JP2001193209A - Cushioning material for construction and floating floor structure using it - Google Patents
Cushioning material for construction and floating floor structure using itInfo
- Publication number
- JP2001193209A JP2001193209A JP37723199A JP37723199A JP2001193209A JP 2001193209 A JP2001193209 A JP 2001193209A JP 37723199 A JP37723199 A JP 37723199A JP 37723199 A JP37723199 A JP 37723199A JP 2001193209 A JP2001193209 A JP 2001193209A
- Authority
- JP
- Japan
- Prior art keywords
- cushioning material
- thickness
- floating floor
- spring constant
- load
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04F—FINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
- E04F15/00—Flooring
- E04F15/18—Separately-laid insulating layers; Other additional insulating measures; Floating floors
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Floor Finish (AREA)
- Vibration Prevention Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、建築用緩衝材に関
し、さらに詳しくは、優れた防振、遮音効果、および耐
水性を有すると共に、耐圧縮クリープ性能にも優れた浮
き床用緩衝材およびそれを用いた浮き床構造に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cushioning material for a building, and more particularly, to a cushioning material for a floating floor having excellent vibration and sound insulation effects and water resistance, and also having excellent compression creep resistance. The present invention relates to a floating floor structure using the same.
【0002】[0002]
【従来の技術】従来の建築用緩衝材としては、地下鉄、
電車の軌道敷近傍では、固体伝送音を防止するために、
図1に示すように、地盤1と建築物2との間にコンクリ
ート板3と緩衝材4として、30倍〜40倍に発泡させ
たポリスチレンフォームを介在させて地盤からの振動を
建築物に伝えにくくする地下緩衝構造が知られている
が、上記構造における緩衝材4は動的バネ定数が高く、
固体伝送音を防止する効果が十分ではないという問題点
があった。2. Description of the Related Art Conventional building cushioning materials include subways,
In the vicinity of the railroad track, to prevent solid transmission noise,
As shown in FIG. 1, a vibration from the ground is transmitted to the building by interposing a polystyrene foam foamed 30 to 40 times as a concrete plate 3 and a cushioning material 4 between the ground 1 and the building 2. Although an underground cushioning structure that makes the cushioning difficult is known, the cushioning material 4 in the above structure has a high dynamic spring constant,
There was a problem that the effect of preventing the solid transmission noise was not sufficient.
【0003】また、建築物の床の遮音性能を向上させる
ために、図2に示すように、コンクリートスラブ5上
に、緩衝材6および立ち上げ絶縁材7として、グラスウ
ールやロックウールのような無機質繊維板を敷き込んだ
上に浮き床層8としてコンクリートを打設した浮き床構
造が広く採用されている。しかし、グラスウールやロッ
クウールは、水分を含むことにより、遮音性能が悪化す
るため、現場で、コンクリートを打設する前に、防水層
9を設ける必要があり、工数が多く、工期が長くなると
いう問題点があった。In order to improve the sound insulation performance of the floor of a building, as shown in FIG. 2, on a concrete slab 5, as a cushioning material 6 and a rising insulating material 7, an inorganic material such as glass wool or rock wool is used. A floating floor structure in which concrete is cast as a floating floor layer 8 on which a fiberboard is laid is widely used. However, since the sound insulation performance of glass wool and rock wool deteriorates due to the inclusion of moisture, it is necessary to provide a waterproof layer 9 before casting concrete on site, which requires many man-hours and a long construction period. There was a problem.
【0004】[0004]
【発明が解決しようとする課題】このような問題を解決
するために発泡ポリスチレンを圧縮し、発泡セルの一部
を破壊した発泡ポリスチレンを緩衝材として用いること
が提案されているが、低い発泡倍率のポリスチレンをプ
レスした緩衝材は、耐クリープ性能において、グラスウ
ールに劣るという問題点があった。In order to solve such a problem, it has been proposed to use foamed polystyrene obtained by compressing foamed polystyrene and partially destroying foamed cells as a cushioning material. The cushioning material obtained by pressing polystyrene has a problem in that the creep resistance is inferior to glass wool.
【0005】本出願人は鋭意研究の結果、発泡倍率が1
00倍以上である高倍率発泡スチレンを圧縮し、次いで
自然に回復させてなる発泡体を緩衝材として用いると、
耐クリープ性能が著しく高くなることを見出し本発明に
至ったのである。[0005] As a result of intensive studies, the present applicant has found that the expansion ratio is 1
When a high-magnification expanded styrene that is 00 times or more is compressed, and then a foam that is naturally recovered is used as a cushioning material,
The present inventors have found that the creep resistance is significantly increased, and have reached the present invention.
【0006】本発明の目的は、優れた防振効果、遮音効
果、および耐水性を有すると共に、耐圧縮クリープ性能
にも優れた建築用緩衝材および床構造を提供することで
ある。An object of the present invention is to provide an architectural cushioning material and a floor structure which are excellent in vibration damping effect, sound insulation effect, water resistance and compression creep resistance.
【0007】[0007]
【課題を解決するための手段】請求項1に係る建築用緩
衝材は、100倍〜170倍に発泡させて成形した板状
の発泡ポリスチレンを、厚さが5〜20%となるように
圧縮した後、圧縮荷重を除いて厚さが30〜90%に回
復させた建築用緩衝材に関するものである。According to a first aspect of the present invention, there is provided a cushioning material for building, which is obtained by compressing a plate-like expanded polystyrene formed by foaming 100 to 170 times so as to have a thickness of 5 to 20%. The present invention relates to an architectural cushioning material whose thickness has been restored to 30 to 90% excluding a compressive load after the compression.
【0008】この建築用緩衝材によれば、発泡ポリスチ
レンを使用することで、優れた防水性能を有し、100
倍〜170倍に発泡させたもの、好ましくは105倍〜
150倍に発泡させたものを、厚さが5〜20%、好ま
しくは7〜15%となるように圧縮した後、圧縮荷重を
除いて厚さが30〜90%、好ましくは40〜80%、
更に好ましくは40〜60%になるまで回復させること
によって、それより低倍で発泡したポリスチレンを圧縮
したものと比較して、容易に低い動的バネ定数を得るこ
とが可能となり、発泡セル壁が薄くなることにより、弾
性が増加し、圧縮によるセル壁の座屈が起こりにくくな
り、耐クリープ性能に優れた緩衝材を得ることが可能と
なる。According to this construction cushioning material, by using expanded polystyrene, it has excellent waterproof performance,
Foamed to 170 times, preferably 105 times to
After the foamed 150 times is compressed to a thickness of 5 to 20%, preferably 7 to 15%, the thickness is reduced to 30 to 90%, preferably 40 to 80% except for the compression load. ,
More preferably, by recovering to 40 to 60%, it becomes possible to easily obtain a low dynamic spring constant as compared with a compressed polystyrene foamed at a lower magnification, and the foam cell wall becomes When the thickness is reduced, the elasticity increases, buckling of the cell wall due to compression hardly occurs, and a cushioning material having excellent creep resistance can be obtained.
【0009】請求項2に係る建築用緩衝材は、100倍
〜170倍に発泡させて成形した発泡ポリスチレンを、
厚さが5〜20%となるように圧縮した後、圧縮荷重を
除いて厚さが30〜90%になるまで回復させ、厚さが
10〜300mmとなるようにカットしたもので、荷重
100〜2000kg/m2のときの動的バネ定数を1
〜40×106N/m3としたものである。The architectural cushioning material according to claim 2 is a foamed polystyrene molded by foaming 100 to 170 times,
After being compressed to a thickness of 5 to 20%, the material is recovered to a thickness of 30 to 90% except for the compression load, and cut to a thickness of 10 to 300 mm. The dynamic spring constant at 20002000 kg / m 2 is 1
4040 × 10 6 N / m 3 .
【0010】この緩衝材は、高倍率発泡スチレンを圧縮
して回復させたそのものであってもよいが、10〜30
0mmの厚さにスライス乃至カットし、荷重100〜2
000kg/m2のときの動的バネ定数を1〜40×1
06N/m3の範囲になるように設定することによっ
て、優れた防振性能、遮音性能をもつ構造を容易に設計
することが可能となる。[0010] The cushioning material may be a material obtained by compressing and recovering high-magnification expanded styrene.
Slice or cut to a thickness of 0mm, load 100-2
The dynamic spring constant at 000 kg / m 2 is 1 to 40 × 1
By setting to be in the range of 0 6 N / m 3, it is possible to easily design a structure with excellent vibration damping performance, sound insulation performance.
【0011】請求項3に記載の建築用緩衝材は、請求項
2記載の建築用緩衝材において、動的バネ定数を3〜2
0×106N/m3に設定したものである。動的バネ定
数を3×106N/m3以上とすることで、より優れた
耐クリープ性能を得ることが可能となり、20×106
N/m3以下とすることで、より優れた防振性能、遮音
性能を得ることが可能となる。According to a third aspect of the present invention, there is provided the cushioning material for building according to the second aspect, wherein the dynamic spring constant is 3 to 2 times.
It is set to 0 × 10 6 N / m 3 . By setting the dynamic spring constant to 3 × 10 6 N / m 3 or more, more excellent creep resistance can be obtained, and 20 × 10 6 N / m 3 can be obtained.
By setting it to N / m 3 or less, it is possible to obtain more excellent vibration isolation performance and sound insulation performance.
【0012】請求項4に記載の建築用緩衝材は、請求項
2記載の建築用緩衝材において、厚さを20〜100m
mに設定したものである。厚さを100mm以下とする
ことで、建築物に容易に納まるようになる。また、厚さ
と動的バネ定数は反比例の関係にあるため20mm未満
では3×106N/m3のバネ定数を得ることが困難で
あることから20mm以上に設定することとなる。According to a fourth aspect of the present invention, there is provided the cushioning material for building according to the second aspect, wherein the thickness is 20 to 100 m.
m. By setting the thickness to 100 mm or less, it can easily fit in a building. Further, since the thickness and the dynamic spring constant are in inverse proportion, it is difficult to obtain a spring constant of 3 × 10 6 N / m 3 if the thickness is less than 20 mm, so that the thickness is set to 20 mm or more.
【0013】請求項5に記載の浮き床用緩衝材は、コン
クリート製スラブと浮き床層との間に敷設される緩衝材
であって、この緩衝材が、請求項1〜4記載の緩衝材で
あることによって、優れた防振性能、遮音性能、耐水
性、および耐クリープ性能を兼ね備えた床構造を得るこ
とが可能となる。The cushioning material for a floating floor according to claim 5 is a cushioning material laid between a concrete slab and a floating floor layer, wherein the cushioning material is according to any one of claims 1 to 4. Accordingly, it is possible to obtain a floor structure having excellent vibration proof performance, sound insulation performance, water resistance, and creep resistance.
【0014】請求項6に係る浮き床構造は、図3に示す
ように、コンクリートスラブ10上に浮き床用緩衝材1
1と、立上げ絶縁材12として使う浮き床用緩衝材とか
らなる緩衝層を介して浮き床層13が敷設されてなる浮
き床構造において、浮き床層13の単位面積当たりの質
量が100〜2000kg/m2であり、かつ緩衝材に
請求項5記載の浮き床用緩衝材を使用したものである。The floating floor structure according to claim 6 is, as shown in FIG.
1 and a floating floor structure in which a floating floor layer 13 is laid via a buffer layer composed of a floating floor cushioning material used as a rising insulating material 12, the mass per unit area of the floating floor layer 13 is 100 to 100. 2,000 kg / m 2 , and the cushioning material for a floating floor according to claim 5 is used as the cushioning material.
【0015】この床構造によれば、緩衝材に耐水性、遮
音効果および耐クリープ性能に優れた材料を用い、か
つ、浮き床層に100〜2000kg/m2の質量を持
たせることにより、長期にわたり、遮音性能を維持する
ことが可能となる。According to this floor structure, a material having excellent water resistance, sound insulation effect and creep resistance is used for the cushioning material, and the floating floor layer has a mass of 100 to 2,000 kg / m 2 , so that long-term use is possible. Over time, it is possible to maintain sound insulation performance.
【0016】[0016]
【発明の実施の形態】本発明に使用する発泡ポリスチレ
ンは、押出発泡成形された板状のものでも差し支えはな
いが、好ましくは型内発泡成形法乃至ビーズ発泡法によ
る発泡ポリスチレンが工業的には有利である。この発泡
ポリスチレンの形状は板状であっても直方体等のブロッ
ク状であってもそれ以外の形状であってもよいが板状乃
至ブロック状が好ましく、本発明はこれらを含むもので
ある。DETAILED DESCRIPTION OF THE INVENTION The expanded polystyrene used in the present invention may be in the form of an extruded and foamed plate, but preferably expanded polystyrene by an in-mold expansion molding method or a bead expansion method is industrially used. It is advantageous. The shape of the expanded polystyrene may be plate-like, block-like such as a rectangular parallelepiped, or other shapes, but is preferably plate-like or block-like, and the present invention includes these.
【0017】このような発泡ポリスチレンは通常は発泡
倍率100倍以下で使用される用途が殆どであり、10
0倍以上で使用される分野はごく限られていた。本発明
ではこのような100倍以上高倍率の発泡ポリスチレン
を高度に圧縮するのが特徴である。これによって耐クリ
ープ性が高い特性をもつ緩衝材とすることができる。1
00倍以下の低発泡倍率の発泡ポリスチレンの場合は、
耐クリープ性が発揮できず、又170倍以上の発泡ポリ
スチレンの場合は適当なバネ状定数を外れ、結果として
耐クリープ性を満足できない。Most of such expanded polystyrene is usually used at an expansion ratio of 100 times or less.
The fields used at 0 times or more were very limited. The present invention is characterized in that such expanded polystyrene having a high magnification of 100 times or more is highly compressed. As a result, a cushioning material having high creep resistance can be obtained. 1
In the case of expanded polystyrene having a low expansion ratio of 00 or less,
In the case of expanded polystyrene having a factor of 170 or more, creep resistance cannot be exhibited, and an appropriate spring-like constant is deviated. As a result, creep resistance cannot be satisfied.
【0018】圧縮するためには、ブロック状や板状の高
倍率発泡ポリスチレンをポリスチレンの軟化温度以下、
好ましくは室温付近の温度で、要すれば室温以下でロー
ル法又はプレス法又はそれらの組み合わせで元の厚さの
5〜20%となるように圧縮する。圧縮している時間は
任意であるが、工業的には短い方が有利であるが、厚さ
の回復程度や動的バネ定数を考慮して最適な条件を決め
手も良いのは当然である。この圧縮荷重を除くと元の厚
さの30〜90%程度、好ましくは40〜80%まで回
復する。それを緩衝材として使用すればよい。In order to compress the polystyrene, block-shaped or plate-shaped high-magnification expanded polystyrene is heated to a temperature lower than the softening temperature of polystyrene.
Preferably, it is compressed at a temperature around room temperature, if necessary, at a temperature below room temperature by a roll method or a press method or a combination thereof so that the thickness becomes 5 to 20% of the original thickness. Although the compression time is arbitrary, it is advantageous to shorten the compression time industrially. However, it is natural that the optimum condition can be determined in consideration of the degree of thickness recovery and the dynamic spring constant. When the compression load is removed, the thickness recovers to about 30 to 90%, preferably 40 to 80% of the original thickness. It may be used as a cushioning material.
【0019】ブロックなどの厚さの大きな高倍率発泡ポ
リスチレンの場合は、圧縮してから荷重を除くと元の厚
さの30〜90%程度まで回復するといっても、未だ相
当な厚さをもっているのであり、その場合は必要な厚さ
にスライスして使用すればよい。又種々の形状にカット
したり切り抜いて使用することもできる。In the case of a high-magnification expanded polystyrene such as a block, even if it recovers to about 30 to 90% of the original thickness when the load is removed after being compressed, it still has a considerable thickness. In that case, it is only necessary to slice and use the required thickness. It can also be cut or cut into various shapes for use.
【0020】本発明にかかわる建築用緩衝材は、緩衝材
単独ではなく、他の素材と組み合わせてその性能を発揮
することもできる。The architectural cushioning material according to the present invention can exhibit its performance in combination with other materials, instead of the cushioning material alone.
【0021】このようにして得た厚さが20〜100m
mであり、荷重200〜2000kg/m2のときの動
的バネ定数が3〜20×106N/m3である緩衝材
は、それ以下の発泡倍率(低倍率)の発泡スチレンを圧
縮して得た厚さが20〜100mmであり、荷重200
〜2000kg/m2のときの動的バネ定数が3〜20
×106N/m3である緩衝材と比較して、耐クリープ
性能が高いことを見出した。以下、本発明の実施の態様
について実施例、比較例により具体的に説明する。The thickness thus obtained is 20 to 100 m
m and a dynamic spring constant of 3 to 20 × 10 6 N / m 3 at a load of 200 to 2000 kg / m 2 compresses expanded styrene of a lower expansion ratio (lower ratio). The thickness obtained is 20 to 100 mm and the load is 200
Dynamic spring constant at 20002000 kg / m 2 is 3-20
It was found that the creep resistance was higher than that of the buffer material of × 10 6 N / m 3 . Hereinafter, embodiments of the present invention will be specifically described with reference to Examples and Comparative Examples.
【0022】112倍に発泡させたポリスチレン(寸法
幅920mm×長さ1930mm×厚さ250mm)を
プレス機で厚さ25mmになるまで圧縮した後荷重を除
去し、厚さ175mmに回復させ、厚さ50mmにスラ
イスした緩衝材を作製した。JISK7220に基づい
て測定したこの緩衝材の5%圧縮強度は0.88N/c
m2であった。Polystyrene (size: 920 mm × length: 1930 mm × thickness: 250 mm) expanded to 112 times is compressed by a press machine to a thickness of 25 mm, then the load is removed, and the thickness is restored to 175 mm. A buffer material sliced to 50 mm was produced. The 5% compressive strength of the cushioning material measured according to JIS K7220 is 0.88 N / c.
It was m 2.
【0023】本発明の緩衝材の遮音性能については、J
IS A6322で規定される測定法に基づいて、減衰
振動波形を測定し、自由振動になった減衰振動波形の隣
り合う3個のピークから周期を読みとり、その平均値か
ら固有振動数を求めた。但し、載荷板の荷重は700k
g/m2とした。耐圧縮クリープ性能については、20
0mm×200mmの荷重板を介して700kg/m2
の荷重)をかけ、荷重板の4隅の変位をダイヤルゲージ
で測定し、7日後の測定値の平均値をクリープ変形量と
し、これにより判定した。結果を表1に示す。Regarding the sound insulation performance of the cushioning material of the present invention,
The damped oscillation waveform was measured based on the measurement method defined in IS A6322, the periods were read from three adjacent peaks of the damped oscillation waveform that became free oscillation, and the natural frequency was determined from the average value. However, the load of the loading plate is 700k
g / m 2 . Regarding compression creep resistance, 20
700 kg / m 2 through a 0 mm × 200 mm load plate
), The displacement at the four corners of the load plate was measured with a dial gauge, and the average of the measured values after 7 days was defined as the amount of creep deformation. Table 1 shows the results.
【0024】比較例として、88倍に発泡させたポリス
チレン(寸法幅920mm×長さ1820mm×厚さ4
20mm)をプレス機で厚さ40mmになるまで圧縮し
た後荷重を除去し、厚さ200mmに回復させ、厚さ5
0mmにスライスした緩衝材を作製した。この緩衝材の
5%圧縮強度は0.86N/cm2であった。結果を表
1に示す。As a comparative example, polystyrene foamed 88 times (size 920 mm × length 1820 mm × thickness 4
20mm) was compressed by a press machine to a thickness of 40mm, after which the load was removed, the thickness was restored to 200mm, and a thickness of 5mm.
A buffer material sliced to 0 mm was prepared. The 5% compressive strength of the cushioning material was 0.86 N / cm 2 . Table 1 shows the results.
【0025】[0025]
【表1】 表1に示すように、実施例と比較例の動的バネ定数、5
%圧縮強度はほぼ等しいが、耐クリープ性能において
は、比較例のクリープ変形量2.8mmに対して、実施
例は0.8mmとなり、プレス前の発泡倍率を100倍
〜170倍とすることによって耐クリープ性能が大きく
向上することが判る。[Table 1] As shown in Table 1, the dynamic spring constant and the
% Compressive strength is almost the same, but in the creep resistance performance, the creep deformation amount of the comparative example is 2.8 mm, and the example is 0.8 mm, and the foaming ratio before pressing is 100 to 170 times. It can be seen that the creep resistance is greatly improved.
【0026】[0026]
【発明の効果】請求項1に係る緩衝材は、ポリスチレン
を100倍〜170倍に発泡させて成形したものを、高
さが5〜20%となるように圧縮した後、圧縮荷重を除
いて高さが40〜80%になるまで回復させたものとす
ることで、耐クリープ性能に優れた緩衝材を得ることが
可能となる。According to the first aspect of the present invention, the cushioning material is obtained by foaming polystyrene by a factor of 100 to 170 and then compressing to a height of 5 to 20%, and then removing the compression load. By recovering the height to 40 to 80%, a cushioning material having excellent creep resistance can be obtained.
【0027】請求項2に係る緩衝材は、厚さが10mm
〜300mmとなるようにスライスしたもので、荷重1
00〜2000kg/m2のときの動的バネ定数が1〜
40×106N/m2であることで、優れた防振性能、
遮音性能を得ることが可能となる。[0027] The cushioning material according to claim 2 has a thickness of 10 mm.
~ 300mm sliced, load 1
The dynamic spring constant at 00 to 2000 kg / m 2 is 1 to
By being 40 × 10 6 N / m 2 , excellent vibration isolation performance,
Sound insulation performance can be obtained.
【0028】請求項3に記載の建築用緩衝材は、請求項
2記載の建築用緩衝材において、動的バネ定数を3〜2
0×106N/m3に設定したものである。動的バネ定
数を3×106N/m3以上とすることで、より優れた
耐クリープ性能を得ることが可能となり、20×106
N/m3以下とすることで、より優れた防振性能、遮音
性能を得ることが可能となる。According to a third aspect of the present invention, there is provided the cushioning material for building according to the second aspect, wherein the dynamic spring constant is 3 to 2 times.
It is set to 0 × 10 6 N / m 3 . By setting the dynamic spring constant to 3 × 10 6 N / m 3 or more, more excellent creep resistance can be obtained, and 20 × 10 6 N / m 3 can be obtained.
By setting it to N / m 3 or less, it is possible to obtain more excellent vibration isolation performance and sound insulation performance.
【0029】請求項4に記載の建築用緩衝材はによれ
ば、厚さを100mm以下とすることで、建築物に容易
に納まるようになり、20mm以上とすることで3〜2
0×106N/m3のバネ定数を得ることが容易に可能
となる。According to the construction cushioning material of the fourth aspect, by setting the thickness to 100 mm or less, it can easily fit in a building, and by setting it to 20 mm or more, it becomes 3 to 2 mm.
A spring constant of 0 × 10 6 N / m 3 can easily be obtained.
【0030】請求項5に記載の浮き床用緩衝材によれ
ば、コンクリート製スラブと浮き床層との間に敷設され
ることによって、優れた防振性能、遮音性能、耐水性、
および耐クリープ性能を兼ね備えた床構造を得ることが
可能となる。[0030] According to the cushioning material for a floating floor according to the fifth aspect, by being laid between the concrete slab and the floating floor layer, excellent vibration isolation performance, sound insulation performance, water resistance, and the like are obtained.
And a floor structure having both creep resistance performance.
【0031】請求項6に係る浮き床構造はよれば、浮き
床層の単位面積当たりの質量が100〜2000kg/
m2であり、かつ緩衝材に請求項5記載の浮き床用緩衝
材を使用することによって、長期にわたり、遮音性能を
維持することが可能となる。According to the floating floor structure of the sixth aspect, the mass per unit area of the floating floor layer is 100 to 2000 kg /.
m 2 and the use of the cushioning material for a floating floor according to claim 5 as the cushioning material makes it possible to maintain the sound insulation performance for a long period of time.
【図1】 地下緩衝構造[Fig. 1] Underground buffer structure
【図2】 浮き床構造[Fig. 2] Floating floor structure
【図3】 本発明の浮き床構造FIG. 3 is a floating floor structure of the present invention.
1 地盤 2 建築物 3 コンクリート板 4 緩衝材 5 コンクリートスラブ 6 緩衝材 7立ち上げ絶縁材 1浮き床層 2防水層 3コンクリートスラブ 4緩衝材 5立ち上げ絶縁材 6浮き床層 Reference Signs List 1 ground 2 building 3 concrete plate 4 cushioning material 5 concrete slab 6 cushioning material 7 rising insulation material 1 floating floor layer 2 waterproof layer 3 concrete slab 4 cushioning material 5 rising insulation material 6 floating floor layer
Claims (6)
板状の発泡ポリスチレンを、厚さが5〜20%となるよ
うに圧縮した後、圧縮荷重を除いて厚さを30〜90%
に回復させてなる建築用緩衝材。1. A plate-shaped expanded polystyrene formed by foaming 100 to 170 times is compressed to a thickness of 5 to 20%, and then the thickness is reduced to 30 to 90% except for a compression load.
A cushioning material for buildings that has been recovered.
100〜2000kg/m2のときの動的バネ定数が1
〜40×106N/m3であることを特徴とする請求項
1記載の建築用緩衝材。 2. The dynamic spring constant is 1 when the thickness is 10 to 300 mm and the load is 100 to 2000 kg / m 2.
The cushioning material for building according to claim 1, wherein the cushioning material is 4040 × 10 6 N / m 3 .
m3であることを特徴とする請求項2記載の建築用緩衝
材。3. The dynamic spring constant is 3 to 20 × 10 6 N /
building cushioning material according to claim 2, characterized in that the m 3.
特徴とする請求項2又は3記載の建築用緩衝材。4. The cushioning material for building according to claim 2, wherein said thickness is 20 to 100 mm.
ンクリート製スラブと浮き床層との間に敷設されること
を特徴とする浮き床用緩衝材。5. A cushioning material according to claim 1, wherein said cushioning material is laid between a concrete slab and a floating floor layer.
と、立上げ絶縁材として使う浮き床用緩衝材とからなる
緩衝層を介して浮き床層が敷設されてなる浮き床構造に
おいて、前記浮き床層の質量が単位面積当たり100〜
2000kg/m2であり、かつ前記緩衝材が請求項3
記載の5記載の浮き床用緩衝材であることを特徴とする
浮き床構造。6. A floating floor structure comprising a floating floor layer laid on a concrete slab via a buffer layer comprising a floating floor cushioning material and a floating floor cushioning material used as a rising insulation material. Floor layer mass is 100 ~ per unit area
The weight is 2000 kg / m 2 , and the cushioning material is 3.
A floating floor structure, characterized in that it is the floating floor cushioning material according to (5).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP37723199A JP3957434B2 (en) | 1999-12-29 | 1999-12-29 | Cushioning material for construction and floating floor structure using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP37723199A JP3957434B2 (en) | 1999-12-29 | 1999-12-29 | Cushioning material for construction and floating floor structure using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001193209A true JP2001193209A (en) | 2001-07-17 |
JP3957434B2 JP3957434B2 (en) | 2007-08-15 |
Family
ID=18508481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP37723199A Expired - Lifetime JP3957434B2 (en) | 1999-12-29 | 1999-12-29 | Cushioning material for construction and floating floor structure using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3957434B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100474132B1 (en) * | 2002-02-06 | 2005-03-08 | 문원광 | The method of sound and vibration proof in concrete structure |
EP1621699A1 (en) | 2004-07-27 | 2006-02-01 | Getzner Werkstoffe Holding GmbH | Vibration-proofing and heat-insulating means for a floating floor and floor structure with said means |
CN105155750A (en) * | 2015-09-25 | 2015-12-16 | 范峰杰 | Anti-seismic soundproof floor system for building |
JP7455774B2 (en) | 2021-03-22 | 2024-03-26 | カネカフォームプラスチックス株式会社 | Anti-vibration structure of buildings |
-
1999
- 1999-12-29 JP JP37723199A patent/JP3957434B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100474132B1 (en) * | 2002-02-06 | 2005-03-08 | 문원광 | The method of sound and vibration proof in concrete structure |
EP1621699A1 (en) | 2004-07-27 | 2006-02-01 | Getzner Werkstoffe Holding GmbH | Vibration-proofing and heat-insulating means for a floating floor and floor structure with said means |
CN105155750A (en) * | 2015-09-25 | 2015-12-16 | 范峰杰 | Anti-seismic soundproof floor system for building |
JP7455774B2 (en) | 2021-03-22 | 2024-03-26 | カネカフォームプラスチックス株式会社 | Anti-vibration structure of buildings |
Also Published As
Publication number | Publication date |
---|---|
JP3957434B2 (en) | 2007-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2277691A1 (en) | Aerogel comprising laminates | |
TR200102768T2 (en) | Open-cell semi-rigid foams with exfoliated graphite | |
JP2006316467A (en) | Sound insulating double wall structure | |
CN1532037A (en) | Sound and heat insulating structural element | |
CN204850193U (en) | Building sound insulation damping floats builds floor structures | |
JP2006037503A (en) | Vibration control heat insulating material for floating floor and floor structure using this material | |
JP2001193209A (en) | Cushioning material for construction and floating floor structure using it | |
JPH02300456A (en) | Stone building block and manufacture thereof | |
Bettarello et al. | Preliminary acoustic tests on resilient materials: comparison between common layers and nanostructured layers | |
JP2002294997A (en) | Floating floor structure | |
KR100743246B1 (en) | Structure for isolating the floor impact sound in community houses | |
KR100643036B1 (en) | Structure for isolating the floor impact sound in community houses | |
KR100473834B1 (en) | Floating structure and method of carrying out construction with thereof | |
JP6434760B2 (en) | Sound insulation floor structure | |
JP6430171B2 (en) | Anti-vibration material for floating floor structures | |
JP2006052590A (en) | Heat insulation panel used in common for form and heat insulation concrete skeleton structure using the same and its construction method | |
KR100445401B1 (en) | High elastic and soft expanded Polystyren boards and manufacturing method thereof | |
KR100716665B1 (en) | Structure for isolating the floor impact sound in community houses | |
CN216239316U (en) | Moisture-proof autoclaved aerated concrete block | |
CN218374678U (en) | Autoclaved aerated concrete plate convenient to splice | |
Hulimka et al. | Use of foamed concrete in the structure of passive house foundation slab | |
JPH09111902A (en) | Thermal insulation interior finishing wall panel | |
Koren et al. | Seismic aspects of the application of thermal insulation boards beneath the foundations of buildings | |
CN211923215U (en) | Sound-insulation aerated concrete plate | |
KR20240066202A (en) | Floor noise reduction structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050324 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070206 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070330 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070508 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070508 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3957434 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100518 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110518 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120518 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130518 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130518 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130518 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140518 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |