JP2001194409A - Apparatus and method for testing withstand voltage of gas insulated device - Google Patents

Apparatus and method for testing withstand voltage of gas insulated device

Info

Publication number
JP2001194409A
JP2001194409A JP2000006307A JP2000006307A JP2001194409A JP 2001194409 A JP2001194409 A JP 2001194409A JP 2000006307 A JP2000006307 A JP 2000006307A JP 2000006307 A JP2000006307 A JP 2000006307A JP 2001194409 A JP2001194409 A JP 2001194409A
Authority
JP
Japan
Prior art keywords
gas
withstand voltage
electric field
voltage test
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000006307A
Other languages
Japanese (ja)
Inventor
Tetsuo Yoshida
哲雄 吉田
Kanji Yoshioka
寛司 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000006307A priority Critical patent/JP2001194409A/en
Publication of JP2001194409A publication Critical patent/JP2001194409A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve the nonconformity, where SH6 gas is used in a withstand voltage test in a conventional apparatus and cannot be released to the atmosphere. SOLUTION: According to this apparatus, the air is pressurized and dried to obtain dielectric strength of a level equal to that of the SF6 gas for carrying out the withstand voltage test to insulated parts. After the test, being air, there is no need for the air to be recovered and it can be released into the atmosphere.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はガス絶縁機器の絶縁
部品の絶縁特性を検証するガス絶縁機器の耐電圧試験装
置及び方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and method for testing the withstand voltage of gas-insulated equipment for verifying the insulation characteristics of insulating parts of the gas-insulated equipment.

【0002】[0002]

【従来の技術】ガス絶縁機器には、例えば、SFガス
を略大気圧で封入したガス絶縁スイッチギヤ(C−GI
S)などがあり、高い信頼性と大幅な縮小化が計られ数
多くの変電所で使用されている。これは、SF6ガスの
高い絶縁耐力と、無毒、無臭の不活性ガスにより達成さ
れるものである。このガス絶縁機器の主絶縁には、例え
ばエポキシ樹脂からなる絶縁物が用いられているが、機
器内に組み込む前には部分放電特性や破壊電圧特性など
の絶縁特性を調べることがある。これは、初期不良の選
別を目的として行われるものである。一般的な試験装置
を図9に示す。1は試験用のタンク、4は試験電圧を印
加するブッシング、5は圧力計、6はタンク内が規定以
上に加圧された場合の放圧弁、7は開閉用バルブ、19
は真空ポンプ、20はSF6ガスボンベである。タンク
1に図示しない供試の絶縁部品をセットして真空ポンプ
19で真空引き後、 SF6ガスをSF6ガスボンベ20
より供給して部分放電試験や破壊電圧試験などを行う。
試験終了後には、真空ポンプ19から図示していない水
分除去装置などを介して、不純物が除去されたSF6
スを回収して再利用がされている。
2. Description of the Related Art For example, gas-insulated switchgear (C-GI) in which SF 6 gas is sealed at substantially atmospheric pressure is used for gas-insulated equipment.
S), etc., which are used in many substations because of their high reliability and significant downsizing. This is because the high dielectric strength of SF 6 gas, non-toxic, is intended to be achieved by odorless inert gas. An insulator made of, for example, epoxy resin is used for the main insulation of the gas-insulated equipment. However, before the gas-insulated equipment is incorporated in the equipment, insulation characteristics such as partial discharge characteristics and breakdown voltage characteristics are sometimes examined. This is performed for the purpose of selecting an initial failure. FIG. 9 shows a general test apparatus. 1 is a test tank, 4 is a bushing for applying a test voltage, 5 is a pressure gauge, 6 is a pressure relief valve when the inside of the tank is pressurized more than a specified value, 7 is an opening / closing valve, 19
Is a vacuum pump and 20 is a SF 6 gas cylinder. After vacuuming with a vacuum pump 19 by setting the test of insulation components (not shown) to the tank 1, the SF 6 gas SF 6 gas cylinder 20
And then perform a partial discharge test and breakdown voltage test.
After the end of the test, the SF 6 gas from which impurities have been removed is recovered from the vacuum pump 19 via a moisture removing device (not shown) and reused.

【0003】これにより、ガス絶縁機器の定格ガス圧力
に合わせてタンク1内にSF6ガスを加圧封入して絶縁
物の絶縁特性が求められていた。例えば、C−GISで
は、0.13MPa(絶対値、以下同様に表示)まで封
入していた。
[0003] Accordingly, SF 6 gas is pressurized and sealed in the tank 1 in accordance with the rated gas pressure of the gas insulating equipment, and the insulating properties of the insulator have been required. For example, in C-GIS, it was sealed up to 0.13 MPa (absolute value, hereinafter similarly indicated).

【0004】[0004]

【発明が解決しようとする課題】このような構成におい
て、絶縁的に信頼性の高いガス絶縁機器が達成されてき
た。ガス絶縁機器本体では、約30年のメンテナンスフ
リーから内部を点検するためのSF6ガス開放に伴う回
収はごく希であり万全の対応をしている。しかしなが
ら、絶縁部品の耐電圧試験では、数種類の絶縁部品を連
続で検証するため、一日で数回という多頻度でSF6
スの回収が必要となる。ここで、 SF6ガスは、地球
温暖化防止京都会議(1997年12月)で温暖化に寄
与するガスとされ、温暖化の効果が炭酸ガスの2300
0倍であり、大気に漏らしたり放出させることが規制さ
れた。このため、回収に伴う作業では、設備のなどの取
り扱いに細心の注意を払い、管理された工程の手順が決
められている。この回収作業を一日で数回という多頻度
で行うことは高度な作業が必要で困難性があった。これ
らのことから、 SF6ガスを使用しなければ前述の対
応は不要となるが、SF6ガスに優る絶縁媒体がないの
が現状であった。本発明は大気に放出することのできる
乾燥空気を用いてSF6ガスと同程度の絶縁耐力を得
て、絶縁部品の耐電圧試験を行う耐電圧試験装置を提供
することを目的とする。
In such a configuration, a gas-insulated device having high reliability in terms of insulation has been achieved. In the gas insulated equipment itself, the recovery associated with the release of SF 6 gas for inspecting the inside from the maintenance free for about 30 years is extremely rare and we are taking thorough measures. However, the withstand voltage test of the insulating part, to verify several types of insulating parts in a row, it is necessary to recovery of SF 6 gas at frequent as several times a day. Here, SF 6 gas is a gas contributing to global warming prevention of global warming Kyoto Conference (December 1997), 2300 the effect of warming the carbon dioxide
It is zero times and regulated to be released or released to the atmosphere. For this reason, in the work associated with collection, the handling of equipment and the like is paid close attention, and the procedure of the controlled process is determined. Performing this collection operation several times a day frequently requires a high level of operation and is difficult. For these reasons, if the SF 6 gas is not used, the above-mentioned measures are not necessary, but at present, there is no insulating medium superior to the SF 6 gas. SUMMARY OF THE INVENTION It is an object of the present invention to provide a withstand voltage test apparatus for obtaining a withstand voltage equivalent to that of SF 6 gas using dry air that can be released into the atmosphere, and for performing a withstand voltage test on an insulating component.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明においては、SF6ガスと同程度の絶縁耐力を
得るために空気を少なくとも0.35MPaに加圧し、
かつ空気の相対湿度を90%RH以下とし、供試の絶縁
部品に電圧を印加して耐電圧試験をするガス絶縁機器の
耐電圧試験装置を提供する。SF6ガスの代わりに空気
を用いてSF6ガスと同程度の絶縁耐力を得られるので
ガス回収の必要がなく装置を簡単にできる。そのうえ空
気なので調達コストがかからない。
In order to achieve the above object, according to the present invention, air is pressurized to at least 0.35 MPa in order to obtain the same dielectric strength as SF 6 gas,
In addition, the present invention provides a withstand voltage test apparatus for a gas insulated device that performs a withstand voltage test by applying a voltage to an insulating component to be tested with a relative humidity of air of 90% RH or less. Since using air in place of SF 6 gas is obtained with SF 6 gas and comparable dielectric strength can be simplified device without the need for gas recovery. In addition, because it is air, there is no procurement cost.

【0006】[0006]

【発明の実施の形態】以下本発明によるガス絶縁機器の
絶縁部品における試験装置および方法の実施形態を図面
を参照して説明する。なお、従来方法と同一の構成にお
いては同一符号を記した。図1に耐電圧試験装置を示
す。1はタンク、2はコンプレッサ、3は湿度制御装
置、4はブッシング、5は圧力計、6は放圧弁、7はバ
ルブである。タンク1内には、図示していない絶縁部品
をセットし、コンプレッサ2から湿度制御装置3を介し
て乾燥空気が封入される。湿度制御装置3は、フィルタ
やシリカゲルなどでコンプレッサ2から送られてくる空
気の水分や塵埃などの不純物を除去する。出口には湿度
センサーがあり、水分除去が不十分な時にはフィードバ
ックがかかりコンプレッサ2からの風量を少なくするな
どして湿度を制御する。ブッシング4は電圧印加用のも
のである。圧力計5で圧力を測り、タンク1内が規定以
上に加圧された場合には放圧弁6で放圧する。バルブ7
を開閉させて空気の封入、放出を行う。このような構成
において、66/77kVクラスのガス絶縁スイッチギ
ヤに一般的に用いられる支持がいしを供試して、圧力と
破壊電圧との特性を図2に示す。特性曲線(a)は乾燥
空気で、特性曲線(b)はSF6ガスである。図2から
SF6ガスの0.1MPaと同程度の破壊電圧を得るた
めの乾燥空気の圧力は0.35MPaとなる。このこと
から、66/77kVクラスの耐電圧が160kVであ
ることから、乾燥空気を0.35MPaまで加圧すれば
耐電圧試験が行えることになる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a test apparatus and method for insulating parts of gas-insulated equipment according to the present invention will be described below with reference to the drawings. The same reference numerals are used for the same components as those of the conventional method. FIG. 1 shows a withstand voltage test apparatus. 1 is a tank, 2 is a compressor, 3 is a humidity control device, 4 is a bushing, 5 is a pressure gauge, 6 is a pressure relief valve, and 7 is a valve. Insulating parts (not shown) are set in the tank 1, and dry air is sealed from the compressor 2 via the humidity controller 3. The humidity control device 3 removes impurities such as moisture and dust in the air sent from the compressor 2 using a filter, silica gel, or the like. There is a humidity sensor at the outlet, and when moisture is not sufficiently removed, feedback is applied to control the humidity by reducing the air volume from the compressor 2 or the like. The bushing 4 is for applying a voltage. The pressure is measured by a pressure gauge 5, and when the pressure in the tank 1 is increased beyond a specified value, the pressure is released by a pressure relief valve 6. Valve 7
Is opened and closed to release and release air. In such a configuration, a support insulator generally used for a gas insulated switchgear of 66/77 kV class is tested, and the characteristics of pressure and breakdown voltage are shown in FIG. The characteristic curve (a) is for dry air, and the characteristic curve (b) is for SF 6 gas. From FIG. 2, the pressure of the dry air for obtaining a breakdown voltage approximately equal to 0.1 MPa of SF 6 gas is 0.35 MPa. From this, since the withstand voltage of the 66/77 kV class is 160 kV, the withstand voltage test can be performed by pressing dry air to 0.35 MPa.

【0007】つまり、耐電圧試験にSF6ガスにかわっ
て加圧した空気を使用すれば、試験終了後には大気に放
出することができる。このため、SF6ガスの取り扱い
が皆無となり、耐電圧試験が容易となり、環境に適した
試験方法となる。ここで、SF6ガスを0.2MPa以
下で封入したガス絶縁スイッチギヤ(C−GIS)で
は、大気で耐電圧を保証している場合が多いので、乾燥
空気の圧力は0.35MPaでよい。なお、保証ガス圧
力が大気圧より加圧されたものについては、比例させて
乾燥空気の圧力を増せばいい。また、上述の電圧表記は
AC電圧であるが、インパルス電圧においても同様であ
る。次に、加圧した空気はコンプレッサなどで容易に作
ることができるが、不純物が混入しやすい。不純物の影
響を調べたものがないため、実験的に加圧した空気の耐
電圧特性を調べた。図3に実験に用いた電極形状を示
す。電極は球電極8と平板電極9からなり準平等電界を
形成し、C−GISに用いられる代表的な電極構成とし
ている。この電極を用いて、空気の圧力を0.4MPa
と一定にして、湿度と破壊電圧との絶縁特性を図4に示
す。図4からこの実験に用いた電極形状では、破壊電圧
は湿度の変化に影響されないことがわかった。
In other words, if pressurized air is used in place of SF 6 gas in the withstand voltage test, it can be released to the atmosphere after the test is completed. For this reason, SF 6 gas is not handled at all, and the withstand voltage test is facilitated, and the test method is suitable for the environment. Here, in a gas-insulated switchgear (C-GIS) in which SF 6 gas is sealed at 0.2 MPa or less, the withstand voltage is often guaranteed in the atmosphere, so the pressure of the dry air may be 0.35 MPa. When the guaranteed gas pressure is higher than the atmospheric pressure, the pressure of the dry air may be increased in proportion. Although the above-mentioned voltage notation is an AC voltage, the same applies to an impulse voltage. Next, pressurized air can be easily produced by a compressor or the like, but impurities are easily mixed therein. Since there was no study on the influence of impurities, the withstand voltage characteristics of the experimentally pressurized air were examined. FIG. 3 shows the electrode shapes used in the experiment. The electrode is composed of a spherical electrode 8 and a flat plate electrode 9 to form a quasi-equivalent electric field, and has a typical electrode configuration used for C-GIS. By using this electrode, the pressure of air is increased to 0.4 MPa.
FIG. 4 shows the insulation characteristics between humidity and breakdown voltage. From FIG. 4, it was found that the breakdown voltage was not affected by changes in humidity in the electrode shape used in this experiment.

【0008】また、図5も実験に用いた電極形状を示
す。上下の電極10―1、10―2に絶縁物11を挟ん
だ構成である。絶縁物11には、上下に埋め込み電極1
2―1、12―2を設けている。このような電極構成に
より絶縁物11の沿面が準平等電界に制御でき、沿面の
絶縁特性の実験を行うことができる。このような電界分
布はC−GISの代表的な構成である。この電極構成を
用いて、空気の圧力を0.4MPaと一定にして、湿度
と破壊電圧との絶縁特性を図6に示す。図6から破壊電
圧は、相対湿度90%RH以上(絶対湿度10g/m
以上)から急激に低下することが分かる。これは、沿面
付近に湿度が多くなると、電界分布が乱されて破壊電圧
が低下すると考えられる。これよりこの実験に用いた電
極形状においては、タンク1に封入する空気を相対湿度
90%RH以下の乾燥空気にしなければならない。なお
この実験は、周囲の温度12℃で行なっており、気温が
低下すれば飽和水蒸気圧が下がるので、その気温に合わ
せて相対湿度が90%RH以下になるようにしなければ
ならない。なお、SF6ガス0.1MPaと同程度の破
壊電圧を得るため圧力0.35MPa、相対湿度90%
RH以下とした乾燥空気をSF6ガスにかわって使用す
ることは、ガス絶縁部品の耐電圧試験の時だけでなく、
ガス絶縁スイッチギヤ(C−GIS)の絶縁そのものに
も適用できる。
FIG. 5 also shows an electrode shape used in the experiment. In this configuration, an insulator 11 is interposed between upper and lower electrodes 10-1 and 10-2. The insulator 11 has embedded electrodes 1 at the top and bottom.
2-1 and 12-2 are provided. With such an electrode configuration, the creeping surface of the insulator 11 can be controlled to a quasi-equal electric field, and an experiment on the insulating properties of the creeping surface can be performed. Such an electric field distribution is a typical configuration of C-GIS. With this electrode configuration, the pressure of air is kept constant at 0.4 MPa, and the insulation characteristics between humidity and breakdown voltage are shown in FIG. According to FIG. 6, the breakdown voltage is 90% RH or more relative humidity (absolute humidity 10 g / m 3).
From the above, it can be seen that the temperature drops sharply. It is considered that when the humidity increases near the creepage, the electric field distribution is disturbed and the breakdown voltage decreases. Thus, in the electrode shape used in this experiment, the air to be filled in the tank 1 must be dry air having a relative humidity of 90% RH or less. Note that this experiment was performed at an ambient temperature of 12 ° C. Since the saturated water vapor pressure decreases as the temperature decreases, the relative humidity must be adjusted to 90% RH or less in accordance with the temperature. The pressure was 0.35 MPa and the relative humidity was 90% in order to obtain the same breakdown voltage as 0.1 MPa of SF 6 gas.
The use of dry air of RH or less in place of SF 6 gas is not only used during the withstand voltage test of gas insulating parts,
It can also be applied to the insulation of a gas insulated switchgear (C-GIS).

【0009】次に、絶縁部品の耐電圧試験の場合は電界
緩和リングを取り付けて行うので、このリングに相当す
る半球棒電極と平板電極との絶縁特性を図7に示す。直
径10mmの半球棒電極と平板電極を用い、ギャップ長
を50mmとしたときの部分放電開始電圧特性を
(a)、破壊電圧特性を(b)、直径5mmの半球棒電
極と平板電極を用い、ギャップ長を50mmとしたとき
の部分放電開始電圧特性を(c)、破壊電圧特性を
(d)に示す。図7から、前者の電極構成では(a)と
(b)の曲線がほぼ同じであり、後者の電極構成では
(c)が(d)よりも高くなり、特に圧力0.3MPa
付近で上に凸型の特性になることがわかる。これは後者
の電極構成においては、この圧力付近でコロナ安定化作
用が大きく働くと考えられる。つまり、 SF6ガスに
存在していた特性が、乾燥空気においても、圧力と破壊
電圧特性の間に特異点が生じることが見出された。な
お、SF6ガスの場合は、針電極などもっと不平等な電
界の時に特異点が生じるとされている。ここで、乾燥空
気の場合の特異点が生じる不平等な電界の目安を不平等
係数fで表示する。fは下記の簡易式から容易に算出で
きる。
Next, the withstand voltage test of the insulating parts is performed by attaching an electric field relaxation ring. FIG. 7 shows the insulation characteristics between the hemispherical rod electrode and the plate electrode corresponding to this ring. Using a hemispherical rod electrode having a diameter of 10 mm and a flat plate electrode, a partial discharge starting voltage characteristic when the gap length was set to 50 mm, (a), a breakdown voltage characteristic (b), and using a hemispherical rod electrode having a diameter of 5 mm and a flat electrode, The partial discharge starting voltage characteristics when the gap length is 50 mm are shown in (c), and the breakdown voltage characteristics are shown in (d). From FIG. 7, the curves of (a) and (b) are almost the same in the former electrode configuration, and (c) is higher than (d) in the latter electrode configuration, in particular, the pressure is 0.3 MPa.
It can be seen that the characteristic becomes convex upward in the vicinity. This is thought to be due to the fact that the corona stabilizing action largely works around this pressure in the latter electrode configuration. That is, it has been found that the characteristic existing in the SF 6 gas has a singular point between the pressure and the breakdown voltage characteristic even in dry air. In the case of SF 6 gas, it is said that a singular point is generated in the case of a more uneven electric field such as a needle electrode. Here, a measure of an unequal electric field at which a singular point occurs in the case of dry air is indicated by an unequal coefficient f. f can be easily calculated from the following simple formula.

【0010】[0010]

【数1】 rは棒電極先端の曲率半径、gはギャップ長である。図
7の(a)、(b)はf=9.9、(c)、(d)はf
=18.9となる。なお、fが更に大きい電極形状で
は、部分放電開始電圧と破壊電圧に差が出るものの、圧
力0.6MPa以下の領域では特異点が見られなかっ
た。このため、特異点が生じるのはf=20近傍と考え
てよい。このような電極形状の部分放電開始電圧特性と
破壊電圧特性の結果から、電界緩和リングを用いた絶縁
ブッシングの耐電圧試験装置を図8に示す。逆T字型の
接地の架台13には絶縁ブッシング14が取り付けら
れ、ブッシングの両端の中心導体には電界緩和リング1
5が取り付けられている。そして、これらをタンク1内
にセットして、一方の電界緩和リング15―1にリード
線16を接続して電圧を印加して絶縁特性の評価を行
う。他方の電界緩和リング15―2には、固定用のボル
ト17を貫通させた開口穴を覆う電極栓18を設けてい
る。これにより、電界緩和リング15―2は、見かけ上
の球電極となり電界緩和を図ることができる。この球電
極の曲率半径と架台13までのギャップ長を適切に設定
すれば、目的に応じた耐電圧試験が可能となる。つま
り、部分放電特性と破壊電圧特性の両方を試験しようと
するならば、f=10以下になる曲率半径とギャップ長
を選んだ電界緩和リングを用いればよい。また、耐電圧
試験をしようとするならば、f=20程度になるような
電界緩和リングを選べばよい。なお、fが大きいほど、
曲率半径が小さくなり軽量化となるので、タンク1へセ
ットする作業が容易になる。
(Equation 1) r is the radius of curvature of the tip of the rod electrode, and g is the gap length. FIGS. 7A and 7B show f = 9.9, and FIGS. 7C and 7D show f
= 18.9. In the case of an electrode shape having a larger f, although there is a difference between the partial discharge starting voltage and the breakdown voltage, no singular point was observed in the region where the pressure was 0.6 MPa or less. Therefore, it can be considered that the singular point occurs near f = 20. FIG. 8 shows a withstand voltage test apparatus for an insulating bushing using an electric field relaxation ring based on the results of the partial discharge start voltage characteristic and the breakdown voltage characteristic of such an electrode shape. An insulating bushing 14 is attached to the inverted T-shaped grounding pedestal 13, and an electric field relaxation ring 1 is provided at the center conductor at both ends of the bushing.
5 is attached. Then, these are set in the tank 1, the lead wire 16 is connected to one of the electric field relaxation rings 15-1, and a voltage is applied to evaluate the insulation characteristics. The other electric field relaxation ring 15-2 is provided with an electrode plug 18 that covers an opening hole through which a fixing bolt 17 passes. As a result, the electric field relaxation ring 15-2 becomes an apparent spherical electrode and can reduce the electric field. By appropriately setting the radius of curvature of the spherical electrode and the gap length up to the gantry 13, a withstand voltage test according to the purpose can be performed. That is, if both the partial discharge characteristics and the breakdown voltage characteristics are to be tested, an electric field relaxation ring having a radius of curvature and a gap length of f = 10 or less may be used. If a withstand voltage test is to be performed, an electric field relaxation ring that satisfies f = about 20 may be selected. In addition, as f is larger,
Since the radius of curvature is reduced and the weight is reduced, the work of setting the tank 1 is easy.

【0011】電極栓18がない場合、電界緩和リング1
7―2の開口穴の端部が鋭角なエッジとなり、極端な不
平等電界となる。このため、電界緩和リングの曲率半径
に見合った絶縁特性が得られず、部分放電開始電圧が低
下し、破壊電圧も同様に低いレベルであった。つまり、
加圧した乾燥空気では極端な不平等電界での耐電圧試験
はできないので、電界緩和を図ることが必要である。ち
なみにSF6ガスでは、一般的に極端な不平等電界とな
る木綿針の実験において、コロナ安定化作用が働いて破
壊電圧が上昇するとされている。加圧した乾燥空気では
極端な不平等電界での耐電圧試験はできないので、電界
緩和を図ることが必要である。電界緩和リングは、部分
放電特性と破壊電圧特性の両方を試験するときはf=1
0以下に、破壊電圧試験だけをするときはf=20程度
になるように選べば、目的に応じた耐電圧試験が可能と
なる。
When the electrode plug 18 is not provided, the electric field relaxation ring 1
The end of the opening hole of 7-2 becomes a sharp edge, resulting in an extremely uneven electric field. For this reason, the insulating property corresponding to the radius of curvature of the electric field relaxation ring was not obtained, the partial discharge starting voltage was lowered, and the breakdown voltage was also at a low level. That is,
Since a withstand voltage test with an extremely uneven electric field cannot be performed with pressurized dry air, it is necessary to reduce the electric field. Incidentally, in the case of SF 6 gas, in a cotton needle experiment, which generally has an extremely unequal electric field, it is said that the corona stabilizing action works to increase the breakdown voltage. Since a withstand voltage test with an extremely uneven electric field cannot be performed with pressurized dry air, it is necessary to reduce the electric field. The electric field relaxation ring has f = 1 when testing both partial discharge characteristics and breakdown voltage characteristics.
If only the breakdown voltage test is performed to a value of 0 or less, the withstand voltage test according to the purpose can be performed by selecting f = about 20.

【0012】[0012]

【発明の効果】本発明によれば、 SF6ガスの代わり
に乾燥空気を用いて絶縁部品の耐電圧試験を行うことが
できるので、試験終了後にガス回収などの作業が不要と
なりタンク内の乾燥空気を大気に放出することができ
る。
According to the present invention, it is possible to perform the withstand voltage test of the insulating parts with dry air in place of SF 6 gas, dried in the tank becomes unnecessary operations such as gas recovered after the test Air can be released to the atmosphere.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態におけるガス絶縁機器の耐電
圧試験装置の構成を示す図。
FIG. 1 is a diagram showing a configuration of a withstand voltage test device for a gas insulated device according to an embodiment of the present invention.

【図2】本発明の実施形態におけるSF6ガスと乾燥空
気における圧力と破壊電圧との絶縁特性を示す図。
FIG. 2 is a diagram showing insulation characteristics between pressure and breakdown voltage in SF 6 gas and dry air in the embodiment of the present invention.

【図3】本発明の実施形態における実験に用いた電極形
状を示す図。
FIG. 3 is a diagram showing electrode shapes used in an experiment according to the embodiment of the present invention.

【図4】本発明の実施形態における湿度と破壊電圧との
絶縁特性を示す図。
FIG. 4 is a diagram showing insulation characteristics between humidity and breakdown voltage in the embodiment of the present invention.

【図5】本発明の実施形態における実験に用いた電極形
状を示す図。
FIG. 5 is a diagram showing electrode shapes used in an experiment according to the embodiment of the present invention.

【図6】本発明の実施形態における湿度と破壊電圧との
絶縁特性を示す図。
FIG. 6 is a diagram showing insulation characteristics between humidity and breakdown voltage in the embodiment of the present invention.

【図7】本発明の実施形態における半球棒電極と平板電
極との絶縁特性を示す図。
FIG. 7 is a view showing insulation characteristics between a hemispherical rod electrode and a flat plate electrode according to the embodiment of the present invention.

【図8】本発明の実施形態における電界緩和リングを用
いた絶縁ブッシングの耐電圧試験装置を示す図。
FIG. 8 is a diagram showing a withstand voltage test apparatus for an insulating bushing using an electric field relaxation ring according to an embodiment of the present invention.

【図9】従来の絶縁機器の耐電圧試験装置の構成を示す
図。
FIG. 9 is a diagram showing a configuration of a conventional withstand voltage test apparatus for insulating equipment.

【符号の説明】[Explanation of symbols]

1…タンク 2…コンプレッサ 3…湿度制御装置 4…ブッシング 5…圧力計 6…放圧弁 7…バルブ 8…球電極 9…平板電極 10…電極 11…絶縁物 12…埋め込み電極 13…架台 14…絶縁ブッシング 15…電界緩和リング 16…リード線 17…ボルト 18…電極栓 19…真空ポンプ 20…SF6ガスボンベDESCRIPTION OF SYMBOLS 1 ... Tank 2 ... Compressor 3 ... Humidity control device 4 ... Bushing 5 ... Pressure gauge 6 ... Pressure relief valve 7 ... Valve 8 ... Ball electrode 9 ... Flat plate electrode 10 ... Electrode 11 ... Insulator 12 ... Embedded electrode 13 ... Stand 14 ... Insulation Bushing 15 ... Electric field relaxation ring 16 ... Lead wire 17 ... Bolt 18 ... Electrode plug 19 ... Vacuum pump 20 ... SF 6 gas cylinder

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】空気を少なくとも0.35MPaに加圧す
る加圧手段と、空気の相対湿度を90%RH以下にする
湿度制御手段と、供試の絶縁部品に電圧を印加する電圧
印加手段とを具備したことを特徴とするガス絶縁機器の
耐電圧試験装置。
A pressure means for pressurizing air to at least 0.35 MPa, a humidity control means for adjusting the relative humidity of air to 90% RH or less, and a voltage applying means for applying a voltage to an insulating part to be tested. A withstand voltage test apparatus for gas-insulated equipment, comprising:
【請求項2】前記電圧印加手段における電界を調整する
電界調整手段を具備したことを特徴とする請求項1記載
のガス絶縁機器の耐電圧試験装置。
2. A withstand voltage test apparatus for gas-insulated equipment according to claim 1, further comprising electric field adjusting means for adjusting an electric field in said voltage applying means.
【請求項3】加圧手段により空気を少なくとも0.35
MPaに加圧する第1の工程と、加圧した空気を湿度制
御手段を介して相対湿度を90%RH以下に乾燥させる
第2の工程と、乾燥させ加圧した空気を絶縁部品が収納
された密閉箱体内に封入する第3の工程と、電圧印加手
段により絶縁部品に電圧を印加して耐電圧試験を行う第
4の工程と、試験終了後加圧した空気を大気に放出する
第5の工程とからなるガス絶縁機器の耐電圧試験方法。
3. The pressurizing means removes at least 0.35 air.
A first step of pressurizing to MPa, a second step of drying the pressurized air to a relative humidity of 90% RH or less through a humidity control means, and an insulating component for storing the dried and pressurized air. A third step of enclosing in a closed box, a fourth step of applying a voltage to the insulating component by a voltage applying means to perform a withstand voltage test, and a fifth step of releasing pressurized air to the atmosphere after the test is completed. Method for testing the withstand voltage of gas-insulated equipment.
【請求項4】前記密封箱体内に収納された絶縁部品の定
格ガス圧力を0.20MPa以下とすることを特徴とす
る請求項3記載のガス絶縁機器の耐電圧試験方法。
4. A withstand voltage test method for gas-insulated equipment according to claim 3, wherein the rated gas pressure of the insulating parts housed in said sealed box is 0.20 MPa or less.
【請求項5】前記第4の工程において、前記絶縁部品の
電極に取り付けられた電界調整手段で電界を調整して耐
電圧試験を行うことを特徴とする請求項3または請求項
4記載のガス絶縁機器の耐電圧試験方法。
5. The gas according to claim 3, wherein in the fourth step, a withstand voltage test is performed by adjusting an electric field by electric field adjusting means attached to the electrode of the insulating component. Withstand voltage test method for insulation equipment.
【請求項6】前記電界調整手段により特異点が生じるよ
うに調整して、少なくとも破壊電圧試験を行うことを特
徴とする請求項5記載のガス絶縁機器の耐電圧試験方
法。
6. A withstand voltage test method for gas-insulated equipment according to claim 5, wherein the electric field adjusting means is adjusted so as to generate a singular point, and at least a breakdown voltage test is performed.
JP2000006307A 2000-01-12 2000-01-12 Apparatus and method for testing withstand voltage of gas insulated device Pending JP2001194409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000006307A JP2001194409A (en) 2000-01-12 2000-01-12 Apparatus and method for testing withstand voltage of gas insulated device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000006307A JP2001194409A (en) 2000-01-12 2000-01-12 Apparatus and method for testing withstand voltage of gas insulated device

Publications (1)

Publication Number Publication Date
JP2001194409A true JP2001194409A (en) 2001-07-19

Family

ID=18534857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000006307A Pending JP2001194409A (en) 2000-01-12 2000-01-12 Apparatus and method for testing withstand voltage of gas insulated device

Country Status (1)

Country Link
JP (1) JP2001194409A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011233310A (en) * 2010-04-26 2011-11-17 Toshiba Corp Vacuum circuit breaker
JP2011252792A (en) * 2010-06-02 2011-12-15 Fuji Electric Co Ltd Testing device and testing method
KR101269020B1 (en) 2011-10-10 2013-06-04 한국전력공사 Apparatus and method for testing gas insulation switchgear using dry air
CN103823167A (en) * 2014-03-14 2014-05-28 云南电力试验研究院(集团)有限公司电力研究院 2MV portable fast-front-edge compact type site-impact testing device for power and control method thereof
KR20180138454A (en) 2017-06-21 2018-12-31 현대일렉트릭앤에너지시스템(주) Guage apparatus for gas insulated switchgear
WO2019096589A1 (en) * 2017-11-17 2019-05-23 Siemens Aktiengesellschaft Method for filling a container, and service device for carrying out the method
US11509121B2 (en) * 2016-08-19 2022-11-22 Siemens Aktiengesellschaft Electrical energy transmission device and life cycle management

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011233310A (en) * 2010-04-26 2011-11-17 Toshiba Corp Vacuum circuit breaker
JP2011252792A (en) * 2010-06-02 2011-12-15 Fuji Electric Co Ltd Testing device and testing method
US20110309850A1 (en) * 2010-06-02 2011-12-22 Fuji Electric Co., Ltd. Testing device and testing method
CN102313864A (en) * 2010-06-02 2012-01-11 富士电机株式会社 Testing apparatus and method of testing
US8610446B2 (en) 2010-06-02 2013-12-17 Fuji Electric Co., Ltd. Testing device and testing method
KR101269020B1 (en) 2011-10-10 2013-06-04 한국전력공사 Apparatus and method for testing gas insulation switchgear using dry air
CN103823167A (en) * 2014-03-14 2014-05-28 云南电力试验研究院(集团)有限公司电力研究院 2MV portable fast-front-edge compact type site-impact testing device for power and control method thereof
US11509121B2 (en) * 2016-08-19 2022-11-22 Siemens Aktiengesellschaft Electrical energy transmission device and life cycle management
KR20180138454A (en) 2017-06-21 2018-12-31 현대일렉트릭앤에너지시스템(주) Guage apparatus for gas insulated switchgear
WO2019096589A1 (en) * 2017-11-17 2019-05-23 Siemens Aktiengesellschaft Method for filling a container, and service device for carrying out the method
CN111344920A (en) * 2017-11-17 2020-06-26 西门子股份公司 Method for filling containers and service device for carrying out the method
CN111344920B (en) * 2017-11-17 2022-02-25 西门子能源全球有限公司 Method for filling containers and service device for carrying out the method

Similar Documents

Publication Publication Date Title
CN105388406B (en) A kind of gas insulated electric apparatus shelf depreciation multi-source associated detecting method
CN103913682B (en) Be applied to insulating gas insulating property experimental system and the method thereof of electrical equipment
CN105301465B (en) A kind of DC gas insulated local discharge of electrical equipment decomposes analogue experiment installation
WO2020259579A1 (en) Method for testing insulation deterioration performance of current transformer
JP2001194409A (en) Apparatus and method for testing withstand voltage of gas insulated device
KR20100089145A (en) Test apparatus for dielectric breakdown strength
JPH1172543A (en) Method for mapping capacitance of stator bar insulator, and capacitance measurement instrument
Cooke Ionization, electrode surfaces and discharges in SF 6 at extra-high-voltages
CN203587753U (en) Simulation device of GIS electrical-equipment internal suspension potential defect
CN103592588A (en) Simulation device of floating potential flaws inside GIS power equipment
CN108490319A (en) A kind of GIS defects of insulator model and test SF6The method of decomposition product
CN110308388A (en) It is a kind of for testing the device and test method of the electric property of GIS insulated pull rod
CN107677907A (en) It is a kind of can fine adjustment transformer oil clearance experiment measurement apparatus
CN114184913A (en) C5F10O-mixed gas electrical insulation characteristic test method
Bach et al. Comparative investigations of PD behaviour on an artificial accessory failure under medium test voltage AC, damped AC (DAC) and 0, 1-Hz-VLF
JPS6226426B2 (en)
JP3197000B2 (en) Field test method for special high-voltage line using switching surge
Wang et al. Surface Charging and Flashover Behaviors of Polished Epoxy Spacers under AC Voltage
Schober et al. Interaction of pressboard with impregnating fluids in HVDC insulation systems
Zheng et al. Influence of the contact form of the electrode and the insulator in C 4 F 7 N-CO 2 mixtures
CN203643529U (en) Dry-type terminal system for type test of ultrahigh voltage cable with 500kV and below
Li et al. Effect of Extremely Cold Weather and Shrinkage Stress on Interfacial Discharge Between Epoxy and Silicone Rubber in HV Cable Terminations
CN103487733B (en) The insulation test device of capacitor
JPS61274281A (en) Tester for electric equipment used in insulation gas
Rawat et al. Electrical strength reduction of porcelain suspension insulators on AC transmission lines

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606