JP2001189710A - Method and device for monitoring different polarization interference quantity - Google Patents

Method and device for monitoring different polarization interference quantity

Info

Publication number
JP2001189710A
JP2001189710A JP37544199A JP37544199A JP2001189710A JP 2001189710 A JP2001189710 A JP 2001189710A JP 37544199 A JP37544199 A JP 37544199A JP 37544199 A JP37544199 A JP 37544199A JP 2001189710 A JP2001189710 A JP 2001189710A
Authority
JP
Japan
Prior art keywords
xpd
noise
bit error
signal
error rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP37544199A
Other languages
Japanese (ja)
Inventor
Masashi Nakayama
正志 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP37544199A priority Critical patent/JP2001189710A/en
Publication of JP2001189710A publication Critical patent/JP2001189710A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure an XPD value (different polarization interference ratio) without detouring (stopping wave) a line in operation about a monitoring method and its device for different polarization interference quantity. SOLUTION: Different polarization interference signals of a plurality of XPD levels and noise are preliminarily inputted to a main system receiving circuit 38, and a C/N-XPD (different polarization interference quantity) characteristic at a time when the bit error rate BER of its demodulation output is a prescribed value (e.g. 1×10-4). When the circuit 38 is operated, a certain received polarization signal CH1-in is branched, one is received and demodulated by the circuit 38 and the other is received and demodulated by an XPD monitor circuit 70 of the same characteristic respectively, noise N where the bit error rate BER of its demodulation output becomes the prescribed value (1×10-4) is also added to the input of the circuit 70, and the operation XPD value of the circuit 38 is estimated from a C/N value and a C/N-XPD characteristic at that time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は異偏波干渉量のモニ
タ方法及びその装置に関し、更に詳しくは同一周波数を
水平/垂直偏波として使用するコチャンネル配置の多重
無線装置に適用して好適なる異偏波干渉量のモニタ方法
及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for monitoring the amount of interference of different polarizations, and more particularly, to a method and apparatus suitable for a multiplex radio apparatus having a co-channel arrangement using the same frequency as horizontal / vertical polarization. The present invention relates to a method and an apparatus for monitoring a different polarization interference amount.

【0002】この種の無線通信システムでは、同一周波
数を水平/垂直偏波として使用するため、交差偏波間で
干渉が起こり、これをキャンセルするには、各チャネル
についての異偏波干渉量を知る必要がある。
In this type of radio communication system, since the same frequency is used as horizontal / vertical polarization, interference occurs between cross polarizations. To cancel the interference, the amount of different polarization interference for each channel is known. There is a need.

【0003】[0003]

【従来の技術】図4,図5は従来技術を説明する図
(1),(2)で、図4は従来の多重無線通信システム
の一部構成を示し、ここでは送信局100と受信局20
0とがアンテナ35,36を介して無線接続している。
送信局100において、311 〜31n は各無線通信チ
ャネル(回線)CHのチャネル対応部、32はその変調
部、33は送信部、34は送信する無線信号の合波部、
また受信局200において、37は受信した無線信号の
偏分波部、381 〜38n は各無線通信チャネルCHの
チャネル対応部、39はその受信部、40は復調部であ
る。
2. Description of the Related Art FIGS. 4 and 5 are diagrams (1) and (2) for explaining the prior art, and FIG. 4 shows a partial configuration of a conventional multiplex radio communication system. 20
0 is wirelessly connected via antennas 35 and 36.
In the transmitting station 100, 31 1 to 31 n are channel corresponding units of each wireless communication channel (line) CH, 32 is a modulation unit thereof, 33 is a transmission unit, 34 is a multiplexing unit of a radio signal to be transmitted,
In addition the receiving station 200, 37 polarization separating part of the radio signal received, 38 1 to 38 DEG n channel corresponding portion of each radio communication channel CH, 39 is the reception section, 40 is a demodulator.

