JP2001194361A - Gas analyzer - Google Patents

Gas analyzer

Info

Publication number
JP2001194361A
JP2001194361A JP2000006432A JP2000006432A JP2001194361A JP 2001194361 A JP2001194361 A JP 2001194361A JP 2000006432 A JP2000006432 A JP 2000006432A JP 2000006432 A JP2000006432 A JP 2000006432A JP 2001194361 A JP2001194361 A JP 2001194361A
Authority
JP
Japan
Prior art keywords
gas
liquid
gas component
analysis
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000006432A
Other languages
Japanese (ja)
Other versions
JP4187374B2 (en
Inventor
Takashi Inaga
隆史 伊永
Yoichi Fujiyama
陽一 藤山
Hiroaki Nakanishi
博昭 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Furuno Electric Co Ltd
Original Assignee
Shimadzu Corp
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Furuno Electric Co Ltd filed Critical Shimadzu Corp
Priority to JP2000006432A priority Critical patent/JP4187374B2/en
Publication of JP2001194361A publication Critical patent/JP2001194361A/en
Application granted granted Critical
Publication of JP4187374B2 publication Critical patent/JP4187374B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To implement the sampling suitable for the gas analysis to examine the change with the lapse of time with a sufficient efficiency. SOLUTION: This gas analyzer allows a liquid for absorbing gas components to flow in a small flow passage 7 formed in plate bonding surfaces of a cell 1 for analysis, spraying the gas containing the gas components to be analyzed on a porous glass plate, and a large volume of the gas components penetrating the porous glass plate are continuously scavenged by the liquid for absorbing the gas components. The change with the lapse of time of the gas components can be easily examined by implementing the gas analysis of the sample solution with the gas components scavenged therein one by one, and the penetration of the gas components is increased by spraying the gas containing the gas component to be analyzed on the porous glass plate, and the absorbing efficiency in the sampling is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、分析対象のガス
成分をガス成分吸収用液体に吸収(捕集)してガス成分
を分析するよう構成されたガス分析装置に係り、特に分
析対象のガス成分の経時的変化を調べる分析に適したガ
スサンプリングが十分な吸収効率(捕集効率)で行われ
るようにするための技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas analyzer configured to absorb (collect) a gas component to be analyzed by a gas component absorbing liquid and analyze the gas component, and more particularly to a gas analyzer to be analyzed. The present invention relates to a technique for performing gas sampling suitable for analysis for examining a change with time of components with sufficient absorption efficiency (collection efficiency).

【0002】[0002]

【従来の技術】近年、地球環境の汚染が様々な方面で進
みつつある。大気汚染も深刻な環境問題の一つである。
大気汚染問題に取り組むには大気中に微量に含まれる汚
染物質であるガス成分(例えばNO2 ,SO2 など)の
分析が不可欠である。例えば、NO2 の分析の場合、パ
ッシブサンプラーを用いて大気中のNO2 をサンプリン
グ(捕集)して濃度を測定する。従来使われているNO
2 捕集用のパッシブサンプラーは、図8に示すように、
縦スペーサ52及び横スペーサ53を表面に取り付けた
プラスチックプレート51の上にトリエタノールアミン
を含浸させた濾紙54、多孔質ガラス55をその順に重
ねてセットしてから、多孔質ガラス55の周縁をフッ化
樹脂製のテープ56を貼って封止した構成になってい
る。
2. Description of the Related Art In recent years, pollution of the global environment has been progressing in various fields. Air pollution is also a serious environmental problem.
In order to tackle the problem of air pollution, it is essential to analyze gas components (for example, NO 2 , SO 2, etc.), which are pollutants contained in a small amount in the atmosphere. For example, if the analysis of NO 2, to measure the concentration of NO 2 in the atmosphere by sampling (collection) by using a passive sampler. NO used conventionally
2 The passive sampler for collection is as shown in FIG.
A filter paper 54 impregnated with triethanolamine and a porous glass 55 are set in this order on a plastic plate 51 having a vertical spacer 52 and a horizontal spacer 53 attached to the surface thereof. In this configuration, a tape 56 made of a synthetic resin is attached and sealed.

【0003】NO2 を捕集する際はパッシブサンプラー
を空気中に所定時間(例えば半日)放置(暴露)してお
く。そうすると空気中のNO2 がフィルタである多孔質
ガラス55を透過して濾紙54に吸着捕集される。この
パッシブサンプラーは軽量・小型で操作も簡単なことか
ら、NO2 を容易にサンプリングすることができる。N
2 捕集済のパッシブサンプラーはラボラトリーへ持ち
帰られた後、溶出・反応など必要な後処理を経てNO2
濃度を測定することになる。
When trapping NO 2 , a passive sampler is left (exposed) in air for a predetermined time (for example, half a day). Then, the NO 2 in the air passes through the porous glass 55 as a filter and is adsorbed and collected on the filter paper 54. Since this passive sampler is lightweight and compact and easy to operate, it can easily sample NO 2 . N
After O 2 collection already passive sampler is brought back to the laboratory, after necessary post-processing, such as dissolution or reaction NO 2
The concentration will be measured.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来のパッシブサンプラーは経時的変化を調べるガス分析
には不向きであるという問題がある。分析結果はパッシ
ブサンプラーの放置時間中に集積したガス成分のトータ
ル値に対応しているだけであり、放置期間の平均値が分
かるだけであって、時々刻々の瞬時的な値が分かるわけ
ではないからである。つまり、パッシブサンプラーは、
積分型ガスサンプリング方式であって、分析結果から時
間的な変化を把握することは事実上できないので、ガス
成分の動態解析などは難しくて、十分なものはと言いが
たいのである。
However, the conventional passive sampler described above has a problem that it is not suitable for gas analysis for examining a change with time. The analysis results only correspond to the total value of the gas components accumulated during the passive sampler's standing time, only the average value of the standing period is known, not the instantaneous value every moment Because. In other words, the passive sampler
Since it is an integral type gas sampling method, and it is practically impossible to grasp a temporal change from an analysis result, it is difficult to analyze the dynamics of gas components, and it is hard to say that it is sufficient.

【0005】そこで、分析対象のガス成分の経時的変化
を調べる分析に適したガスサンプリンが可能なガス分析
用のセルが、特願平10−329635号および特願平
11−25150号において提案されている。
[0005] In view of the above, gas analysis cells capable of producing a gas sampler suitable for analysis of a gas component to be analyzed over time have been proposed in Japanese Patent Application Nos. 10-329635 and 11-25150. ing.

【0006】すなわち、これらのセルでは、多孔質ガラ
ス製プレートと非多孔質ガラス製プレートの2枚のプレ
ートが重ね合わせられていて、両プレートの重ね合わせ
面に液体導入口から流入するガス成分吸収用液体を液体
導出口へ向けて流す細溝が形成されていて、細溝を流れ
るガス成分吸収用液体が、多孔質ガラス製のプレートを
透過してくるガス成分と接触して吸収した上でガス成分
吸収済(捕集済)サンプル液として液体導出口の方へ流
れてゆく構成となっており、ガス成分の濃度の経時的変
化に対応するガス成分吸収済サンプル液が連続的に得ら
れるので、分析対象であるガス成分の経時的変化を調べ
る分析に好適なガスサンプリンが行える。
That is, in these cells, two plates, a porous glass plate and a non-porous glass plate, are overlapped, and the gas component flowing from the liquid inlet into the overlapping surface of both plates is absorbed. Is formed, and the gas component-absorbing liquid flowing through the narrow groove comes into contact with the gas component permeating through the porous glass plate and is absorbed. Gas component-absorbed (collected) sample liquid flows toward the liquid outlet, so that a gas-component-absorbed sample liquid corresponding to the change over time in the concentration of gas components can be obtained continuously. Therefore, a gas sampler suitable for analysis for examining a temporal change of a gas component to be analyzed can be performed.

【0007】しかし、先に提案されているガス分析用の
セルの場合、ガス成分の吸収効率の向上が望まれる。提
案に係るセルでは、ガス成分吸収用液体がガス成分と接
触する機会は多孔質ガラス製のプレートのある箇所を流
れている期間だけであるので、ガス成分吸収用液体とガ
ス成分との接触の機会が少なく、ガス成分吸収用液体は
ガス成分を十分吸収するには至らないからである。ガス
成分の吸収効率が十分でない場合、例えば高感度分析や
高速分析が難しいこと等から、ガス成分の吸収効率の向
上が強く求められる。
However, in the case of the cell for gas analysis proposed above, it is desired to improve the absorption efficiency of gas components. In the cell according to the proposal, the opportunity for the gas component absorbing liquid to come into contact with the gas component is only during the period in which it flows through a portion of the porous glass plate. This is because there are few opportunities and the gas component absorbing liquid does not sufficiently absorb the gas component. When the absorption efficiency of the gas component is not sufficient, for example, it is difficult to perform high-sensitivity analysis or high-speed analysis, and therefore, it is strongly required to improve the absorption efficiency of the gas component.

【0008】この発明は、上記の事情に鑑み、分析対象
のガス成分の経時的変化を調べる分析に適したガスサン
プリングを十分な吸収効率(捕集効率)で行うことがで
きるガス分析装置を提供することを課題とする。
The present invention has been made in view of the above circumstances, and provides a gas analyzer capable of performing gas sampling with sufficient absorption efficiency (collection efficiency) suitable for analysis for examining a temporal change of a gas component to be analyzed. The task is to

【0009】[0009]

【課題を解決するための手段】前記課題を解決するため
に、請求項1の発明に係るガス分析装置は、重ね合わせ
られたプレートの重ね合わせ面に液体導入口から流入す
るガス成分吸収用液体を液体導出口へ向けて流す微小流
路が形成されているとともに、この微小流路におけるガ
ス成分吸収区間で重ね合わせられたプレートの少なくと
も一方が、ガス成分吸収用液体は透過させずに吸収対象
のガス成分は透過させる多孔質ガラスで形成されている
分析用セルと、この分析用セルにおける多孔質ガラスか
らなるプレートに分析対象のガス成分を含む気体を吹き
つける気体吹き付け手段と、分析用セルの微小流路にガ
ス成分吸収用液体を供給する液体供給手段と、ガス成分
吸収済(捕集済)の液体に反応用薬液を供給添加する薬
液供給手段と、ガス成分吸収・反応済の液体についてガ
ス成分の分析を行うガス分析手段とを備えている。
According to a first aspect of the present invention, there is provided a gas analyzing apparatus, comprising: a gas component absorbing liquid flowing into a superimposed surface of a superposed plate from a liquid inlet; Is formed toward the liquid outlet, and at least one of the plates superposed in the gas component absorption section of the micro flow channel does not allow the gas component absorbing liquid to pass therethrough and absorbs the liquid. An analysis cell formed of porous glass through which the gas component is transmitted, gas blowing means for blowing a gas containing the gas component to be analyzed onto a plate made of porous glass in the analysis cell, and an analysis cell A liquid supply means for supplying a gas component absorbing liquid to the minute flow path, a chemical liquid supply means for supplying and adding a reaction chemical liquid to the gas component absorbed (collected) liquid, And a gas analysis means for analyzing a gas component for the liquid already ingredient absorption and reaction.

【0010】また、請求項2の発明は、請求項1に記載
のガス分析装置において、分析用セルは、微小流路がガ
ス成分吸収区間の後段にガス成分吸収済の液体と反応用
薬液の反応が行われる反応用区間を有するとともに、ガ
ス成分吸収区間と反応用区間との間で微小流路に接続さ
れるように反応用薬液導入用流路が設けられており、か
つ薬液供給手段は反応用薬液導入用流路から反応用薬液
を微小流路に供給するよう構成されている。
According to a second aspect of the present invention, there is provided the gas analyzer according to the first aspect, wherein the analysis cell is provided with a microchannel in which a gas component-absorbed liquid and a reaction chemical liquid are provided downstream of the gas component absorption section. While having a reaction section in which the reaction is performed, a reaction liquid introduction flow path is provided so as to be connected to the minute flow path between the gas component absorption section and the reaction section, and the liquid supply means The reaction solution is supplied to the minute flow channel from the reaction solution introduction channel.

【0011】また、請求項3の発明は、請求項2に記載
のガス分析装置において、分析用セルは、微小流路が反
応用区間の後段に分析対象のガス成分の分析を行うガス
分析用区間を有しているとともに、ガス分析手段は微小
流路のガス分析用区間に到来するガス成分吸収・反応済
の液体についてガス成分の分析を逐次行うよう構成され
ている。
According to a third aspect of the present invention, there is provided the gas analyzer according to the second aspect, wherein the analysis cell is a gas analyzer for analyzing a gas component to be analyzed at a stage subsequent to a reaction section in a minute flow path. In addition to having a section, the gas analysis means is configured to sequentially analyze the gas component of the liquid that has been absorbed and reacted in the gas analysis section of the microchannel.

【0012】〔作用〕次に、この発明のガス分析装置の
作用を説明する。請求項1に記載の発明のガス分析装置
により分析を行う場合、ガス成分を捕集(サンプリン
グ)するために分析用セルは捕集対象のガス成分が存在
する場所に据えられ、液体供給手段により、重ね合わせ
られたプレートの重ね合わせ面に形成された微小流路に
液体導入口からガス成分吸収用液体が流される。これと
同時に、気体吹き付け手段により、分析用セルにおける
多孔質ガラス製のプレートに分析対象のガス成分を含む
気体が吹き付けられる。分析用セルの微小流路における
ガス成分吸収区間では、多孔質ガラス製のプレートを透
過して進入してくるガス成分とガス成分吸収用液体とが
接触することにより、ガス成分がガス成分吸収用液体に
吸収される。ガス成分を吸収したガス成分吸収用液体
は、ガス成分捕集済サンプル液として液体導出口の方へ
向けて流れてゆく。そして、このガス成分捕集済サンプ
ル液には、薬液供給手段によりガス成分捕集済の液体に
反応用薬液が供給添加されてガス成分捕集済の液体と反
応用薬液との間で反応が行われた後、さらにガス分析手
段によりガス成分捕集・反応済の液体についてガス成分
の分析が行われる。
[Operation] Next, the operation of the gas analyzer of the present invention will be described. When analysis is performed by the gas analyzer according to the first aspect of the present invention, an analysis cell is installed in a place where a gas component to be collected exists in order to collect (sampling) a gas component, and the liquid is supplied by a liquid supply unit. Then, the gas component absorbing liquid is caused to flow from the liquid inlet into the minute flow path formed on the superposed surface of the superposed plates. At the same time, the gas containing the gas component to be analyzed is blown onto the porous glass plate in the analysis cell by the gas blowing means. In the gas component absorption section in the microchannel of the analysis cell, the gas component that penetrates the porous glass plate and enters and comes into contact with the gas component absorption liquid, so that the gas component absorbs the gas component. Absorbed by liquids. The gas component absorbing liquid that has absorbed the gas component flows toward the liquid outlet as a gas component-collected sample liquid. Then, the reaction liquid is supplied to the gas component-collected liquid by the chemical liquid supply means, and the reaction between the gas component-collected liquid and the reaction liquid is added to the gas component-collected sample liquid. After the operation, the gas component is analyzed for the liquid after the gas component collection and reaction by the gas analysis means.

【0013】このように、請求項1のガス分析装置の分
析用セルにおいては、ガス成分の濃度の経時的変化に応
じたガス成分捕集済サンプル液が連続的に得られる(連
続的なガスサンプリングが行われる)ので、ガス成分捕
集済サンプル液を逐次にガス分析することによってガス
成分の経時的変化が容易に調べられる。さらには現場で
ガス成分の連続的な分析結果を現場で得ることも可能で
ある(オンサイト分析もできる)し、また連続的なサン
プリングであっても、ガス成分吸収用液体が流れるのが
微小流路であるので、ガス成分吸収用液体は少量で済
む。
As described above, in the analysis cell of the gas analyzer according to the first aspect, the gas component-collected sample liquid according to the time-dependent change of the concentration of the gas component is continuously obtained (continuous gas). Since sampling is performed), the temporal change of the gas component can be easily examined by sequentially performing gas analysis on the sample liquid in which the gas component has been collected. Furthermore, it is possible to obtain continuous analysis results of gas components on site (on-site analysis is also possible), and even in continuous sampling, the flow of gas component absorbing liquid is very small. Since it is a flow path, a small amount of gas component absorbing liquid is sufficient.

【0014】加えて、請求項1の発明のガス分析装置の
場合、分析用セルにおける多孔質ガラス製のプレートに
分析対象のガス成分を含む気体が強制的に吹き付けられ
ることにより、多孔質ガラス製のプレートを透過する分
析対象のガス成分の量が多くなり、これに伴って、ガス
成分吸収用液体が吸収する分析対象のガス成分の量が一
段と増加するので、サンプリングの際のガス成分の吸収
効率(捕集効率)が向上する。
In addition, in the case of the gas analyzer according to the first aspect of the present invention, the gas containing the gas component to be analyzed is forcibly blown onto the porous glass plate in the analysis cell, so that the porous glass plate is formed. The amount of the gas component to be analyzed passing through the plate increases, and the amount of the gas component to be analyzed absorbed by the gas component absorbing liquid further increases. The efficiency (collection efficiency) is improved.

【0015】また、請求項2のガス分析装置の分析用セ
ルの場合、ガス成分吸収用液体が微小流路へ流されるの
と同時に、反応用薬液導入用流路にも薬液供給手段によ
って反応用薬液が流され、微小流路のガス成分吸収区間
と反応用区間の間でガス成分吸収用液体に反応用薬液が
供給添加されるのに引き続いて、反応用区間でガス成分
吸収用液体と反応用薬液との反応が連続的に行われる。
つまり、請求項2のガス分析装置では、ガス成分の捕集
及び反応がひとつの分析用セルで連続的に行われるので
ある。また、ガス成分吸収用液体が流れるのが、やはり
微小流路であるので、添加する反応用薬液も少量で済
む。
Further, in the case of the analysis cell of the gas analyzer according to the present invention, the liquid for absorbing the gas component is caused to flow into the minute flow path, and at the same time, the reaction liquid is introduced into the reaction liquid introduction flow path by the liquid supply means. The chemical solution is flowed, and the reaction liquid is supplied to the gas component absorption liquid between the gas component absorption section and the reaction section of the microchannel, and then reacts with the gas component absorption liquid in the reaction section. Reaction with the drug solution is performed continuously.
That is, in the gas analyzer according to the second aspect, the collection and reaction of the gas component are continuously performed in one analysis cell. In addition, since the gas component absorbing liquid flows through the minute flow channel as well, a small amount of the reacting chemical liquid may be added.

【0016】また、請求項3のガス分析装置の分析用セ
ルの場合、微小流路のガス分析用区間に反応用区間から
ガス成分捕集・反応済の液体が連続的に到来するととも
に、ガス分析手段によりガス成分捕集・反応済サンプル
液に対しガス成分の分析が連続的に行われる。つまり、
請求項3のガス分析装置では、ガス成分の捕集から分析
までがひとつの分析用セルで連続的に行われるのであ
る。
Further, in the case of the analysis cell of the gas analyzer according to the third aspect, the gas component-collected and reacted liquid continuously arrives from the reaction section to the gas analysis section of the minute flow path, The analysis means continuously analyzes the gas components of the sample liquid which has been collected and reacted. That is,
In the gas analyzer according to the third aspect, the processes from collection to analysis of gas components are continuously performed in one analysis cell.

【0017】[0017]

【発明の実施の形態】続いて、この発明の一実施例を図
面を参照しながら説明する。図1は実施例に係るガス分
析装置の全体構成を示すブロック図、図2は実施例装置
の分析用セルを示す斜視図、図3は図2におけるa−a
線で破断した分析用セルの断面図である。
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the overall configuration of a gas analyzer according to an embodiment, FIG. 2 is a perspective view showing an analysis cell of the embodiment, and FIG. 3 is aa in FIG.
It is sectional drawing of the cell for analysis fracture | ruptured by the line.

【0018】本実施例に係るガス分析装置は、図2に示
すように、分析対象のガス成分をサンプリングする平板
状の分析用セル1を備えている。分析用セル1は、図2
および図3に示すように、下側プレートとして長尺状の
透明ガラス製の短冊プレート2を備えているとともに、
この短冊プレート2に重ね合わされる上側プレートとし
て、多孔質ガラス製の円形プレート3及び長尺状の透明
ガラス製の円形孔付き短冊プレート4を備えている。そ
して、これら上側・下側のプレート2〜4の重ね合わせ
面に液体導入口5から流入するガス成分吸収用液体を液
体導出口6へ向けて流す微小流路7が形成されている。
As shown in FIG. 2, the gas analyzer according to the present embodiment includes a flat plate-shaped analysis cell 1 for sampling a gas component to be analyzed. The analysis cell 1 is shown in FIG.
As shown in FIG. 3 and FIG. 3, a strip plate 2 made of a long transparent glass is provided as a lower plate.
As an upper plate superposed on the strip plate 2, a circular plate 3 made of porous glass and a strip plate 4 with a circular hole made of long transparent glass are provided. On the superposed surfaces of the upper and lower plates 2 to 4, there are formed minute channels 7 for flowing the gas component absorbing liquid flowing from the liquid inlet 5 toward the liquid outlet 6.

【0019】さらに、実施例のガス分析装置は、図1に
示すように、分析用セル1の他に、分析用セル1におけ
る多孔質ガラス製の円形プレート3の表面に分析対象の
ガス成分を含む気体を吹きつける送風機(気体吹き付け
手段)8と、分析用セル1の微小流路7にガス成分吸収
用液体を供給する液体供給部9と、ガス成分吸収済(捕
集済)の液体に反応用薬液を供給添加する薬液供給部1
0と、ガス成分吸収・反応済の液体についてガス分析を
行うガス分析部11とを備えている。以下、実施例装置
の各部構成をより具体的に説明する。
Further, as shown in FIG. 1, in the gas analyzer of the embodiment, in addition to the analysis cell 1, the gas component to be analyzed is placed on the surface of the porous glass circular plate 3 in the analysis cell 1. A blower (gas blowing means) 8 for blowing a gas containing gas, a liquid supply unit 9 for supplying a gas component absorbing liquid to the microchannel 7 of the analysis cell 1, and a gas component absorbed (collected) liquid. Chemical solution supply unit 1 for supplying and adding a chemical solution for reaction
0, and a gas analyzer 11 for performing gas analysis on the liquid that has undergone gas component absorption and reaction. Hereinafter, the configuration of each part of the embodiment device will be described more specifically.

【0020】分析用セル1の短冊プレート4には、厚み
方向に貫通する円形孔4aが形成されていて、この円形
孔4aに多孔質ガラス製の円形プレート3が嵌め込まれ
ている。円形プレート3を嵌め込まれた短冊プレート4
が短冊プレート2の上に重ね合わされている。また、短
冊プレート4における両端側の各位置には、ガス成分吸
収用液体導入用の貫通孔4bおよびガス成分吸収用液体
導出用の貫通孔4cが厚み方向を貫通するように形成さ
れている。各貫通孔4b,4cの上部開口が液体導入口
5および液体導出口6になっている。
The strip plate 4 of the analysis cell 1 is formed with a circular hole 4a penetrating in the thickness direction, and the circular plate 3 made of porous glass is fitted into the circular hole 4a. Strip plate 4 with circular plate 3 fitted
Are superimposed on the strip plate 2. Further, a through hole 4b for introducing a gas component absorbing liquid and a through hole 4c for discharging a gas component absorbing liquid are formed at respective positions on both ends of the strip plate 4 so as to penetrate in the thickness direction. The upper openings of the through holes 4b and 4c serve as a liquid inlet 5 and a liquid outlet 6, respectively.

【0021】一方、各プレート2〜4の重ね合わせ面に
は、図1に示すように、液体導入口5から流入するガス
成分吸収用液体を液体導出口6へ向けて流す微小流路7
が形成されている。この微小流路7には、液体導入口5
から液体導出口6の間にわたって、ガス成分の吸収が行
われるガス成分吸収区間AR1,ガス成分吸収済の液体
と反応用薬液の反応が行われる反応用区間AR2,ガス
成分吸収・反応済の液体の分析を行うガス分析用区間A
R3がその順に配設されている。短冊プレート2の重ね
合わせ側の面には、図4に示すように、微小流路7を構
成する細溝7a〜7hが形成されている。すなわち、微
小流路7のガス成分吸収区間AR1には、6本に分岐し
ながら最後は再び一本に纏まる複数本(この例では6
本)の細溝7a〜7fが形成されている。ガス成分吸収
区間AR1に続く反応用区間AR2及びガス分析用区間
AR3では細溝7g,7hが直列に続くよう形成されて
いる。そして、微小流路7の流路始点7Aは貫通孔4b
に、流路終点7Bは貫通孔4cに、それぞれ連通してい
て、液体導入口5から流入したガス成分吸収用液体が微
小流路7を経ながら液体導出口6へ流れ出るように構成
されている。このような分析用セル1によれば、ガス成
分吸収用液体が流れる流路が微小であるので、ガス成分
吸収用液体は少量で足りる。
On the other hand, as shown in FIG. 1, a microchannel 7 through which the gas component absorbing liquid flowing from the liquid inlet 5 flows toward the liquid outlet 6 is provided on the superposed surface of the plates 2 to 4.
Are formed. The microchannel 7 has a liquid inlet 5
Gas component absorption section AR1 where the gas component is absorbed and the reaction section AR2 where the reaction between the gas component-absorbed liquid and the reaction chemical solution is performed between the liquid outlet port 6 and the liquid outlet port 6. Section A for analyzing gas
R3 are arranged in that order. As shown in FIG. 4, narrow grooves 7 a to 7 h constituting the minute flow path 7 are formed on the surface on the overlapping side of the strip plate 2. That is, in the gas component absorption section AR1 of the minute flow path 7, a plurality of branches (6 in this example) which are branched into six and finally combined again at one end
The book has narrow grooves 7a to 7f. In the reaction section AR2 and the gas analysis section AR3 following the gas component absorption section AR1, narrow grooves 7g and 7h are formed so as to continue in series. The flow path starting point 7A of the micro flow path 7 is located at the through hole 4b.
The channel end point 7B communicates with the through hole 4c so that the gas component absorbing liquid flowing from the liquid inlet 5 flows out to the liquid outlet 6 through the minute flow path 7. . According to such an analysis cell 1, the flow path through which the gas component absorbing liquid flows is minute, so that a small amount of the gas component absorbing liquid is sufficient.

【0022】さらに分析用セル1は、図1に示すよう
に、ガス成分吸収区間AR1と反応用区間AR2との間
で微小流路7に連通接続される反応用薬液導入用流路1
2を備えている。この反応用薬液導入用流路12は、短
冊プレート4に設けられている貫通孔4dを経由して薬
液導入口13に連通している。薬液供給部10から供給
された反応用薬液は薬液導入口13から薬液導入用流路
12へ送り込まれてガス成分捕集済の液体に添加された
後、反応用区間AR2へ流れてゆく。このような反応用
薬液の供給添加のために、分析用セル1の短冊プレート
2の重ね合わせ側の面には、図4に示すように、反応用
薬液導入用流路12を構成する細溝7iが細溝7gの上
流側で連通するように形成されている。このような分析
用セル1によれば、反応用薬液が流れる流路が微小であ
るので、反応用薬液も少量で足りる。
Further, as shown in FIG. 1, the analysis cell 1 includes a reaction chemical liquid introduction flow path 1 that is connected to the minute flow path 7 between the gas component absorption section AR1 and the reaction section AR2.
2 is provided. The reaction solution introducing flow channel 12 communicates with the solution introducing port 13 through a through hole 4 d provided in the strip plate 4. The reaction solution supplied from the solution supply unit 10 is fed into the solution introduction channel 12 through the solution introduction port 13 and added to the gas component-collected liquid, and then flows to the reaction section AR2. In order to supply and add the reaction solution, a narrow groove constituting the reaction solution introduction flow path 12 is formed on the surface of the analysis cell 1 on the overlapping side of the strip plate 2 as shown in FIG. 7i are formed so as to communicate on the upstream side of the narrow groove 7g. According to such an analysis cell 1, the flow path of the reaction solution is minute, so that a small amount of the reaction solution is sufficient.

【0023】短冊プレート4に嵌め込まれた円形プレー
ト3は、ガス成分吸収用液体を透過させずに吸収対象の
ガス成分を透過させる多孔質ガラス製であるので、短冊
プレート2と円形プレート3の重ね合わせ面には、ガス
成分が外側から円形プレート3を透過して進入し微小流
路7を流れるガス成分吸収用液体と接触することにより
吸収されて捕集される。さらに、実施例のガス分析装置
の場合、分析対象のガス成分を含む気体が分析用セル1
の多孔質ガラス製の円形プレート3の表面に送風機8で
吹き付けられるので、円形プレート3を透過する分析対
象のガス成分の量が増えて、ガス成分吸収区間AR1に
おいてはガス成分吸収用液体により吸収されるガス成分
の量が多くなる。また分析用セル1の場合、ガス成分吸
収区間AR1では微小流路7が分岐流路構成であるの
で、ガス成分とガス成分吸収用液体との接触面積も十分
に確保される。
Since the circular plate 3 fitted into the strip plate 4 is made of porous glass which allows the gas component to be absorbed to pass therethrough without transmitting the gas component absorbing liquid, the strip plate 2 and the circular plate 3 are overlapped. The gas component penetrates the circular plate 3 from the outside and enters the mating surface, and is absorbed and collected by coming into contact with the gas component absorbing liquid flowing through the microchannel 7. Further, in the case of the gas analyzer according to the embodiment, the gas containing the gas component to be analyzed is analyzed by the analysis cell 1.
Is blown onto the surface of the circular plate 3 made of porous glass by the blower 8, so that the amount of the gas component to be analyzed passing through the circular plate 3 increases, and is absorbed by the gas component absorbing liquid in the gas component absorption section AR1. The amount of gas components to be used increases. In the case of the analysis cell 1, the microchannel 7 has a branch channel configuration in the gas component absorption section AR1, so that the contact area between the gas component and the gas component absorption liquid is sufficiently ensured.

【0024】第1実施例の場合、下側の短冊プレート2
としては縦2cm,横5cm,厚みが0.5mm程度の
透明ガラス製プレートが例示される。短冊プレート2の
重ね合わせ面に形成されている細溝7a〜7iとしては
幅200μm,深さ100μm程度の溝が例示される。
上側の短冊プレート4としても縦2cm,横5cm,厚
みが0.5mm程度の透明ガラス製プレートが例示され
る。また円形プレート3としては、直径1.6cm,厚
み0.5mm程度の多孔質ガラス製プレートが例示され
る。円形プレート3に用いられる多孔質ガラスとして
は、ガラスのシリカ成分だけを残して、他の成分を殆ど
溶出させる処理により微細気孔を形成したものが例示さ
れる。この多孔質ガラスの場合、微細気孔の大きさは例
えば40オングストローム程度で気孔率は例えば30%
程度である。
In the case of the first embodiment, the lower strip plate 2
Examples thereof include a transparent glass plate having a length of 2 cm, a width of 5 cm, and a thickness of about 0.5 mm. As the narrow grooves 7a to 7i formed on the overlapping surface of the strip plate 2, a groove having a width of about 200 μm and a depth of about 100 μm is exemplified.
As the upper strip plate 4, a transparent glass plate having a length of about 2 cm, a width of about 5 cm, and a thickness of about 0.5 mm is exemplified. The circular plate 3 is exemplified by a porous glass plate having a diameter of 1.6 cm and a thickness of about 0.5 mm. Examples of the porous glass used for the circular plate 3 include those in which fine pores are formed by a treatment that leaves only the silica component of the glass and almost elutes other components. In the case of this porous glass, the size of the fine pores is, for example, about 40 Å and the porosity is, for example, 30%.
It is about.

【0025】続いて、実施例装置の分析用セル1の製造
方法の一例を説明する。短冊プレート2に用いる透明ガ
ラス製の薄板の表面に細溝7a〜7iを、微細加工法
(マイクロマシーニング法)のひとつである、いわゆる
フォトリソグラフィ技法により形成する。すなわち、透
明ガラス製の薄板の表面にフォトレジスト膜を形成し、
このフォトレジスト膜に細溝7a〜7iに対応するパタ
ーンを露光した後に現像して細溝7a〜7iのパターン
を形成する。このパターンをマスクとしてエッチング処
理を行って細溝7a〜7iを形成した後にマスクを除去
する。一方、短冊プレート4に用いる透明ガラス製の薄
板に、機械加工やサンドブラスト技法などの適当な加工
法で、円形孔4aおよび貫通孔4b〜4dを形成する。
また、前述した多孔質ガラスを整形加工することにより
円形プレート3を作成する。
Next, an example of a method for manufacturing the analysis cell 1 of the apparatus of the embodiment will be described. Narrow grooves 7a to 7i are formed on the surface of a transparent glass thin plate used for the strip plate 2 by a so-called photolithography technique, which is one of micromachining methods (micromachining method). That is, a photoresist film is formed on the surface of a transparent glass thin plate,
The photoresist film is exposed to a pattern corresponding to the narrow grooves 7a to 7i and developed to form patterns of the narrow grooves 7a to 7i. An etching process is performed using this pattern as a mask to form fine grooves 7a to 7i, and then the mask is removed. On the other hand, a circular hole 4a and through holes 4b to 4d are formed in a transparent glass thin plate used for the strip plate 4 by an appropriate processing method such as machining or sandblasting.
The circular plate 3 is formed by shaping the above-mentioned porous glass.

【0026】そして、短冊プレート2,4の重ね合わせ
側表面をフッ酸溶液で少し溶かしておいてから短冊プレ
ート2,4を重ね合わせて接着する。その後、円形プレ
ート3を短冊プレート4の円形孔4aに嵌め込んでか
ら、図3に示すように、円形孔4aの周縁に円形プレー
ト3と短冊プレート4の両方に跨がるように接着剤14
を塗布して円形プレート3を接着固定すれば、チップ状
の分析用セル1が完成する。
Then, the surfaces of the strip plates 2 and 4 on the overlapping side are slightly dissolved with a hydrofluoric acid solution, and then the strip plates 2 and 4 are overlapped and bonded. After that, the circular plate 3 is fitted into the circular hole 4a of the strip plate 4, and then the adhesive 14 is applied to the periphery of the circular hole 4a so as to straddle both the circular plate 3 and the strip plate 4, as shown in FIG.
Is applied and the circular plate 3 is adhered and fixed, whereby the chip-shaped analysis cell 1 is completed.

【0027】一方、実施例装置の液体供給部9は、ガス
成分吸収用液体を溜めておく液体貯蔵容器15と、この
液体貯蔵容器15の液体を液体導入口5に送り込む送液
ポンプ16を有する。薬液供給部10は、反応用薬液を
溜めておく薬液貯蔵容器17と、この薬液貯蔵容器17
の薬液を薬液導入口13に送り込む送液ポンプ18を有
する。またガス分析部11はレーザ光照射部19と蛍光
検出部20を有している。図2に示すように、レーザ光
照射部19により、下側の透明ガラス製の短冊プレート
2の側面からレーザ光LBが微小流路7の分析用区間A
R3に照射される。レーザ光LBの照射に伴い生じる蛍
光LLは上側の透明ガラス製の短冊プレート4を透過し
て蛍光検出部20により検出される。この蛍光検出部2
0による光検出強度がガス成分濃度と比例関係にある。
つまり、実施例のガス分析装置の場合、微小流路7の分
析用区間AR3でガス分析部11によりガス成分捕集・
反応済の液体に対し連続的にガス成分の分析が行われる
構成となっている。
On the other hand, the liquid supply unit 9 of the embodiment has a liquid storage container 15 for storing a gas component absorbing liquid, and a liquid feed pump 16 for feeding the liquid in the liquid storage container 15 to the liquid inlet 5. . The chemical solution supply unit 10 includes a chemical solution storage container 17 for storing a reaction solution and a chemical solution storage container 17.
And a liquid feed pump 18 for feeding the liquid chemical into the liquid inlet 13. The gas analyzer 11 has a laser beam irradiator 19 and a fluorescence detector 20. As shown in FIG. 2, the laser beam LB is applied from the side surface of the lower transparent glass strip plate 2 by the laser beam irradiating section 19 to the analysis section A of the microchannel 7.
Irradiate R3. The fluorescent light LL generated due to the irradiation of the laser light LB is transmitted through the upper transparent glass strip plate 4 and detected by the fluorescent light detector 20. This fluorescence detector 2
The light detection intensity based on 0 is proportional to the gas component concentration.
That is, in the case of the gas analyzer of the embodiment, the gas analyzer 11 collects and collects the gas components in the analysis section AR3 of the microchannel 7.
The gas component is continuously analyzed for the reacted liquid.

【0028】次に、以上に詳述した構成を有するガス分
析装置によりガス成分としてNO2の分析を行う時の状
況を説明する。実施例装置を捕集対象のNO2 (ガス成
分)が存在する雰囲気中に置く。ここではNO2 存在雰
囲気としてNO2 濃度の調整が可能な風洞を用い、NO
2 濃度を適当値にセットする。そして、実施例装置の液
体供給部9によりNO2 吸収用液体として3体積%トリ
エタノールアミン溶液を液体導入口5から微小流路7へ
連続的に送り込むとともに、薬液供給部10により反応
用薬液としてザルツマン試薬を薬液導入口13から反応
用薬液導入用流路12へ連続的に送り込む。これと並行
して送風機8を連続稼働させてNO2 を含む空気を多孔
質ガラス製の円形プレート3の表面に常に吹き付ける。
また、レーザ光照射部19によるレーザ光LBの常時照
射も開始する。
Next, the situation when the gas analyzer having the above-described configuration analyzes NO 2 as a gas component will be described. The embodiment apparatus is placed in an atmosphere in which NO 2 (gas component) to be collected exists. Here, a wind tunnel capable of adjusting the NO 2 concentration is used as the NO 2 presence atmosphere,
2 Set the concentration to an appropriate value. Then, a 3% by volume triethanolamine solution as a NO 2 absorption liquid is continuously fed from the liquid inlet 5 to the microchannel 7 by the liquid supply unit 9 of the embodiment apparatus, and the reaction solution is supplied by the chemical supply unit 10 as a reaction liquid. The Salzmann reagent is continuously fed from the chemical solution inlet 13 to the reaction solution introducing channel 12. In parallel with this, the blower 8 is continuously operated to constantly blow the air containing NO 2 onto the surface of the porous glass circular plate 3.
Further, the constant irradiation of the laser light LB by the laser light irradiation unit 19 is also started.

【0029】トリエタノールアミン溶液は微小流路7の
ガス成分吸収区間AR1でNO2 を吸収捕集した後、薬
液導入用流路12でザルツマン試薬が連続的に添加され
た後、微小流路7の反応用区間AR2を流れながら反応
を済ませた上で微小流路7の分析用区間AR3に達する
とレーザ光LBの照射を受けて捕集NO2 に見合った光
量の蛍光LLを発する。この蛍光LLのうちの545n
mの波長の光が蛍光検出部20により連続的に検出され
てNO2 濃度に対応する亜硝酸イオン濃度の連続定量分
析が行われる結果、NO2 濃度の経時的変化が調べられ
る。
After the triethanolamine solution absorbs and captures NO 2 in the gas component absorption section AR 1 of the microchannel 7, the Saltzmann reagent is continuously added in the chemical solution introduction channel 12, After the reaction is completed while flowing through the reaction section AR2, the laser beam LB is irradiated when the analysis section AR3 of the microchannel 7 is reached, and the amount of fluorescence LL corresponding to the trapped NO 2 is emitted. 545n of this fluorescence LL
The m-wavelength light is continuously detected by the fluorescence detection unit 20 and a continuous quantitative analysis of the nitrite ion concentration corresponding to the NO 2 concentration is performed. As a result, a temporal change in the NO 2 concentration is examined.

【0030】以上に述べたように、実施例のガス分析装
置では、分析用セル1によりNO2濃度の経時的変化を
調べるガス分析に非常に好適なガスサンプリングが高吸
収効率で行えるのに加え、NO2 濃度の分析結果がリア
ルタイムで連続的に得られる。ガスサンプリングが高吸
収効率で行われるので、高感度分析や高速分析も十分に
可能である。なお、分析済の溶液は液体導出口6より廃
液溜容器(図示省略)に排出されるが、排出される溶液
量が少ないので測定が環境に与える負担も軽くて済む。
もし、従来のパッシブサンプラーを用いて仮に同じ測定
を行おうとすると、測定数だけパッシブサンプラーが必
要となる上に、パッシブサンプラー毎に捕集NO2 を溶
出するという煩雑な操作が必要である。
As described above, in the gas analyzer according to the embodiment, gas sampling very suitable for gas analysis for examining the change with time of NO 2 concentration by the analysis cell 1 can be performed with high absorption efficiency. , NO 2 concentration analysis results are obtained continuously in real time. Since gas sampling is performed with high absorption efficiency, high-sensitivity analysis and high-speed analysis are sufficiently possible. The analyzed solution is discharged from the liquid outlet 6 to a waste liquid storage container (not shown). However, since the amount of the discharged solution is small, the burden on the environment caused by the measurement can be reduced.
If the same measurement is to be performed using a conventional passive sampler, the number of passive samplers required is the same as the number of measurements, and a complicated operation of eluting trapped NO 2 for each passive sampler is required.

【0031】続いて、実施例装置の分析用セル1におい
て、送風機8による気体の吹き付けによりNO2 吸収効
率が向上することを確認するために次のような実験を行
った。すなわち、風洞のNO2 濃度を100ppbにセ
ットし、送風機8の風量を2.5m/秒にセットすると
ともに、薬液供給部10およびガス分析部11は停止状
態とした他は、上記と同様にして装置を3時間連続稼働
させてNO2 捕集済のトリエタノールアミン溶液を採取
した。採取した溶液にザルツマン試薬を添加して反応さ
せた後、レーザ光照射に伴って生じる蛍光の545nm
の波長の光強度を測定した。この結果から亜硝酸イオン
濃度を求め、さらにNO2 の吸収量に換算したところ、
4.4×10-4Mであった。
Subsequently, in the analysis cell 1 of the apparatus of the embodiment, the following experiment was performed to confirm that the blowing of gas by the blower 8 improves the NO 2 absorption efficiency. That is, except that the NO 2 concentration in the wind tunnel was set to 100 ppb, the air volume of the blower 8 was set to 2.5 m / sec, and the chemical solution supply unit 10 and the gas analysis unit 11 were stopped, the same as above. The apparatus was operated continuously for 3 hours to collect a triethanolamine solution from which NO 2 had been collected. After the Salzman reagent was added to the collected solution and allowed to react, the 545 nm
Were measured. From this result, the nitrite ion concentration was calculated and further converted to the NO 2 absorption amount.
It was 4.4 × 10 −4 M.

【0032】一方、比較実験として、送風機8を停止状
態とした(送風機8の風量を0m/秒にセットした)他
は上記と同様にしてNO2 の吸収量を測ったところ、
1.7×10-6Mであった。上記の両試験結果を比較す
れば、送風機8の作動の有無により2桁以上のNO 2
吸収効率の違いがあることが認められ、送風機8による
気体の吹き付けによりNO2 吸収効率が大きく向上する
ことを確認することが出来た。
On the other hand, as a comparative experiment, the blower 8 was stopped.
(The air volume of the blower 8 was set to 0 m / sec.)
Is NO as aboveTwoWhen we measured the absorption of
1.7 × 10-6M. Compare the results of the above two tests
Then, two or more digits of NO are determined depending on whether or not the blower 8 is operated. Twoof
It is recognized that there is a difference in absorption efficiency, and
NO by blowing gasTwoAbsorption efficiency is greatly improved
I was able to confirm that.

【0033】この発明は、上記実施の形態に限られるこ
とはなく、下記のように変形実施することができる。 (1)実施例において、図5に示すように、ガス成分吸
収用液体を流す微小流路のガス成分吸収区間AR1にお
いて、2組の微小流路用細溝7a〜7cおよび微小流路
用細溝7d〜7fを互いに離間させるように形成した他
は同じ構成の分析用セルを装備した装置が、変形例とし
て挙げられる。この変形例の場合、微小流路のガス成分
吸収区間では各分岐流路の長さが略同一となることか
ら、ガス成分吸収用液体が各分岐流路を略均等に流れ
る。
The present invention is not limited to the above embodiment, but can be modified as follows. (1) In the embodiment, as shown in FIG. 5, in the gas component absorption section AR1 of the fine flow channel through which the gas for absorbing a gas component flows, two sets of fine flow channel grooves 7a to 7c and the fine flow channel fine channel are used. As a modified example, an apparatus equipped with an analysis cell having the same configuration except that the grooves 7d to 7f are formed so as to be separated from each other is given. In the case of this modification, since the length of each branch channel is substantially the same in the gas component absorption section of the microchannel, the gas component absorbing liquid flows substantially uniformly through each branch channel.

【0034】また、実施例において、図6に示すよう
に、ガス成分吸収用液体を流す微小流路のガス成分吸収
区間AR1において、微小流路用の細溝を分岐させずに
ジグザグの細溝7jを一本だけ形成して吸収面積を確保
するようにした他は同じ構成の分析用セルを装備した装
置が、変形例として挙げられる。さらに、ガス成分吸収
区間AR1における微小流路用の細溝は、ジグザグの形
にするのではなくて、真っ直ぐな形にしてもよいし、或
いは、幅広で底の浅い溝(図示省略)に形成して吸収面
積を確保するようにした形態でもよい。
In the embodiment, as shown in FIG. 6, in the gas component absorption section AR1 of the micro flow path through which the gas component absorption liquid flows, the zigzag narrow groove is formed without branching the micro flow groove. A modified example is an apparatus equipped with an analysis cell having the same configuration except that only one 7j is formed to secure an absorption area. Further, the narrow groove for the micro channel in the gas component absorption section AR1 may be formed not in a zigzag shape but in a straight shape, or may be formed in a wide and shallow groove (not shown). In this case, the absorption area may be secured.

【0035】(2)実施例装置の分析用セルの場合、微
小流路のガス成分吸収区間と反応用区間および分析用区
間が全て一つのチップに纏めて形成されたワンチップ構
造であったが、分割チップ構造であってもよい。例え
ば、微小流路のガス成分吸収区間と反応用区間および分
析用区間がそれぞれ別々のチップに形成されていて、各
チップ間がキャピラリー(ガラス製の細管)等で接続さ
れた3分割チップ構造の分析用セルが例示される。
(2) In the case of the analysis cell of the embodiment apparatus, the gas component absorption section, the reaction section, and the analysis section of the microchannel have a one-chip structure in which all of them are formed on one chip. Alternatively, a divided chip structure may be used. For example, the gas component absorption section, the reaction section, and the analysis section of the microchannel are formed on separate chips, respectively, and each chip is connected to each other by a capillary (a thin tube made of glass) or the like. An analysis cell is exemplified.

【0036】(3)実施例では、下側の方形プレートあ
るいは短冊プレートは多孔質ガラス製ではなかったが、
下側の方形プレートあるいは短冊プレートも多孔質ガラ
ス製である構成のものが変形例として挙げられる。
(3) In the embodiment, the lower rectangular plate or the strip plate is not made of porous glass.
As a modified example, a configuration in which the lower rectangular plate or the strip plate is also made of porous glass is given.

【0037】(4)実施例においては、捕集対象のガス
がNO2 であったが、この発明での捕集対象のガス成分
は特定の種類に限らず、SO2 など他のガス成分も対象
となる。またガス分析も定量分析に限らずガス成分の種
類を特定する定性分析であってもよい。
(4) In the embodiment, the gas to be collected is NO 2 , but the gas component to be collected in the present invention is not limited to a specific type, and other gas components such as SO 2 may also be used. Be eligible. Further, the gas analysis is not limited to the quantitative analysis, and may be a qualitative analysis for specifying the type of the gas component.

【0038】(5)実施例においては、捕集対象のガス
がNO2 であったが、この発明での捕集対象のガス成分
は特定の種類のガス成分に限らず、SO2 など他のガス
成分も対象となる。
(5) In the embodiment, the gas to be collected is NO 2 , but the gas component to be collected according to the present invention is not limited to a specific type of gas component, but may be other gas such as SO 2 . Gas components are also of interest.

【0039】(6)実施例における各プレートの形や寸
法、使用材料、製造方法などは実施例に示したものに限
らない。例えば、図7に示すように、下側をシリコン
(Si)製または透明プラスチック製の短冊プレート2
1とし、上側を多孔質ガラス製の短冊プレート22にす
るとともに、両プレートの継ぎ目を接着剤23で封止し
た構成の分析用セルが、変形例として挙げられる。さら
には、液体導入口や液体導出口あるいは薬液導入口が下
側のプレートに形成されていたり、或いは、微小流路用
細溝が多孔質ガラス製のプレートの側に形成されていた
りしてもよい。また、液体供給部や薬液供給部およびガ
ス分析部も実施例に示したものに限らず、捕集対象のガ
ス成分の種類、薬液の種類、分析法などによってそれぞ
れに適した構成ものが用いられる。
(6) The shape and size of each plate, the materials used, the manufacturing method and the like in the embodiment are not limited to those shown in the embodiment. For example, as shown in FIG. 7, a strip plate 2 made of silicon (Si) or transparent plastic is provided on the lower side.
As an alternative example, an analysis cell having a configuration in which a rectangular plate 22 made of porous glass is provided on the upper side and a seam between both plates is sealed with an adhesive 23 is set as 1. Furthermore, even if a liquid inlet, a liquid outlet, or a drug solution inlet is formed on the lower plate, or even if a fine groove for a microchannel is formed on the side of a porous glass plate. Good. In addition, the liquid supply unit, the chemical liquid supply unit, and the gas analysis unit are not limited to those shown in the embodiment, and a configuration suitable for each of the types of the gas components to be collected, the type of the chemical solution, the analysis method, and the like is used. .

【0040】[0040]

【発明の効果】以上に詳述したように、請求項1に記載
の発明によれば、分析用セルの微小流路にガス成分吸収
用液体を流すとともに、多孔質ガラス製のプレートに分
析対象のガス成分を含む気体を吹き付けることによっ
て、ガス成分をガス成分吸収用液体に吸収させているの
で、ガス成分の吸収効率が高く、高感度分析や高速分析
を行うことができる。また、ガス成分吸収用液体は微小
流路を流れるので、少量のガス成分吸収用液体で分析を
行うことができる。
As described in detail above, according to the first aspect of the present invention, the gas component absorbing liquid is caused to flow through the microchannel of the analysis cell, and the analysis target is placed on the porous glass plate. Since the gas component is absorbed by the gas component absorbing liquid by blowing the gas containing the gas component, the gas component absorption efficiency is high, and high-sensitivity analysis and high-speed analysis can be performed. Further, since the gas component absorbing liquid flows through the minute flow path, the analysis can be performed with a small amount of the gas component absorbing liquid.

【0041】また、請求項2に記載の発明によれば、分
析用セルの微小流路にガス成分吸収用液体を流すのと並
行して反応用薬液導入用流路に反応用薬液を流し込んで
分析用セルの反応用区間でガス成分吸収用液体と反応用
薬液の反応を行っているので、ひとつの分析用セルでも
ってガス成分捕集・反応済サンプル液を連続的に得るこ
とができる。また、反応用薬液が流れるのが微小な流路
であるので、添加する反応用薬液も少量で足りる。
According to the second aspect of the present invention, the reaction liquid is introduced into the reaction liquid introduction flow path in parallel with the flow of the gas component absorbing liquid through the minute flow path of the analysis cell. Since the reaction between the gas component absorbing liquid and the reaction chemical liquid is performed in the reaction section of the analysis cell, the gas component collection / reacted sample liquid can be continuously obtained with one analysis cell. In addition, since the reaction solution flows through the minute flow path, a small amount of the reaction solution to be added is sufficient.

【0042】また、請求項3に記載の発明によれば、分
析用セルの反応用区間の後段のガス分析用区間に連続的
に到来するガス成分捕集・反応済の液体に対してガス成
分の分析を連続的に行うことができる。
According to the third aspect of the present invention, the gas component collected and reacted continuously arrives at the gas analysis section subsequent to the reaction section of the analysis cell. Can be performed continuously.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例のガス分析装置の全体構成を示すブロッ
ク図である。
FIG. 1 is a block diagram illustrating an overall configuration of a gas analyzer according to an embodiment.

【図2】実施例装置の分析用セルを示す斜視図である。FIG. 2 is a perspective view showing an analysis cell of the apparatus of the embodiment.

【図3】実施例装置の分析用セルにおけるa−a線に沿
った断面図である。
FIG. 3 is a cross-sectional view of the analysis cell of the example apparatus taken along line aa.

【図4】実施例における分析用セルの短冊プレートの溝
形成面を示す平面図である。
FIG. 4 is a plan view showing a groove forming surface of a strip plate of an analysis cell in an example.

【図5】変形例に係る分析用セルの短冊プレートの溝形
成面の一部平面図である。
FIG. 5 is a partial plan view of a groove forming surface of a strip plate of an analysis cell according to a modification.

【図6】他の変形例に係る分析用セルの短冊プレートの
溝形成面の一部平面図である。
FIG. 6 is a partial plan view of a groove forming surface of a strip plate of an analysis cell according to another modification.

【図7】他の変形例に係る分析用セルのプレート積層構
造を示す断面図である。
FIG. 7 is a cross-sectional view showing a plate stacked structure of an analysis cell according to another modification.

【図8】従来のパッシブサンプラーを示す分解斜視図で
ある。
FIG. 8 is an exploded perspective view showing a conventional passive sampler.

【符号の説明】[Explanation of symbols]

1 …分析用セル 2,21 …(下側の)短冊プレート 3 …多孔質ガラス製の円形プレート 4,22 …(上側の)円形孔抜き短冊プレート 5 …液体導入口 6 …液体導出口 7 …微小流路 8 …送風機 9 …液体供給部 10 …薬液供給部 11 …ガス分析部 12 …反応用薬液導入用流路 AR1 …ガス成分吸収区間 AR2 …反応用区間 AR3 …分析用区間 DESCRIPTION OF SYMBOLS 1 ... Cell for analysis 2,21 ... Strip plate (lower) 3 ... Circular plate made of porous glass 4,22 ... Strip plate with circular hole (upper) 5 ... Liquid inlet 6 ... Liquid outlet 7 ... Microchannel 8 ... Blower 9 ... Liquid supply unit 10 ... Chemical liquid supply unit 11 ... Gas analysis unit 12 ... Chemical liquid introduction passage for reaction AR1 ... Gas component absorption section AR2 ... Reaction section AR3 ... Analysis section

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤山 陽一 京都市中京区西ノ京桑原町1番地 株式会 社島津製作所内 (72)発明者 中西 博昭 京都市中京区西ノ京桑原町1番地 株式会 社島津製作所内 Fターム(参考) 2G042 AA01 BB07 BB12 BD12 BD15 CA01 CB01 DA08 EA01 FA11 FB02 HA02 HA07  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yoichi Fujiyama 1 Nishinokyo Kuwaharacho, Nakagyo-ku, Kyoto Co., Ltd. Shimadzu Corporation (72) Inventor Hiroaki Nakanishi 1 Nishinokyo Kuwaharacho, Nakagyo-ku, Kyoto Co., Ltd. F Shimadzu Corporation Terms (reference) 2G042 AA01 BB07 BB12 BD12 BD15 CA01 CB01 DA08 EA01 FA11 FB02 HA02 HA07

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】重ね合わせられたプレートの重ね合わせ面
に液体導入口から流入するガス成分吸収用液体を液体導
出口へ向けて流す微小流路が形成されているとともに、
この微小流路におけるガス成分吸収区間で重ね合わせら
れたプレートの少なくとも一方が、ガス成分吸収用液体
は透過させずに吸収対象のガス成分は透過させる多孔質
ガラスで形成されている分析用セルと、この分析用セル
における多孔質ガラスからなるプレートに分析対象のガ
ス成分を含む気体を吹きつける気体吹き付け手段と、分
析用セルの微小流路にガス成分吸収用液体を供給する液
体供給手段と、ガス成分吸収済(捕集済)の液体に反応
用薬液を供給添加する薬液供給手段と、ガス成分吸収・
反応済の液体についてガス成分の分析を行うガス分析手
段とを備えていることを特徴とするガス分析装置。
A microchannel for flowing a gas component absorbing liquid flowing from a liquid inlet toward a liquid outlet is formed on a superposed surface of the superposed plates.
At least one of the plates superimposed in the gas component absorption section in the microchannel has an analysis cell formed of porous glass that allows the gas component to be absorbed without passing through the gas component absorption liquid. A gas blowing means for blowing a gas containing a gas component to be analyzed on a plate made of porous glass in the analysis cell, and a liquid supply means for supplying a gas component absorbing liquid to a microchannel of the analysis cell, A chemical liquid supply means for supplying and adding a reaction liquid to the liquid having absorbed (collected) gas components;
A gas analyzer for analyzing a gas component of the reacted liquid.
【請求項2】請求項1に記載のガス分析装置において、
前記分析用セルは、微小流路がガス成分吸収区間の後段
にガス成分吸収済の液体と反応用薬液の反応が行われる
反応用区間を有するとともに、ガス成分吸収区間と反応
用区間との間で微小流路に接続されるように反応用薬液
導入用流路が設けられており、かつ薬液供給手段は反応
用薬液導入用流路から反応用薬液を微小流路に供給する
よう構成されているガス分析装置。
2. The gas analyzer according to claim 1, wherein
The analysis cell has a reaction section in which the reaction of the gas component-absorbed liquid and the reaction chemical liquid is performed at a stage subsequent to the gas component absorption section in the minute flow path, and a section between the gas component absorption section and the reaction section. A reaction liquid introduction channel is provided so as to be connected to the micro flow path, and the liquid supply means is configured to supply the reaction liquid to the micro flow path from the reaction liquid introduction flow path. Gas analyzer.
【請求項3】請求項2に記載のガス分析装置において、
前記分析用セルは、微小流路が反応用区間の後段に分析
対象のガス成分の分析を行うガス分析用区間を有してい
るとともに、ガス分析手段は微小流路のガス分析用区間
に到来するガス成分吸収・反応済の液体についてガス成
分の分析を逐次行うよう構成されているガス分析装置。
3. The gas analyzer according to claim 2, wherein
In the analysis cell, the microchannel has a gas analysis section for analyzing a gas component to be analyzed after the reaction section, and the gas analysis means arrives at the gas analysis section of the microchannel. A gas analyzer configured to sequentially analyze gas components of a liquid that has been absorbed and reacted.
JP2000006432A 2000-01-14 2000-01-14 Gas analyzer Expired - Fee Related JP4187374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000006432A JP4187374B2 (en) 2000-01-14 2000-01-14 Gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000006432A JP4187374B2 (en) 2000-01-14 2000-01-14 Gas analyzer

Publications (2)

Publication Number Publication Date
JP2001194361A true JP2001194361A (en) 2001-07-19
JP4187374B2 JP4187374B2 (en) 2008-11-26

Family

ID=18534964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000006432A Expired - Fee Related JP4187374B2 (en) 2000-01-14 2000-01-14 Gas analyzer

Country Status (1)

Country Link
JP (1) JP4187374B2 (en)

Also Published As

Publication number Publication date
JP4187374B2 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
DE60035199T2 (en) ANALYSIS CASSETTE AND LIQUID CONVEYOR CONTROLLER
RU2195653C2 (en) Analyser
CA2758083A1 (en) Single-use microfluidic test cartridge for the bioassay of analytes
JP2003114193A (en) Light absorption detecting system for lab-on-chip
JPH01308965A (en) Analyzer and method of causing reaction of sample with object to be analyzed
Ohira et al. Micro gas analysis system for measurement of atmospheric hydrogen sulfide and sulfur dioxide
JP4317223B2 (en) Denuder assembly for the collection and extraction of atmospheric soluble gases.
EP2488855A2 (en) Sers-active absorbers for the analysis of analytes
DE19710525C2 (en) Passive diffusion collector for analytes contained in gases as well as methods for passive sampling and analysis
JP2006300633A (en) Total organic carbon measuring instrument
US7220592B2 (en) Particulate processing system
JP2005300536A (en) Fluorescent sensor based on multichannel structure
DE19545130C2 (en) Methods and devices for a modular microsystem for high-precision chemical rapid analyzes
US5766959A (en) Method for determining a component using a liquid film or droplet
Tanner et al. The analysis of airborne sulfate
CN112461768B (en) Seawater nitrate detection device
US11467139B2 (en) System for detecting liquid analytes
JP2000199744A (en) Analytical equipment and analyzing method
JP2001194361A (en) Gas analyzer
Buttini et al. Coupling of denuder and ion chromatographic techniques for NO2 trace level determination in air
JP5781937B2 (en) Determination of lead
AU2789392A (en) Method and apparatus for sampling air contaminants
JP3978937B2 (en) Detector cell and optical measuring device
Tang et al. Evaluation of microvolume regenerated cellulose (RC) microdialysis fibers for the sampling and detection of ammonia in air
KR100538036B1 (en) measuring device for environmental pollution and measuring method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4187374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees