JP2001192963A - Inspection device for sheet having tissue structure - Google Patents

Inspection device for sheet having tissue structure

Info

Publication number
JP2001192963A
JP2001192963A JP2000002836A JP2000002836A JP2001192963A JP 2001192963 A JP2001192963 A JP 2001192963A JP 2000002836 A JP2000002836 A JP 2000002836A JP 2000002836 A JP2000002836 A JP 2000002836A JP 2001192963 A JP2001192963 A JP 2001192963A
Authority
JP
Japan
Prior art keywords
sheet
value
statistic
image
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000002836A
Other languages
Japanese (ja)
Inventor
Takahiro Kubota
隆弘 窪田
Kenjiro Ueda
健二郎 上田
Ichiro Ohama
一郎 大濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2000002836A priority Critical patent/JP2001192963A/en
Publication of JP2001192963A publication Critical patent/JP2001192963A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inspection device of a sheet, capable of precisely inspecting the defect having a different tissue structure of which the inspection has been difficult, and capable of extracting the defect in high accuracy even if a disturbance such as the bending of the warp and the waving of the surface are present. SOLUTION: This inspection device for sheet having a tissue structure, having a camera-scanning means for scanning a camera in a direction orthogonal to the traveling direction of the sheet, an image-taking means for taking the image of the surface of a sheet-like material in the scanning step, a statistic-processing means for processing the taken image data to a statistic value, and an abnormal value-judging means for judging the presence or absence of the abnormal value by comparing the statistic value extracted by the statistic-processing means with a previously set standard value, has a statistic information-extracting means for scanning the camera over the whole width of the sheet and extracting the static value based on the image taken at each position, and a standard value-setting means for setting the standard value for judging the good or bad, usable for the inspection based on the statistic value of the whole width of the sheet obtained by the statistic information means.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は組織構造を有するシ
ートの欠陥検査装置に関し、詳しくは製織中の織布に発
生する織り疵、特に経糸の欠陥検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a defect inspection apparatus for a sheet having a texture structure, and more particularly, to a defect inspection apparatus for a woven fabric, particularly a warp defect, generated in a woven fabric during weaving.

【0002】[0002]

【従来技術】従来、織布の外観を検査する装置又は方法
として、カメラにより織布表面の画像を撮像し、その撮
像結果から得られる画像濃淡データをしきい値と比較し
て外観の異常を検出する検反装置や、レーザー光を織布
に照射し、その反射又は透過光を受光素子にて受光さ
せ、その受光量のレベルとしきい値を比較して異常を検
出する自動検反方法が知られている。しかし、この検反
方法で検知できる欠陥は、人が目視で簡単に判定できる
ような糸抜け等の比較的大きな欠陥に限られるという問
題点もあった。
2. Description of the Related Art Conventionally, as an apparatus or method for inspecting the appearance of a woven fabric, an image of the surface of the woven fabric is taken by a camera, and image density data obtained from the taken image is compared with a threshold value to detect abnormalities in the appearance. An automatic inspection system that detects the abnormalities by irradiating the woven fabric with laser light and causing the reflected or transmitted light to be received by the light-receiving element, comparing the level of the amount of light received with a threshold value, and detecting the abnormality. Are known. However, there is also a problem that defects that can be detected by this inspection method are limited to relatively large defects such as thread dropouts that can be easily determined visually by a person.

【0003】検知精度を向上させる方法として、たとえ
ば、特開平4−148852号公報に開示された発明が
ある。この発明には、光源から織布に照射されて透過す
る光を、検査対象の糸方向に配置された光学スリットを
介して受光素子により受光し、受光波形と基準波形との
比較から異常を検出する方法が開示されている。この方
法は、光を透過する部分、すなわち抽出された織布開口
部の特徴量をもとに欠陥の有無を判定しようとするもの
である。
As a method for improving the detection accuracy, there is an invention disclosed in Japanese Patent Application Laid-Open No. 4-148852, for example. According to the present invention, light transmitted from a light source irradiating a woven fabric is received by a light receiving element through an optical slit arranged in a yarn direction of an inspection target, and abnormality is detected by comparing a received light waveform with a reference waveform. A method for doing so is disclosed. In this method, the presence or absence of a defect is determined based on the characteristic amount of the light transmitting portion, that is, the extracted woven fabric opening.

【0004】また、特開平3−249243号公報にお
いて、受光センサーを1対の公知の櫛形とし、両者の出
力の差分値と予め設定されたしきい値との比較から異常
を検出する方法が開示されている。この方法では、1対
の櫛型受光センサーに織布狭領域を2分割した濃淡情報
が反映されるため、振動や外乱光があっても、両者の差
分値出力により相殺される効果がある。目視で行ってい
る検査と同等の精度を確保するためには、従来の織布開
口部の特徴検査に加えて、糸成分そのものの特徴をも抽
出する必要がある。たとえば前述したような経糸流れ込
み欠陥のような欠陥に対しては目視検査では、糸交絡点
上の検査対象方向糸の上下関係周期性のみだれから欠陥
の有無が判定される。したがって、この欠陥を機械的に
検出しようとすると、糸交絡点座標上で経糸が緯糸の上
又は下にある糸成分のみを抽出すればよいことになる。
Japanese Patent Laid-Open Publication No. Hei 3-249243 discloses a method in which a light receiving sensor is formed as a pair of known combs, and an abnormality is detected by comparing a difference value between outputs of the two and a preset threshold value. Have been. In this method, since the density information obtained by dividing the woven cloth narrow region into two parts is reflected on the pair of comb-shaped light receiving sensors, even if there is vibration or disturbance light, there is an effect that the difference value output between the two cancels out. In order to ensure the same accuracy as the inspection performed visually, it is necessary to extract the characteristic of the yarn component itself in addition to the conventional characteristic inspection of the woven fabric opening. For example, in the case of a defect such as a warp inflow defect as described above, the presence or absence of a defect is determined by visual inspection in accordance with only the vertical relation of the yarn to be inspected at the yarn interlacing point. Therefore, in order to mechanically detect this defect, it is only necessary to extract only the yarn component in which the warp is above or below the weft on the yarn interlacing point coordinates.

【0005】本発明者らは上述した問題点を改善した織
布の検反装置を特願平7ー19811号に開示してい
る。この発明は、投光手段により織布に照射した光をC
CD(Charge Coupled Device)素子にて撮像し、これに
よって得られた画像データをもとに織布情報(糸の密
度、糸の傾等)を算出し、この織布情報から得られた糸
ピッチ幅を有する領域と、この糸ピッチ幅の整数倍離れ
た位置の他の領域との画像データ全体にわたる相関値に
対して、設定されたしきい値との比較を行なうことによ
り、主に平織りの欠陥を経糸、緯糸の区別なく、密度の
異なる織布であっても同一光学条件で織布の全幅に対し
て高精度に検出するものである。本発明者らはさらに朱
子、綾織り等の織り組織の異なる織布の欠陥であっても
同一光学条件で検査を可能とした検反装置を特願平8−
272400号に開示している。この発明は、上述し
た、特願平7−98171号にある織布情報にさらに織
り組織周期情報を加え、この組織周期幅を有する領域
と、この幅の整数倍離れた位置の他の領域との全体にわ
たる相関値に対して、設定されたしきい値との比較を行
なうことにより、織組織が異なり、かつ密度も異なる織
布の欠陥を経糸、緯糸の区別なく、同一光学条件で織布
の全幅に対して高精度に検出するものである。
The present inventors have disclosed a woven cloth inspection apparatus in which the above-mentioned problems have been solved in Japanese Patent Application No. 7-19811. According to the present invention, the light illuminated onto the woven fabric by
An image is picked up by a CD (Charge Coupled Device) element, and woven fabric information (yarn density, yarn inclination, etc.) is calculated based on the obtained image data, and the yarn pitch obtained from the woven fabric information is calculated. By comparing the correlation value over the entire image data between the region having the width and the other region located at an integer multiple of the yarn pitch width with the set threshold value, the plain weave is mainly performed. Defects are detected with high precision over the entire width of the woven fabric under the same optical conditions, even if the woven fabrics have different densities, without distinguishing between warps and wefts. The present inventors have further proposed an inspection apparatus capable of inspecting defects of woven fabrics having different weaving structures such as satin and twill under the same optical conditions.
272400. The present invention adds the woven tissue cycle information to the woven cloth information described in Japanese Patent Application No. 7-98171, and compares the area having the tissue cycle width with another area at an integer multiple of the width. By comparing the overall correlation value with the set threshold value, defects in woven fabrics having different woven structures and different densities can be detected under the same optical conditions without discrimination between warp and weft yarns. Is detected with high accuracy over the entire width of the image.

【0006】[0006]

【発明が解決しようとする課題】上述した特開平4−1
48852号公報に開示された発明においては、たとえ
ば、経糸の流込み欠陥のように織布会後部が良品とあま
り変わらない欠陥の場合には、欠陥が検知できず、検知
精度が著しく低下するという問題点があった。また、こ
の方法においては、織密度が一定でかつ光学スリットと
検査対象方向に糸とが平行であることが前提となる。し
かしながら、実際の織布の織密度はさまざまなものが存
在し、その都度光学スリットの交換が必要となるという
問題点がある。また、実際の織上がりの糸、特に経糸
は、織布の両側部で湾曲しており上記条件が維持でき
ず、検知精度が低下するという問題点もある。又特開平
3−249243号公報に開示された発明においては、
特開平4−148852号公報に開示された発明と同様
に、抽出できる欠陥に制限がある点や織密度が変わった
り、櫛形受光センサと検査対象糸との平衡度が維持でき
ないと検知精度は低下するという問題点がある。また、
特願平7−198171号に開示された発明において
は、平織り以外の朱子織や、綾織といった織組織の異な
る織布の欠陥に対してはあまり効果がない事が認められ
ている。
SUMMARY OF THE INVENTION The above-mentioned JP-A-4-14-1
In the invention disclosed in Japanese Patent No. 48852, for example, in the case of a defect in which the rear part of the woven fabric is not so different from a non-defective product such as a warp yarn pouring defect, the defect cannot be detected, and the detection accuracy is significantly reduced. There was a problem. Further, in this method, it is assumed that the weaving density is constant and the yarn is parallel to the optical slit and the inspection target direction. However, there are various woven densities of actual woven fabrics, and there is a problem that the optical slit needs to be replaced each time. In addition, actual woven yarns, especially warp yarns, are curved on both sides of the woven fabric, so that the above conditions cannot be maintained, and there is a problem that the detection accuracy is reduced. In the invention disclosed in JP-A-3-249243,
As in the invention disclosed in Japanese Patent Application Laid-Open No. 4-148852, the detection accuracy is reduced when there is a limit to the defects that can be extracted, when the weaving density changes, or when the balance between the comb-shaped light receiving sensor and the yarn to be inspected cannot be maintained. There is a problem that. Also,
In the invention disclosed in Japanese Patent Application No. 7-198171, it has been recognized that there is little effect on defects of woven fabrics having different woven structures such as satin weave and twill weave other than plain weave.

【0007】さらに、特願平8−272400号に開示
された発明においては、2値化処理にて抽出される糸交
絡点上の検査対象糸成分の2値画像形状は織布表面の微
妙な凹凸分布の違いや毛羽立ちがあったり、風綿の付着
等の影響で必ずしも均一でなく、その結果、組織周期幅
を有する領域と、この幅の整数倍離れた位置の他の領域
域との全体にわたる統計量の比較を行なった場合、正常
域の統計値がばらつきその結果、S/N比が低下すると
いった事が認められた。本発明は、上記問題を解決する
ためになされたものであり、請求項に記載の発明の目的
は、織り組織、表面性状に左右されず、風綿や毛羽、汚
れ等の外乱物が発生した場合であっても、高精度に織り
欠陥のみを検出でき、且つ、低コストで自動的に検査が
可能な織布の検反装置を提供する事である。
Furthermore, in the invention disclosed in Japanese Patent Application No. 8-272400, the binary image shape of the yarn component to be inspected on the yarn entanglement point extracted by the binarization process has a delicate shape on the surface of the woven fabric. It is not always uniform due to the difference in unevenness distribution, fuzzing, flotation adhesion, etc., and as a result, the whole of the area having the tissue cycle width and other areas at an integer multiple of this width When the statistical values over the range were compared, it was found that the statistical values in the normal range varied, and as a result, the S / N ratio decreased. The present invention has been made to solve the above problems, and the object of the invention described in the claims is that the woven fabric, the surface properties are not affected, and disturbances such as fluff, fluff, and dirt are generated. Even in such a case, an object of the present invention is to provide a woven cloth inspection device capable of detecting only a woven defect with high accuracy and automatically performing inspection at low cost.

【0008】[0008]

【課題を解決するための手段】即ち、本発明の請求項1
に係る発明は、シートの走行方向と直行方向にカメラを
走査するカメラ走査手段と、この走査過程で前記シート
状物体表面の画像を撮像する撮像手段と、撮像された画
像データを統計値に加工する統計量加工手段と、前記統
計加工手段で抽出された統計値と予め設定された基準値
とを比較して異常値有無を判定する異常値判定手段とを
備えたシートの検査装置において、予めカメラをシート
の全幅に走査させ、各々の位置で撮像される画像を基に
統計量を抽出する統計情報抽出手段と、統計情報手段で
得られたシート全幅の統計値を基に検査に使用される良
否判定用の基準値が設定される基準値設定手段を備える
ことを特徴とする。この構成によれば、検査に必要な良
否判定用の基準値が事前に自動抽出されるために、織り
柄、織り密度が異なる多くの銘柄を製織する織機上の検
査であっても完全な自動検査が可能となる。
That is, claim 1 of the present invention.
According to the invention, there is provided a camera scanning means for scanning a camera in a direction perpendicular to a traveling direction of a sheet, an imaging means for taking an image of the surface of the sheet-like object in the scanning process, and processing the taken image data into statistical values. In a sheet inspection apparatus including a statistic processing unit that performs the processing, and an abnormal value determination unit that determines whether there is an abnormal value by comparing a statistic value extracted by the statistical processing unit with a preset reference value. A statistical information extracting means for causing a camera to scan the entire width of the sheet and extracting a statistic based on an image taken at each position, and a statistic of the full width of the sheet obtained by the statistical information means are used for inspection. A reference value setting means for setting a reference value for determining whether or not the product is acceptable. According to this configuration, since the reference value for pass / fail judgment required for the inspection is automatically extracted in advance, even if the inspection is performed on a loom for weaving many brands having different weaving patterns and different weaving densities, a completely automatic operation is performed. Inspection becomes possible.

【0009】請求項2に係る発明は、基準値設定手段で
設定される基準の値が、シートの全幅で必ずしも一律で
ない事を特徴とする。この構成によれば、製織直後の織
布のようにエッジ近傍で経糸が傾いていたり、織布のた
るみ等で、撮像される画像範囲が変わってしまう場合で
あっても、それらの画像情報を基に基準値が設定される
ために、影響を受けず、高精度な検査が可能となる。請
求項3に係る発明は、統計情報抽出手段が、撮像された
画像内の幅方向の組織繰り返し単位の統計値又はシート
構造最小単位の統計値に加工する手段を備えることを特
徴とする。この構成によれば、撮像された画像データを
組織繰り返し単位の統計値又はシート構造最小単位の統
計値に加工できるため、正常な織布であれば、組織柄、
密度に関係なく、どの場所で撮像されても抽出される統
計値は変動しない利点がある。
The invention according to claim 2 is characterized in that the reference value set by the reference value setting means is not necessarily uniform over the entire width of the sheet. According to this configuration, even when the warp is inclined near the edge as in a woven fabric immediately after weaving, or when the image range to be imaged changes due to the slack of the woven fabric, such image information is obtained. Since the reference value is set on the basis, the inspection can be performed with high accuracy without being affected. The invention according to claim 3 is characterized in that the statistical information extracting means includes means for processing a statistical value of a tissue repetition unit in the width direction in the captured image or a statistical value of a sheet structure minimum unit. According to this configuration, the captured image data can be processed into the statistical value of the tissue repeating unit or the statistical value of the sheet structure minimum unit.
Irrespective of the density, there is an advantage that the extracted statistical value does not change regardless of where the image is taken.

【0010】以下に本発明のシートの検査装置の実施形
態を図面に基づいて説明する。図1は本発明の実施の形
態における検反装置の概略ブロック図である。検反装置
は、カメラレンズ3、CCDカメラ4、A/D変換器
5、フレームメモリ7、各種画像処理及び統計量抽出用
回路8、画像バス13、CPUバス14,CPU(Cent
ral Processing Unit)9,ROM(Read Only Memor
y)10,RAM(RandomAccess Memory)11を含む。
光源1から照射される光は、織布2表面で反射し、カメ
ラレンズ3で集光されてカメラ4内のCCD素子に結像
される。光源1は、後述する検査対象の糸を強調する効
果を高めるために指向性の強い光束を照射する光源が好
ましい。本実施の形態では、発光ダイオードを複数個組
み合わせてモジール化して撮像視野と照度を確保した例
(図2)を示す。又、本実施の形態では、エリア型のC
CDカメラを使用した例を示す。もし、ライン型のCC
Dカメラを使用する場合は、図1に示すようにA/D変
換器5とフレームメモリ7との間に1次元画像データを
2次元画像データに変換するために1次元/2次元変換
器6を追加すれば良い。
An embodiment of a sheet inspection apparatus according to the present invention will be described below with reference to the drawings. FIG. 1 is a schematic block diagram of an inspection apparatus according to an embodiment of the present invention. The inspection device includes a camera lens 3, a CCD camera 4, an A / D converter 5, a frame memory 7, various image processing and statistic extraction circuits 8, an image bus 13, a CPU bus 14, a CPU (Cent
ral Processing Unit) 9, ROM (Read Only Memor)
y) 10, a RAM (Random Access Memory) 11 is included.
Light emitted from the light source 1 is reflected on the surface of the woven fabric 2, condensed by the camera lens 3, and is imaged on a CCD element in the camera 4. The light source 1 is preferably a light source that emits a highly directional light flux in order to enhance the effect of enhancing a yarn to be inspected, which will be described later. In the present embodiment, an example (FIG. 2) in which a plurality of light emitting diodes are combined into a module to secure an imaging field of view and illuminance is shown. In the present embodiment, the area type C
An example using a CD camera is shown. If the line type CC
When a D camera is used, a one-dimensional / two-dimensional converter 6 is provided between the A / D converter 5 and the frame memory 7 to convert one-dimensional image data into two-dimensional image data, as shown in FIG. Just add.

【0011】織布から反射される光の波長は、カメラ4
が感度を持つ波長であれば特に問題ない。又、織布に照
射する光の強度もCCDの更新周期内で充分な電荷を蓄
積できるレベルであれば特に問題ない。これらの照明条
件にて織布に照射することにより、カメラ4には、織布
2を構成する経糸と緯糸の交絡点の上に配置される検査
対象の糸成分のみを明るく強調した画像として撮像でき
る。この効果を現す例を図3に示す。
The wavelength of the light reflected from the woven cloth is
There is no particular problem if is a wavelength having sensitivity. There is no particular problem in the intensity of light applied to the woven fabric as long as sufficient charge can be accumulated within the update cycle of the CCD. By irradiating the woven fabric under these illumination conditions, the camera 4 captures an image in which only the yarn components to be inspected, which are arranged above the interlace points of the warp and the weft constituting the woven fabric 2, are brightly emphasized. it can. An example showing this effect is shown in FIG.

【0012】CCDカメラ4で撮像された濃淡画像デー
タは、A/D変換回路5で8bitのデジタル画像デー
タに変換された後、フレームメモリ7に格納される。上
述したようにCCDカメラ4がライン型の場合には、1
次元/2次元変換器6が1次元画像データを2次元画像
データに変換してフレームメモリ7に格納する。この原
画像から検査対象の経糸の組織繰り返し周期が求められ
る。組織周期を算出するために実施例では検査対象の経
糸の方向に撮像画像データを濃度加算して一次元のデー
タに変換し、この濃度データをFFT処理して得られた
スペクトルのピーク値を求めて経糸の繰り返し周期を算
出した。他の方法としては、たとえば、検査対象糸と直
交方向の濃度波形の特徴を抽出して周期性を求める方式
も考えられるが、方式は特に限定されるものではない。
The grayscale image data picked up by the CCD camera 4 is converted into 8-bit digital image data by an A / D conversion circuit 5 and then stored in a frame memory 7. As described above, when the CCD camera 4 is of a line type, 1
The dimensional / two-dimensional converter 6 converts the one-dimensional image data into two-dimensional image data and stores it in the frame memory 7. The tissue repetition period of the warp to be inspected is obtained from the original image. In the embodiment, in order to calculate the tissue cycle, the captured image data is added to the density in the direction of the warp to be inspected, converted into one-dimensional data, and a peak value of a spectrum obtained by performing FFT processing on the density data is obtained. The repetition period of the warp was calculated. As another method, for example, a method of extracting the characteristics of the density waveform in the direction orthogonal to the inspection target yarn to obtain the periodicity can be considered, but the method is not particularly limited.

【0013】求められた経糸の組織繰り返し周期サイズ
を基に、撮像画像内に矩形領域を設定し、この領域の統
計値が抽出される。この統計値抽出方法は、予め設定さ
れる良否判定用基準値を計算するために必要な統計値抽
出方法である。又、検査中に抽出される統計値抽出方法
も同じ方法である。このことは、織布の状態が全幅で必
ずしも均一でなくても検査できることを現している。矩
形領域の統計量としては、濃度の最大値、平均値、最小
値、分散値、共分散値、変動係数、歪み度、尖り度、相
関係数、標準偏差値、再頻濃度値であり、欠陥の抽出
は、これら統計量を画像内の近傍域で比較した際の差分
値、画像パターン相関性または統計量と基準データとの
比較によって行なう。図5(a)及び(b)は、欠陥抽
出の一例を示す図である。(a)は、正常な組織を示
し、(b)は流れ込み欠陥の一例を示す。このような欠
陥は、従来の織布開口部の比較では抽出が困難である
が、図5に示すように、上述した矩形領域内で糸交絡点
の上にある検査対象糸成分(前述した照明により強調さ
れて明るく撮像される糸成分)を比較すると、(b)に
おける左右の矩形領域内の位置パターン整合性が全く異
なる。すなわち、交差点上の緯糸の上にある経糸成分
(図5中では黒い四角形で表される)の位置パターンが
全く異なっている。したがって、1対の矩形領域間のパ
ターン整合性を演算することで簡単に織り組織の欠陥が
抽出できる事がわかる。なお、欠陥の抽出は、上述統計
量を基にCPU9が行う。抽出された欠陥を含む画像
は、画像表示器12のディスプレイによって出力され
る。
A rectangular area is set in the captured image based on the obtained warp tissue repetition cycle size, and the statistical value of this area is extracted. This statistic value extraction method is a statistic value extraction method necessary for calculating a preset pass / fail judgment reference value. The same is true for the method of extracting statistical values extracted during inspection. This indicates that inspection can be performed even if the state of the woven fabric is not necessarily uniform over the entire width. The statistics of the rectangular area include the maximum value, average value, minimum value, variance value, covariance value, variation coefficient, distortion degree, sharpness, correlation coefficient, standard deviation value, and mode density value of the density, Defects are extracted by comparing these statistics with a difference value, image pattern correlation, or statistics when comparing them in the vicinity area in the image and the reference data. FIGS. 5A and 5B are diagrams illustrating an example of defect extraction. (A) shows a normal tissue, and (b) shows an example of a flow-in defect. Although it is difficult to extract such a defect by comparing the conventional woven fabric opening, as shown in FIG. 5, the inspection target yarn component (above described illumination) Comparing the thread components that are emphasized and brightly imaged), the positional pattern consistency in the left and right rectangular regions in (b) is completely different. That is, the position patterns of the warp components (represented by black squares in FIG. 5) on the wefts at the intersections are completely different. Therefore, it can be seen that a defect in the woven tissue can be easily extracted by calculating the pattern consistency between a pair of rectangular regions. Note that the CPU 9 performs the extraction of the defect based on the above statistics. The image including the extracted defect is output by the display of the image display 12.

【0014】製織中の織布をインラインで検査する場
合、例えば織布中央域の経糸は流れ方向に平行した並び
になっているが織布エッジ域では経糸が3度から10度
も傾いている。又、例えば織布の張り状態が悪い場合に
は織布が幅方向にうねった状態で走行する場合もある。
このような織布を検査する際に若し、固定の良否判定用
基準値を用いて欠陥有無を行うと精度が大幅に低下する
のは自明である。例えば、予め良品部の画像を記録して
おき、検査中に撮像した画像と比較して良否判定するい
わゆるパターンマッチング方法で検査を行うと精度が大
幅に低下してしまう。この問題を回避するための方策と
して、前述の方法で予め織布の全幅の統計値を抽出しこ
の情報を基に織布の全幅での基準値を自動で生成させ
た。この例を図8に示す。織布のエッジ域(C)では経
糸が傾いているために基準値が中央域に比べ高めに設定
されている事が判る。又、(B)域で若干、レベルが高
いのはシートの張力斑により織布にうねりが発生してい
るためである。つまり図8からは、織布情報が基準値に
うまく反映されていることが判る。実施例では抽出され
た統計値全幅の統計値を平滑化処理した後、10%のオ
フセットを加えた値を各座標での基準値とした。但し、
オフセット値、平滑化定数等は銘柄、管理基準に応じて
設定すれば良く特に限定するものでは無い。表1はパタ
ーンマッチング法と本実施例との比較した例でる。経糸
の流れ込み欠陥は織布中央部を基準(0mm)に各位置
で故意に発生させ、これの繰り返し検出率を確認した。
尚、パターンマッチング法の基準画像は織布中央部の正
常な画像を記憶させた。パターンマッチング法では検知
率が大きく低下するのに対し、本実施例では100%検
出している事が判る。図7は良否判定用しきい値を設定
するカメラの走査パターン及び検査時のカメラ走査パタ
ーンを示す。A位置からB位置までが基準値設定用走査
域、以降が検査域である。但し、各工程の開始位置は図
7(a)のパターンでも図7(b)のパターンでも良く
特に限定するものではない。良否判定用しきい値を設定
する際に織布は必ずしも走行している必要は無いが、織
布走行中に撮像される画像と静止している織布画像は微
妙に異なるため、より検査状態に近い状態で良否判定用
の基準値を抽出するために織布を走行させた状態で基準
値を抽出するのが好ましい。
In the case of in-line inspection of the woven fabric during weaving, for example, the warp yarns in the central region of the woven fabric are arranged in parallel to the flow direction, but the warp yarns are inclined at 3 to 10 degrees in the woven fabric edge region. In addition, for example, when the tension of the woven fabric is poor, the woven fabric may run in a undulating state in the width direction.
It is obvious that if such a woven fabric is inspected, if the presence / absence of a defect is determined using a fixed reference value for quality determination, the accuracy is greatly reduced. For example, if an image of a non-defective part is recorded in advance and the inspection is performed by a so-called pattern matching method in which the quality is compared with an image captured during the inspection, the accuracy is greatly reduced. As a measure for avoiding this problem, statistical values of the entire width of the woven fabric are extracted in advance by the above-described method, and a reference value for the entire width of the woven fabric is automatically generated based on this information. This example is shown in FIG. It can be seen that the reference value is set higher in the edge area (C) of the woven fabric than in the central area because the warp is inclined. The reason why the level is slightly higher in the area (B) is that the woven fabric has undulation due to unevenness in the tension of the sheet. In other words, it can be seen from FIG. 8 that the woven fabric information is successfully reflected in the reference value. In the embodiment, after the statistical values of the full width of the extracted statistical values are smoothed, a value to which an offset of 10% is added is used as a reference value at each coordinate. However,
The offset value, the smoothing constant, and the like may be set according to the brand and the management standard, and are not particularly limited. Table 1 shows an example in which the pattern matching method and this embodiment are compared. The inflow defect of the warp was intentionally generated at each position with respect to the center of the woven fabric (0 mm), and the repetition detection rate was confirmed.
Note that a normal image of the central part of the woven fabric was stored as the reference image of the pattern matching method. It can be seen that the detection rate is greatly reduced in the pattern matching method, whereas 100% is detected in the present embodiment. FIG. 7 shows a camera scan pattern for setting a pass / fail judgment threshold value and a camera scan pattern at the time of inspection. The scanning area for reference value setting is from the position A to the position B, and the inspection area is the following. However, the starting position of each step may be the pattern of FIG. 7A or the pattern of FIG. 7B, and is not particularly limited. When setting the pass / fail judgment threshold value, the woven fabric does not necessarily need to be running, but since the image captured during running the woven fabric is slightly different from the still woven fabric image, the inspection state is further improved. It is preferable to extract the reference value while running the woven fabric in order to extract the reference value for pass / fail judgment in a state close to.

【0015】[0015]

【表1】 [Table 1]

【0016】図6は本実施の形態における織布の検反装
置の処理手順を示すフロチャ−トである。まず、カメラ
を基準の位置(図7のA点)まで移動させて(S1)、
CCDカメラの走査を開始する。走査状態でカメラ4に
よって撮像された濃淡画像データが、A/D変換器5に
よって8ビットのデジタル画像データに変換された後、
フレームメモリ7に取り込まれる(S2)。次に、CP
U9は、濃淡画像データに基づいて、上述した方式にて
経糸の組織周期を抽出し撮像画像内に前記周期データに
基づいた矩形領域を設定する(S3)。画像処理回路8
は、設定された矩形領域内の濃淡画像データから統計量
を抽出する(S4)。
FIG. 6 is a flowchart showing the processing procedure of the woven cloth inspection device according to the present embodiment. First, the camera is moved to a reference position (point A in FIG. 7) (S1),
The scanning of the CCD camera is started. After the grayscale image data captured by the camera 4 in the scanning state is converted by the A / D converter 5 into 8-bit digital image data,
The data is taken into the frame memory 7 (S2). Next, CP
U9 extracts the warp tissue cycle based on the grayscale image data by the above-described method, and sets a rectangular area in the captured image based on the cycle data (S3). Image processing circuit 8
Extracts a statistic from the gray image data in the set rectangular area (S4).

【0017】ステップS5において、取り込まれた画像
データのすべてについて統計値の抽出が行われた否かを
判定する。抽出が終了していなければ(S5,No)、
画像に設定されている矩形領域を経糸と直交する方向に
ずらして設定する(S6)。そして、ステップ4とステ
ップ6の処理を繰返す。ステップ7において、得られた
統計値の最大値を求め、一旦記憶する(S7)。全幅の
統計値抽出が終了していなければ(S8,No)完了す
るまでS2からS8の処理を繰り返す。全幅の処理が完
了した(S8、Yes)場合、記憶された全幅での統計
値データを基に前記方法で全幅の良否判定用基準値が設
定される(S9)。以降、カメラ走査状態で連続に検査
を行う。撮像画像データから良否判定を行うための統計
値抽出(S10)方法はS2からS6までの統計値抽出
方法と同じである。ステップ11では抽出された統計量
と前述の基準値との比較を行い基準値より大きい値を示
す統計値であれば(S11,Yes)欠陥が発生したと
判断(S12)する。欠陥が発生した場合、検査を中断
し、欠陥修復完了の入力があるまで待つ。欠陥修復完了
の入力があった(S13、Yes)場合には検査継続
(S14、Yes)を確認して検査を再開する。統計値
が基準値より小さい場合にはS10、S11、の処理を
繰り返す。なお、全体の制御を行なうプログラムはRO
M10に格納されている。織布の全幅を検査する場合、
センサーを織布幅方向にトラバースするか複数個のセン
サを織布幅方向に等間隔で配置すればよい。
In step S5, it is determined whether or not statistical values have been extracted for all of the captured image data. If the extraction has not been completed (S5, No),
The rectangular area set in the image is shifted in the direction orthogonal to the warp and set (S6). Then, the processing of steps 4 and 6 is repeated. In step 7, the maximum value of the obtained statistical values is obtained and temporarily stored (S7). If the statistical value extraction of the full width is not completed (S8, No), the processing from S2 to S8 is repeated until it is completed. When the processing of the full width is completed (S8, Yes), the reference value for the pass / fail judgment of the full width is set by the above-described method based on the stored statistical value data of the full width (S9). Thereafter, the inspection is continuously performed in the camera scanning state. The statistical value extraction (S10) method for making a quality judgment from the captured image data is the same as the statistical value extraction method from S2 to S6. In step 11, the extracted statistic is compared with the aforementioned reference value, and if the statistic value indicates a value larger than the reference value (S11, Yes), it is determined that a defect has occurred (S12). If a defect occurs, the inspection is interrupted and the process waits until a defect repair completion input is received. When the input of the completion of the defect repair is received (S13, Yes), the inspection is continued and the inspection is restarted (S14, Yes). If the statistical value is smaller than the reference value, the processing of S10 and S11 is repeated. The program for controlling the entire system is RO
It is stored in M10. When inspecting the full width of the woven fabric,
The sensors may be traversed in the woven fabric width direction or a plurality of sensors may be arranged at equal intervals in the woven fabric width direction.

【0018】以上の説明では、製織中の織布のインライ
ン検査に関する処理についてであったが、織上がった織
布の自動検反に適用することも可能である。また、織布
以外の規則性のある特徴をもったシートにも適用でき
る。図9は織機に本実施の形態における検反装置を適用
した場合を示す図である。製織中の織布に対して上から
光源1を照射し、CCDカメラ4によって撮像する。C
CDカメラ4は移動軸40に沿って移動可能となるよう
に取り付けられる。
In the above description, the processing relating to the in-line inspection of the woven fabric during weaving has been described. However, the present invention can also be applied to automatic inspection of a woven fabric that has been woven. Further, the present invention can be applied to a sheet having regular characteristics other than the woven fabric. FIG. 9 is a diagram illustrating a case where the inspection apparatus according to the present embodiment is applied to a loom. The light source 1 is irradiated from above onto the woven fabric being woven, and an image is taken by the CCD camera 4. C
The CD camera 4 is mounted so as to be movable along a movement axis 40.

【0019】[0019]

【発明の効果】本発明によると、検出が困難であった織
り組織が異なる欠陥を確実に検出できるようになった。
また、経糸の曲り、表面のうねり等の外乱があっても高
精度に、欠陥の抽出が可能となった。
According to the present invention, it has become possible to reliably detect a defect having a different woven texture, which has been difficult to detect.
Further, even when there is disturbance such as warp of the warp or undulation of the surface, the defect can be extracted with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態における検反装置の概略ブロ
ック図である。
FIG. 1 is a schematic block diagram of an inspection apparatus according to an embodiment of the present invention.

【図2】本発明の実施形態における照明モジュールの配
置を説明するための図である。
FIG. 2 is a diagram for explaining an arrangement of a lighting module in the embodiment of the present invention.

【図3】本発明の実施形態における照明の効果を説明す
るための図である。
FIG. 3 is a diagram for explaining an effect of illumination in the embodiment of the present invention.

【図4】本発明の実施形態における統計量演算用矩形領
域を説明するための例である。
FIG. 4 is an example for explaining a rectangular area for calculating a statistic in the embodiment of the present invention.

【図5】本発明の実施形態における欠陥抽出法を説明す
るための例である。
FIG. 5 is an example for explaining a defect extraction method in the embodiment of the present invention.

【図6】本発明の実施形態における動作を説明するため
のフローチャートである。
FIG. 6 is a flowchart illustrating an operation according to the exemplary embodiment of the present invention.

【図7】本発明の実施形態におけるカメラの走査パター
ンを説明するための図である。
FIG. 7 is a diagram illustrating a scanning pattern of a camera according to the embodiment of the present invention.

【図8】本発明の実施形態における良否判定用基準値が
自動で抽出された例である。
FIG. 8 is an example in which a pass / fail judgment reference value in the embodiment of the present invention is automatically extracted.

【図9】本発明の実施形態における外観を示す斜視図で
ある。
FIG. 9 is a perspective view showing an appearance according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:LED、2:織布、3:カメラレンズ、4:カメ
ラ、5:A/D変換器、6:1次元/2次元変換器、
7:画像メモリ、8:画像処理回路、9:CPU、1
0:ROM、11:RAM、12:画像表示器、13:
画像バス、14:CPUバス、31:カメラケース、3
2:透明部材、33:LEDモジュール 、40:一軸
移動ステージ
1: LED, 2: Woven cloth, 3: Camera lens, 4: Camera, 5: A / D converter, 6: 1D / 2D converter,
7: Image memory, 8: Image processing circuit, 9: CPU, 1
0: ROM, 11: RAM, 12: Image display, 13:
Image bus, 14: CPU bus, 31: Camera case, 3
2: transparent member, 33: LED module, 40: single axis moving stage

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G051 AA40 AB02 BA01 BA20 CA03 CA04 CB01 CD04 DA01 DA06 EA08 EA12 EA14 EB01 EB02 EC02 EC03 ED11 FA10 3B154 AB20 BA53 BC42 BC48 CA16 CA23 CA27 DA13 DA30  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G051 AA40 AB02 BA01 BA20 CA03 CA04 CB01 CD04 DA01 DA06 EA08 EA12 EA14 EB01 EB02 EC02 EC03 ED11 FA10 3B154 AB20 BA53 BC42 BC48 CA16 CA23 CA27 DA13 DA30

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 シートの走行方向と直行方向にカメラを
走査するカメラ走査手段と、この走査過程で前記シート
状物体表面の画像を撮像する撮像手段と、撮像された画
像データを統計値に加工する統計量加工手段と、前記統
計加工手段で抽出された統計値と予め設定された基準値
とを比較して異常値有無を判定する異常値判定手段とを
備えたシートの検査装置において、予めカメラをシート
の全幅に走査させ、各々の位置で撮像される画像を基に
統計量を抽出する統計情報抽出手段と、統計情報手段で
得られたシート全幅の統計値を基に検査に使用される良
否判定用の基準値が設定される基準値設定手段を備える
ことを特徴とする組織構造を有するシートの検査装置。
1. A camera scanning means for scanning a camera in a direction perpendicular to a running direction of a sheet, an imaging means for taking an image of the surface of the sheet-like object in the scanning process, and processing the taken image data into statistical values. In a sheet inspection apparatus including a statistic processing unit that performs the processing, and an abnormal value determination unit that determines whether there is an abnormal value by comparing a statistic value extracted by the statistical processing unit with a preset reference value. A statistical information extracting means for causing a camera to scan the entire width of the sheet and extracting a statistic based on an image taken at each position, and a statistic of the full width of the sheet obtained by the statistical information means are used for inspection. An inspection apparatus for a sheet having an organizational structure, comprising: a reference value setting unit for setting a reference value for determining whether the sheet is good or bad.
【請求項2】基準値設定手段で設定される基準の値が、
シートの全幅で必ずしも一律でない事を特徴とする請求
項1記載の組織構造を有するシートの検査装置。
The reference value set by the reference value setting means is:
The sheet inspection apparatus having a tissue structure according to claim 1, wherein the sheet width is not necessarily uniform.
【請求項3】統計情報抽出手段が、撮像された画像内の
幅方向の組織繰り返し単位の統計値又はシート構造最小
単位の統計値に加工する手段を備えることを特徴とする
請求項1記載の組織構造を有するシートの検査装置。
3. The statistical information extracting means according to claim 1, further comprising means for processing a statistical value of a tissue repeating unit in a width direction in the captured image or a statistical value of a sheet structure minimum unit. Inspection device for sheet with tissue structure.
JP2000002836A 2000-01-11 2000-01-11 Inspection device for sheet having tissue structure Pending JP2001192963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000002836A JP2001192963A (en) 2000-01-11 2000-01-11 Inspection device for sheet having tissue structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000002836A JP2001192963A (en) 2000-01-11 2000-01-11 Inspection device for sheet having tissue structure

Publications (1)

Publication Number Publication Date
JP2001192963A true JP2001192963A (en) 2001-07-17

Family

ID=18531884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000002836A Pending JP2001192963A (en) 2000-01-11 2000-01-11 Inspection device for sheet having tissue structure

Country Status (1)

Country Link
JP (1) JP2001192963A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190880A (en) * 2007-01-31 2008-08-21 Taiyo Kogyo Corp Determination device, determination system, determination method and computer program
JP2010059562A (en) * 2008-09-02 2010-03-18 Toyota Motor Corp Apparatus for detecting fabric and method for detecting fabric
JP2017128832A (en) * 2016-01-21 2017-07-27 フロンティアシステム株式会社 Woven fabric on-line inspecting apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190880A (en) * 2007-01-31 2008-08-21 Taiyo Kogyo Corp Determination device, determination system, determination method and computer program
JP2010059562A (en) * 2008-09-02 2010-03-18 Toyota Motor Corp Apparatus for detecting fabric and method for detecting fabric
JP2017128832A (en) * 2016-01-21 2017-07-27 フロンティアシステム株式会社 Woven fabric on-line inspecting apparatus

Similar Documents

Publication Publication Date Title
Kang et al. Automatic recognition of fabric weave patterns by digital image analysis
Huang et al. Woven fabric analysis by image processing: Part I: Identification of weave patterns
EP0501683B1 (en) Technique for enhanced two-dimensional imaging
JP3063719B2 (en) Woven cloth inspection equipment
JP6150248B2 (en) Fabric defect inspection method and apparatus
US20190392575A1 (en) Real-time, Full Web Image Processing Method and System For Web Manufacturing Supervision
CA2586672A1 (en) Automatic judging device and automatic judging method
JP4633245B2 (en) Surface inspection apparatus and surface inspection method
JP3013789B2 (en) Woven cloth inspection device and inspection method
US7375806B2 (en) Method for inspecting the quality criteria of flat textile structures embodied in a multi-layer form according to a contour
KR20150068884A (en) Semiconductor inspecting method, semiconductor inspecting apparatus and semiconductor manufacturing method
JP2800726B2 (en) Woven cloth inspection equipment
JP2001192963A (en) Inspection device for sheet having tissue structure
JP2003004647A (en) Defect inspection apparatus
JP2008089534A (en) Method and device for inspecting fabric of carbon fiber
JP2001194314A (en) Device for inspecting long material
JP2021173566A (en) Defect detection method and defect detection device
JP2003138468A (en) Textile inspection equipment
JP3013928B2 (en) Woven cloth inspection equipment
JPS62231069A (en) Method for detecting defect of cloth inspecting machine
JP2009222683A (en) Method and apparatus for surface inspection
JP2002055057A (en) Textile weaving stage inspection equipment
JP2003156451A (en) Defect detecting device
JP3013927B2 (en) Woven cloth inspection equipment
CN115524337A (en) Cloth inspecting method based on machine vision