the treatment of a contaminated fluid
JP4825850B2 (en) Floating separator, rectifier, and split cell for rectifier
EP0695719A1 (en) Method and apparatus for dissolved air flotation and similar gas-liquid contacting operations
KR102012965B1 (en) Dissolved Air Flotation System using ambient air
KR100464716B1 (en) Apparatus for clarifying water and wastewater
CN113195104B (en) Oil drop flotation unit with weir and hydraulic mechanism
EP0625074B1 (en) Vortex flocculation of solids suspended in liquid
KR102110508B1 (en) Dissolved air flotation device capable of increasing organic matter recovery and water treatment method using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040120

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20040322

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040601

A131 Notification of reasons for refusal

Effective date: 20041019

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050114

A61 First payment of annual fees (during grant procedure)

Effective date: 20050120

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090128

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110128

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees