JP2001196895A - Surface acoustic wave device - Google Patents

Surface acoustic wave device

Info

Publication number
JP2001196895A
JP2001196895A JP2000002571A JP2000002571A JP2001196895A JP 2001196895 A JP2001196895 A JP 2001196895A JP 2000002571 A JP2000002571 A JP 2000002571A JP 2000002571 A JP2000002571 A JP 2000002571A JP 2001196895 A JP2001196895 A JP 2001196895A
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
zno
wave device
tcf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000002571A
Other languages
Japanese (ja)
Inventor
Amamitsu Higuchi
天光 樋口
Setsuya Iwashita
節也 岩下
Hiroshi Miyazawa
弘 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2000002571A priority Critical patent/JP2001196895A/en
Publication of JP2001196895A publication Critical patent/JP2001196895A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve problems of a conventional ZnO thin film on a crystal being a surface acoustic wave device aiming at temperature stability that cannot have thickened the film thickness of the ZnO resulting in decreasing the k2 of the entire element because the integration with other electronic device is difficult, the isolation of the ZnO is prone to decrease, and the absolute value of a negative TCF value of the crystal is small. SOLUTION: Laminating a ZnO piezoelectric layer 13 oriented in the (001) with at least any of Li, Cu, Ag attached thereto on a Si substrate 11 oriented in the (100) can enhance the piezoelectricity and increase the k2 and depositing a SiO2 protection layer 16 containing at least any of Li2O, MgO, Al2O3 and having a negative center frequency temperature coefficient (TCF) value on the layer 13 can nullify the TCF value of the entire element without decreasing the k2 value so as to realize a communication device such as a high frequency filter and an oscillator with a small insertion loss and excellent temperature stability.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、情報通信分野に用
いられる表面弾性波素子に関し、特に圧電薄膜を用いた
表面弾性波素子に関するものである。
The present invention relates to a surface acoustic wave device used in the field of information communication, and more particularly to a surface acoustic wave device using a piezoelectric thin film.

【0002】[0002]

【従来の技術】携帯電話などの移動体通信を中心とした
通信分野の著しい発展に伴い、表面弾性波素子の需要が
急速に拡大している。表面弾性波素子の開発の方向とし
ては、小型化、高効率化、高周波化の方向にあり、その
ためには、より大きな電気機械結合係数(以下k2)、
より安定な温度特性、より大きな表面弾性波伝播速度、
が必要となる。表面弾性波素子は、フィルタ、共振器等
に用いられるが、例えば発振器として用いる場合は、そ
の中心周波数温度係数(TCF)がなるべく零に近くな
るような温度特性が望ましい。表面弾性波素子は、従
来、主として圧電体の単結晶上にインターディジタル型
電極(Inter−Digital Transduc
er、以下IDT)を形成した構造が用いられてきた
が、温度特性の安定が必要なIFフィルタや発振器の場
合には、TCFが零に近い水晶が圧電体基板として用い
られてきた。
2. Description of the Related Art The demand for surface acoustic wave devices has been rapidly expanding with the remarkable development of the communication field centering on mobile communication such as mobile phones. The direction of development of surface acoustic wave devices is in the direction of miniaturization, high efficiency, and high frequency, and for that purpose, a larger electromechanical coupling coefficient (hereinafter k 2 ),
More stable temperature characteristics, larger surface acoustic wave propagation velocity,
Is required. The surface acoustic wave device is used for a filter, a resonator, or the like. For example, when the surface acoustic wave device is used as an oscillator, it is desirable that the temperature characteristic is such that its center frequency temperature coefficient (TCF) is as close to zero as possible. Conventionally, a surface acoustic wave device is mainly composed of an inter-digital electrode (Inter-Digital Transducc) on a piezoelectric single crystal.
er (hereinafter, IDT) has been used. However, in the case of an IF filter or an oscillator that requires stable temperature characteristics, quartz having a TCF close to zero has been used as a piezoelectric substrate.

【0003】一方、酸化亜鉛(以下ZnO)のような温
度特性に劣る圧電材料の場合には、例えば「表面波デバ
イスとその応用」電子材料工業会編 1978年発行 p
p106〜108 に記載されているように、TCFの
符号が異なる材料、例えば二酸化珪素(以下SiO2
との積層によって温度特性を改善することが試みられて
きた。Jpn.J.Appl.Phys.Vol.36
(1997)pp.3076−3080や特開平9−1
30192に記載されているように、正のTCF値を有
するカット角および伝播方向の水晶基板上に負のTCF
値を有するZnO圧電膜を形成し、その膜厚を最適化す
ることによってTCFを零近傍に調整することが試みら
れている。この場合、それぞれの層の膜厚を最適化する
ことによって、温度特性のみならず、k2、表面波の伝
播速度をも改善することが可能となる。
On the other hand, in the case of a piezoelectric material having inferior temperature characteristics such as zinc oxide (hereinafter referred to as ZnO), for example, “Surface Wave Devices and Their Applications”, edited by Electronic Materials Industry Association, published in 1978, p.
As described on pages 106 to 108, materials having different signs of TCF, for example, silicon dioxide (hereinafter, SiO 2 )
Attempts have been made to improve the temperature characteristics by laminating them. Jpn. J. Appl. Phys. Vol. 36
(1997) p. 3076-3080 and JP-A-9-19-1
As described in US Pat. No. 30192, a negative TCF on a quartz substrate with a cut angle and propagation direction having a positive TCF value.
Attempts have been made to adjust the TCF to near zero by forming a ZnO piezoelectric film having a certain value and optimizing the film thickness. In this case, by optimizing the film thickness of each layer, it is possible to improve not only the temperature characteristics but also the k 2 and the propagation speed of the surface wave.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の水晶上
のZnO薄膜を用いた表面弾性波素子には、以下のよう
な問題点がある。
However, the conventional surface acoustic wave device using a ZnO thin film on quartz has the following problems.

【0005】まず、水晶基板を使用しなくてはならない
ため、他の電子デバイスと集積化することが困難であっ
た。従って、シリコン(以下Si)基板上に直接堆積す
る構造が実現できれば、製造コストの低減も含めて大変
有用である。またSiは、表面弾性波の伝播速度が50
00m/s程度と大きいことも、高周波化にとって有用
である。
First, since a quartz substrate must be used, it has been difficult to integrate it with other electronic devices. Therefore, if a structure in which the film is directly deposited on a silicon (hereinafter, Si) substrate can be realized, it is very useful including reduction in manufacturing cost. Si has a surface acoustic wave propagation velocity of 50
A large value of about 00 m / s is also useful for increasing the frequency.

【0006】次に、ZnOは一般にn型半導体の性質を
示す材料であるため、低酸素雰囲気下での製膜プロセス
によって酸素欠陥が生じると、導電性が出現してリーク
電流や圧電定数の低下などの問題が生じやすかった。従
って、ZnOの絶縁性を確保するため、Znより価数の
小さな金属、すなわち1価の陽イオンになりやすい金属
を添加することが望ましい。
Next, since ZnO is a material generally exhibiting the properties of an n-type semiconductor, when oxygen defects are generated by a film forming process in a low oxygen atmosphere, conductivity appears to cause a decrease in leak current and piezoelectric constant. Problems such as were easy to occur. Therefore, in order to secure the insulating property of ZnO, it is desirable to add a metal having a lower valence than Zn, that is, a metal that easily becomes a monovalent cation.

【0007】一方、正のTCFを有するSiO2につい
ては、ZnOの負のTCFを相殺するためにはその膜厚
をある程度厚くする必要があるが、その場合SiO2
小さなk2の影響で、素子全体のk2が小さくなってしま
うといった欠点があった。従って、SiO2よりTCF
の大きな材料を選択することが望ましく、このような材
料としては、負の熱膨張係数を有するものが有望であ
る。
On the other hand, the SiO 2 having a positive TCF is to offset the negative TCF of ZnO it is necessary to increase the film thickness to some extent, in which case the influence of small k 2 of SiO 2, There is a drawback that k 2 of the entire device is reduced. Therefore, TCF is better than SiO 2
It is desirable to select a material having a large thermal expansion coefficient, and a material having a negative coefficient of thermal expansion is promising.

【0008】本発明は以上述べた問題点を解決するもの
であり、温度特性に優れかつk2が高く高周波化に対応
できる薄膜を用いた表面弾性波素子を提供するものであ
る。
The present invention solves the above-mentioned problems, and provides a surface acoustic wave device using a thin film which is excellent in temperature characteristics and has a high k 2 and can cope with a higher frequency.

【0009】[0009]

【課題を解決するための手段】請求項1記載の表面弾性
波素子は、(100)Si基板と、前記Si基板上のS
iO2からなるバッファ層と、前記SiO2バッファ層上
のZnOからなる圧電体層とからなり、前記ZnO圧電
体層の直下または直上にIDTを形成することを特徴と
する。
According to a first aspect of the present invention, there is provided a surface acoustic wave device comprising: a (100) Si substrate;
It is characterized by comprising a buffer layer made of iO 2 and a piezoelectric layer made of ZnO on the SiO 2 buffer layer, wherein an IDT is formed immediately below or directly above the ZnO piezoelectric layer.

【0010】上記構成によれば、Si基板上に直接Zn
O圧電体を堆積する構造が実現でき、製造コストの低減
や他の電子デバイスの集積化にとって有利であるという
効果を有する。
According to the above configuration, Zn is directly formed on the Si substrate.
A structure in which an O piezoelectric material is deposited can be realized, which is advantageous in reducing manufacturing costs and integrating other electronic devices.

【0011】請求項2記載の表面弾性波素子は、ZnO
圧電体層において、Znの一部をLi、Cu、Agの少
なくとも一つで置換した組成を有することを特徴とす
る。
According to a second aspect of the present invention, there is provided a surface acoustic wave device comprising ZnO
The piezoelectric layer has a composition in which Zn is partially replaced with at least one of Li, Cu, and Ag.

【0012】上記構成によれば、ZnO圧電体層のリー
ク電流や圧電定数の低下などの問題を改善するという効
果を有する。
According to the above configuration, there is an effect that problems such as a leak current of the ZnO piezoelectric layer and a decrease in the piezoelectric constant are improved.

【0013】請求項3記載の表面弾性波素子は、ZnO
圧電体層において、c軸が前記シリコン基板に垂直に配
向し、かつa軸が前記シリコン基板に平行な面内で配向
したエピタキシャル膜であることを特徴とする。
According to a third aspect of the present invention, there is provided a surface acoustic wave device comprising ZnO
In the piezoelectric layer, the c-axis is oriented perpendicular to the silicon substrate, and the a-axis is an epitaxial film oriented in a plane parallel to the silicon substrate.

【0014】上記構成によれば、平坦で緻密なエピタキ
シャル膜が得られるので、リーキー波伝播に伴う損失を
低減させるという効果を有する。
According to the above configuration, since a flat and dense epitaxial film can be obtained, there is an effect that a loss caused by leaky wave propagation is reduced.

【0015】請求項4記載の表面弾性波素子は、ZnO
圧電体層の上に、SiO2からなる保護層を有すること
を特徴とする。
According to a fourth aspect of the present invention, there is provided a surface acoustic wave device comprising ZnO
It is characterized by having a protective layer made of SiO 2 on the piezoelectric layer.

【0016】上記構成によれば、正のTCFを有するS
iO2層がZnO層の負のTCFを相殺して素子全体の
TCFを零にすることができ、温度安定性が改善される
という効果を有する。
According to the above configuration, S having a positive TCF
The iO 2 layer can cancel the negative TCF of the ZnO layer to make the TCF of the entire device zero, thereby improving temperature stability.

【0017】請求項5記載の表面弾性波素子は、SiO
2保護層において、SiO2の他、Li2O、MgO、A
23の少なくとも一つを含むことを特徴とする。
According to a fifth aspect of the present invention, there is provided a surface acoustic wave device comprising:
2 In the protective layer, besides SiO 2 , Li 2 O, MgO, A
It is characterized by containing at least one of l 2 O 3 .

【0018】上記構成によれば、SiO2層の正のTC
F値を増大させることができるので、SiO2保護層の
厚みを低減でき、素子全体のk2が改善されるという効
果を有する。
According to the above configuration, the positive TC of the SiO 2 layer
Since the F value can be increased, the thickness of the SiO 2 protective layer can be reduced, and k 2 of the entire device can be improved.

【0019】[0019]

【発明の実施の形態】以下、本発明を実施例にしたがっ
て詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to embodiments.

【0020】(実施例1)図1は本発明の表面弾性波素
子の第1の実施例を示す図である。
(Embodiment 1) FIG. 1 is a view showing a first embodiment of a surface acoustic wave device according to the present invention.

【0021】Liを3mol%添加したZnOターゲッ
トを用いたレーザアブレーションにより、基板温度60
0℃、酸素分圧3×10-3Torrの条件で、Si基板
1上にZnO圧電体層3を2μm堆積した。このとき、
Si基板1とZnO圧電体層3の間には、熱酸化による
SiO2酸化膜層2が形成される。ただし、基板温度、
酸素分圧は、これに限るものではなく、Li添加量もこ
れに限るものではない。
The substrate temperature was adjusted to 60 by laser ablation using a ZnO target to which 3 mol% of Li was added.
At 0 ° C. and an oxygen partial pressure of 3 × 10 −3 Torr, a 2 μm ZnO piezoelectric layer 3 was deposited on the Si substrate 1. At this time,
The SiO 2 oxide film layer 2 is formed between the Si substrate 1 and the ZnO piezoelectric layer 3 by thermal oxidation. However, substrate temperature,
The oxygen partial pressure is not limited to this, and the amount of Li added is not limited to this.

【0022】次に、金属アルミニウムを蒸着後、レジス
ト塗布、露光、ドライエッチング、レジスト除去による
パターニングの連続プロセスを行い、ZnO圧電体層3
上にIDT電極4、5を形成した。
Next, after depositing metal aluminum, a continuous process of resist coating, exposure, dry etching, and patterning by removing the resist is performed to form a ZnO piezoelectric layer 3.
IDT electrodes 4 and 5 were formed thereon.

【0023】得られた表面弾性波素子は、擬立方晶指数
表示した場合、膜面に垂直方向に(001)ZnO/
(100)Si、面内で[100]ZnO//[10
0]Siの配向膜であった。得られた表面弾性波素子に
ついて、IDT電極4、5の間での表面弾性波の遅延時
間Vopenから求めた音速は4000m/sであった。I
DT電極4、5の間を金属薄膜で覆った場合の表面弾性
波の遅延時間Vshortとの差から求めると、k2は0.0
1となった。Liを添加しないZnOターゲットを用い
た場合に、音速が4000m/s、k2が0.001で
あることから、Liを添加して圧電性が向上したことが
明らかである。
When the obtained surface acoustic wave device is expressed in pseudo cubic index, the (001) ZnO /
(100) Si, [100] ZnO // [10
0] It was an oriented film of Si. With respect to the obtained surface acoustic wave device, the sound velocity determined from the delay time V open of the surface acoustic wave between the IDT electrodes 4 and 5 was 4000 m / s. I
When calculated from the difference from the delay time V short of the surface acoustic wave when the space between the DT electrodes 4 and 5 is covered with a metal thin film, k 2 is 0.0
It became 1. When using a ZnO target without added Li, since the sound velocity is 4000 m / s, k 2 is 0.001, it is clear that improved piezoelectric properties by addition of Li.

【0024】また、Liの代わりにCuまたはAgを添
加したZnOを圧電体層に用いた場合も同様な効果が得
られた。なお、IDT電極を圧電体層の下に形成した場
合も同様な効果が得られた。上述のように、Li、C
u、Agのいずれかを添加したZnOターゲットを用い
て(100)Si基板上に(001)配向ZnO圧電薄
膜を堆積することにより、k2を向上させることが可能
となる。
Similar effects were obtained when ZnO to which Cu or Ag was added instead of Li was used for the piezoelectric layer. The same effect was obtained when the IDT electrode was formed under the piezoelectric layer. As described above, Li, C
By depositing a (001) oriented ZnO piezoelectric thin film on a (100) Si substrate using a ZnO target to which either u or Ag is added, k 2 can be improved.

【0025】(実施例2)図2は本発明の表面弾性波素
子の第2の実施例を示す図である。
(Embodiment 2) FIG. 2 is a view showing a surface acoustic wave device according to a second embodiment of the present invention.

【0026】Liを3mol%添加したZnOターゲッ
トを用いたレーザアブレーションにより、基板温度60
0℃、酸素分圧3×10-3Torrの条件で、Si基板
11上にZnO圧電体層13を2μm堆積した。このと
き、Si基板11とZnO圧電体層13の間には、熱酸
化によるSiO2酸化膜層12が形成される。ただし、
基板温度、酸素分圧は、これに限るものではなく、Li
添加量もこれに限るものではない。
The substrate temperature was adjusted to 60 by laser ablation using a ZnO target to which 3 mol% of Li was added.
Under a condition of 0 ° C. and an oxygen partial pressure of 3 × 10 −3 Torr, a 2 μm ZnO piezoelectric layer 13 was deposited on the Si substrate 11. At this time, the SiO 2 oxide film layer 12 is formed between the Si substrate 11 and the ZnO piezoelectric layer 13 by thermal oxidation. However,
The substrate temperature and the oxygen partial pressure are not limited to those described above.
The amount of addition is not limited to this.

【0027】次に、金属アルミニウムを蒸着後、レジス
ト塗布、露光、ドライエッチング、レジスト除去による
パターニングの連続プロセスを行い、ZnO圧電層13
上にIDT電極14、15を形成した。
Next, after vapor deposition of metal aluminum, a continuous process of resist coating, exposure, dry etching, and patterning by resist removal is performed to obtain a ZnO piezoelectric layer 13.
IDT electrodes 14 and 15 were formed thereon.

【0028】最後に、Li2O・Al23・4SiO2
ーゲットを用いたレーザアブレーションにより、基板温
度25℃、酸素分圧3mTorrの条件で、SiO2
護層16を2μm堆積した。ただし、基板温度、酸素分
圧は、これに限るものではない。
Finally, a 2 μm SiO 2 protective layer 16 was deposited by laser ablation using a Li 2 O.Al 2 O 3 .4SiO 2 target under the conditions of a substrate temperature of 25 ° C. and an oxygen partial pressure of 3 mTorr. However, the substrate temperature and the oxygen partial pressure are not limited to these.

【0029】得られた表面弾性波素子は、擬立方晶指数
表示した場合、膜面に垂直方向に(001)ZnO/
(100)Si、面内で[100]ZnO//[10
0]Siの配向膜であった。またSiO2保護層はアモ
ルファスであった。
When the obtained surface acoustic wave device is represented by a pseudo cubic index, the (001) ZnO /
(100) Si, [100] ZnO // [10
0] It was an oriented film of Si. Further, the SiO 2 protective layer was amorphous.

【0030】得られた表面弾性波素子について、IDT
電極14、15の間での表面弾性波の遅延時間Vopen
ら求めた音速は4000m/sであった。IDT電極1
4、15の間を金属薄膜で覆った場合の表面弾性波の遅
延時間Vshortとの差から求めると、k2は0.01とな
った。TCFは25℃で−1ppm/℃であった。これ
は、Li2OまたはAl23を添加しないSiO2ターゲ
ットを用いた場合に比べ、音速4000m/s、k2
0.01は同じであるが、TCFは25℃で−10pp
m/℃という値に比べてはるかに小さくなった。
For the obtained surface acoustic wave device, IDT
The speed of sound obtained from the delay time V open of the surface acoustic wave between the electrodes 14 and 15 was 4000 m / s. IDT electrode 1
When calculated from the difference from the delay time V short of the surface acoustic wave when the area between 4 and 15 was covered with a metal thin film, k 2 was 0.01. TCF was -1 ppm / ° C at 25 ° C. This is 4000 m / s in sound velocity and k 2 = as compared with the case of using a SiO 2 target to which Li 2 O or Al 2 O 3 is not added.
0.01 is the same, but the TCF is −10 pp at 25 ° C.
It was much smaller than the value of m / ° C.

【0031】また、Liの代わりにCuまたはAgを添
加したZnOを圧電体層に用いた場合も同様な効果が得
られた。さらに、Li2O・Al23・4SiO2の代わ
りにLi2O、MgO、Al23のいずれかを含んだS
iO2を保護層に用いた場合も、同様な効果が得られ
た。なお、IDT電極を圧電体層の下に形成した場合も
同様な効果が得られた。
Similar effects were obtained when ZnO to which Cu or Ag was added instead of Li was used for the piezoelectric layer. Further, instead of Li 2 O of Li 2 O · Al 2 O 3 · 4SiO 2, MgO, containing one of Al 2 O 3 S
Similar effects were obtained when iO 2 was used for the protective layer. The same effect was obtained when the IDT electrode was formed under the piezoelectric layer.

【0032】上述のように、(100)Si基板上に、
Li、Cu、Agのいずれかを添加したZnO圧電薄膜
を堆積し、さらにLi2O、MgO、Al23を含んだ
SiO2保護層を堆積することにより、温度特性を向上
させることが可能となる。
As described above, on a (100) Si substrate,
Temperature characteristics can be improved by depositing a ZnO piezoelectric thin film to which any of Li, Cu, and Ag are added, and further depositing a SiO 2 protective layer containing Li 2 O, MgO, and Al 2 O 3. Becomes

【0033】[0033]

【発明の効果】以上述べたように、本発明の表面弾性波
素子によれば、Si基板上に、Li添加ZnO圧電体層
を堆積することにより、圧電性が向上しk2の値を増大
させることができ、さらにその上にLi2O、MgO、
Al23の少なくとも一つを含み正のTCFを有するS
iO2保護層を堆積することにより、ZnO層の負のT
CFを相殺して素子全体のTCFを零にすることがで
き、挿入損失が小さく温度安定性に優れた高周波フィル
タ、発振器などの通信デバイスを実現することができ
る。
As described above, according to the surface acoustic wave device of the present invention, by depositing the Li-doped ZnO piezoelectric layer on the Si substrate, the piezoelectricity is improved and the value of k 2 is increased. And Li 2 O, MgO,
S containing at least one of Al 2 O 3 and having a positive TCF
By depositing an iO 2 protective layer, the negative T
By canceling CF, the TCF of the entire element can be reduced to zero, and a communication device such as a high-frequency filter or an oscillator having low insertion loss and excellent temperature stability can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示すLi添加ZnO圧電体
層を有する表面弾性波素子の断面図である。
FIG. 1 is a cross-sectional view of a surface acoustic wave device having a Li-doped ZnO piezoelectric layer according to an embodiment of the present invention.

【図2】本発明の一実施例を示すLi添加ZnO圧電体
層およびLi2O、Al23を含んだSiO2保護層を有
する表面弾性波素子の断面図である。
FIG. 2 is a sectional view of a surface acoustic wave device having a Li-doped ZnO piezoelectric layer and a SiO 2 protective layer containing Li 2 O and Al 2 O 3 according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1.(100)Si基板 2.SiO2酸化膜層 3.(001)ZnO圧電体層 4.IDT電極 5.IDT電極 11.(100)Si基板 12.SiO2酸化膜層 13.(001)ZnO圧電体層 14.IDT電極 15.IDT電極 16.SiO2保護層1. (100) Si substrate 2. SiO 2 oxide film layer (001) ZnO piezoelectric layer IDT electrode 5. IDT electrode 11. (100) Si substrate 12. SiO 2 oxide film layer 13. 13. (001) ZnO piezoelectric layer IDT electrode 15. IDT electrode 16. SiO 2 protective layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮澤 弘 長野県諏訪市大和3丁目3番5号 セイコ ーエプソン株式会社内 Fターム(参考) 5J097 AA06 AA21 AA23 DD29 EE08 FF02 FF05 HA02 HA03 KK09 ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hiroshi Miyazawa 3-3-5 Yamato, Suwa City, Nagano Prefecture Seiko Epson Corporation F-term (reference) 5J097 AA06 AA21 AA23 DD29 EE08 FF02 FF05 HA02 HA03 KK09

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】(100)シリコン基板と、前記シリコン
基板上の二酸化珪素からなるバッファ層と、前記二酸化
珪素バッファ層上の酸化亜鉛からなる圧電体層とからな
り、前記酸化亜鉛圧電体層の直下または直上にインター
ディジタル型電極を形成することを特徴とする表面弾性
波素子。
1. A (100) silicon substrate, comprising: a buffer layer made of silicon dioxide on the silicon substrate; and a piezoelectric layer made of zinc oxide on the silicon dioxide buffer layer. A surface acoustic wave device comprising an interdigital electrode formed immediately below or directly above.
【請求項2】前記酸化亜鉛圧電体層は、Znの一部をL
i、Cu、Agの少なくとも一つで置換した組成を有す
ることを特徴とする請求項1記載の表面弾性波素子。
2. A method according to claim 1, wherein said zinc oxide piezoelectric layer has a part of Zn
2. The surface acoustic wave device according to claim 1, having a composition substituted by at least one of i, Cu, and Ag.
【請求項3】前記酸化亜鉛圧電体層は、c軸が前記シリ
コン基板に垂直に配向し、かつa軸が前記シリコン基板
に平行な面内で配向したエピタキシャル膜であることを
特徴とする請求項1記載の表面弾性波素子。
3. The zinc oxide piezoelectric layer is an epitaxial film having a c-axis oriented perpendicular to the silicon substrate and an a-axis oriented in a plane parallel to the silicon substrate. Item 3. A surface acoustic wave device according to item 1.
【請求項4】前記酸化亜鉛圧電体層の上に、二酸化珪素
からなる保護層を有することを特徴とする請求項1記載
の表面弾性波素子。
4. The surface acoustic wave device according to claim 1, further comprising a protective layer made of silicon dioxide on said zinc oxide piezoelectric layer.
【請求項5】前記二酸化珪素保護層は、SiO2の他、
Li2O、MgO、Al23の少なくとも一つを含むこ
とを特徴とする請求項4記載の表面弾性波素子。
5. The silicon dioxide protective layer according to claim 1, further comprising: SiO 2 ;
Li 2 O, MgO, surface acoustic wave device according to claim 4, characterized in that it comprises at least one of Al 2 O 3.
JP2000002571A 2000-01-11 2000-01-11 Surface acoustic wave device Withdrawn JP2001196895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000002571A JP2001196895A (en) 2000-01-11 2000-01-11 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000002571A JP2001196895A (en) 2000-01-11 2000-01-11 Surface acoustic wave device

Publications (1)

Publication Number Publication Date
JP2001196895A true JP2001196895A (en) 2001-07-19

Family

ID=18531666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000002571A Withdrawn JP2001196895A (en) 2000-01-11 2000-01-11 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP2001196895A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004070946A1 (en) * 2003-02-10 2004-08-19 Murata Manufacturing Co., Ltd. Elastic boundary wave device
US7176903B2 (en) 2003-10-07 2007-02-13 Fujitsu Limited Piezoelectric element and touch screen utilizing the same
US7504910B2 (en) 2004-04-30 2009-03-17 Murata Manufacturing Co., Ltd. Thin-film piezoelectric resonator utilizing a second or higher harmonic mode
CN104167459A (en) * 2014-06-11 2014-11-26 中国石油大学(华东) Heterojunction having photoinduction position sensitivity
CN112653420A (en) * 2020-12-18 2021-04-13 广东广纳芯科技有限公司 High-sound-speed high-frequency low-frequency temperature coefficient narrow-band filter and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004070946A1 (en) * 2003-02-10 2004-08-19 Murata Manufacturing Co., Ltd. Elastic boundary wave device
US7471027B2 (en) 2003-02-10 2008-12-30 Murata Manufacturing Co., Ltd. Elastic boundary wave device
US7176903B2 (en) 2003-10-07 2007-02-13 Fujitsu Limited Piezoelectric element and touch screen utilizing the same
US7504910B2 (en) 2004-04-30 2009-03-17 Murata Manufacturing Co., Ltd. Thin-film piezoelectric resonator utilizing a second or higher harmonic mode
CN104167459A (en) * 2014-06-11 2014-11-26 中国石油大学(华东) Heterojunction having photoinduction position sensitivity
CN104167459B (en) * 2014-06-11 2015-12-02 中国石油大学(华东) A kind of have heterojunction of photoinduction position sensing and preparation method thereof
CN112653420A (en) * 2020-12-18 2021-04-13 广东广纳芯科技有限公司 High-sound-speed high-frequency low-frequency temperature coefficient narrow-band filter and manufacturing method thereof

Similar Documents

Publication Publication Date Title
CN100511986C (en) Elasticity surface wave device and method of manufacturing the same
CN107317560B (en) Temperature compensation surface acoustic wave device and preparation method thereof
CN1229917C (en) Sound wave resonator and method for its operation when temperature changes to maintain harmonic vibration
US7888841B2 (en) Boundary acoustic wave device
US6239536B1 (en) Encapsulated thin-film resonator and fabrication method
JP2001196896A (en) Surface acoustic wave device
US4354130A (en) Surface acoustic wave device using a multi-layer substrate including α2 O3, SiO and ZnO
JP2006513649A (en) SAW device having improved temperature characteristics
JP2007243918A (en) Surface acoustic wave device and electronic apparatus
WO2019206534A1 (en) Saw resonator, rf filter, multiplexer and method of manufacturing a saw resonator
JPWO2009139108A1 (en) Boundary acoustic wave device
JP3777931B2 (en) Surface acoustic wave device
JPH0583067A (en) Surface acoustic wave element
US4501987A (en) Surface acoustic wave transducer using a split-finger electrode on a multi-layered substrate
JP4016583B2 (en) Piezoelectric thin film resonator, filter and electronic device
JP2001196895A (en) Surface acoustic wave device
JP2006135443A (en) Surface acoustic wave element and manufacturing method of surface acoustic wave element
JP2005252069A (en) Electronic device and its manufacturing method
WO2022042464A1 (en) Temperature compensating filter optimization method and temperature compensating filter, multiplexer, and communications device
KR101082201B1 (en) Surface acoustic wave device
US20220385267A1 (en) Surface acoustic wave device with high electromechanical coupling coefficient based on double-layer electrodes and preparation method thereof
CN114584097A (en) Surface acoustic wave resonator, method for manufacturing the same, and surface acoustic wave filter
JP2020057952A (en) Surface acoustic wave device and manufacturing method of the same
JP3780791B2 (en) Surface acoustic wave device
JP7550757B2 (en) Thin-film SAW devices

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070403