【0004】送信局100において、CH1の信号はC
H対応部311 で変調・増幅され、アンテナ35より垂
直(V)偏波として送信される。またCHn+1 の信号は
CH対応部31n+1 で変調・増幅され、アンテナ35よ
り水平(H)偏波として送信される。受信局200にお
いて、偏分波部37で分波されたCH1の信号(V偏波
に対応)はCH対応部381 で受信・復調され、また偏
分波部37で分波されたCHn+1 の信号(H偏波に対
応)はCH対応部38n+1 で受信・復調される。
In transmitting station 100, the signal of CH1 is C
Modulated and amplified by the H corresponding portion 31 1 is transmitted from the antenna 35 as a vertical (V) polarization. The CH n + 1 signal is modulated and amplified by the CH corresponding unit 31 n + 1 and transmitted from the antenna 35 as horizontal (H) polarization. In the receiving station 200, signal polarization separating section 37 in the demultiplexed CH1 (corresponding to V-polarized wave) is received and demodulated by the CH corresponding portion 38 1 and CH n demultiplexed by the polarization separating section 37 The +1 signal (corresponding to H polarization) is received and demodulated by the CH corresponding unit 38 n + 1 .

【0005】ところで、一般にコチャンネル配置の無線
回線では、無線システムに割り当てられたチャネルを、
図示の如く、例えばV側で順番にCH1からCHnまで
増設してゆき、V側のチャネルが終わると、H側をCH
n+1 から順に増設することが行われる。この時、CH1
のV偏波とCHn+1 のH偏波とが同一周波数であるため
に、V,H偏波間で干渉が生じる。
[0005] By the way, generally, in a radio channel having a co-channel arrangement, a channel allocated to a radio system is
As shown in the drawing, for example, CH1 to CHn are sequentially added on the V side, and when the channel on the V side ends, the H side is switched to the CH side.
Expansion is performed sequentially from n + 1 . At this time, CH1
V polarization and the H polarization of CH n + 1 have the same frequency, so that interference occurs between the V and H polarizations.

【0006】図4にV,H偏波の送/受信スペクトラム
を付記する。今、送信側ではCH1のV偏波VTとCH
n+1 のH偏波HTとの間に干渉は無いとしても、空中線
を通ると、送/受信アンテナ35,36間の取り付け角
誤差や無線区間における様々な外乱等により、受信側で
は図示の如くV,H間で偏波干渉が生じる。例えばCH
1の受信偏波VRにはCHn+1 からの干渉偏波HIが重
畳され、またCHn+1の受信偏波HRにはCH1からの
干渉偏波VIが重畳される。即ち、各チャネルCH1,
CHn+1 では夫々に自偏波信号と、これよりもXPD値
(異偏波干渉量:自偏波信号と異偏波信号からの漏れ込
みのD/U値)だけ低下した異偏波信号とが受信され
る。そこで、従来は、この様な空中線におけるV,H偏
波間識別度の劣化防止のために、以下に述べる交差偏波
間干渉補償器(XPIC)なるものを設け、各チャネル
において夫々に異偏波信号からの干渉成分をキャンセル
することが行われる。
FIG. 4 additionally shows transmission / reception spectra of V and H polarizations. Now, on the transmitting side, the V polarization VT of CH1 and CH
Even if there is no interference with the n + 1 H polarization HT, if the antenna passes through the antenna, the receiving side will not be shown due to the mounting angle error between the transmitting / receiving antennas 35 and 36 and various disturbances in the wireless section. As described above, polarization interference occurs between V and H. For example, CH
The interference polarization HI from CHn + 1 is superimposed on the reception polarization VR of CH1, and the interference polarization VI from CH1 is superimposed on the reception polarization HR of CHn + 1 . That is, each channel CH1,
At CH n + 1 , the respective self-polarized signal and the differently-polarized waves lower than this by the XPD value (differential polarization interference amount: D / U value of leakage from the self-polarized signal and the different-polarized signal) And signals are received. Therefore, conventionally, in order to prevent such a deterioration of the degree of discrimination between the V and H polarizations in the antenna, a cross polarization interference compensator (XPIC) described below is provided, and a different polarization signal is provided for each channel. Cancellation of interference components from is performed.

【0007】図5は従来の復調部40の構成を示してい
る。図において、51,52は自偏波及び異偏波受信部
より入力された各受信信号(IF信号)を所要(一定)
の振幅レベルに増幅するアンプ(AGC回路)、54は
局部発振回路(LO)、55,56は検波用のミキサ
(MIX)、57,58はA/D変換器(A/D)、6
1は主信号のディジタル復調処理を行う信号処理部、6
2は復調信号の誤り検出及び訂正を行うFEC演算部、
63は交差偏波間干渉補償用の信号を生成する信号処理
部(XPIC)である。
FIG. 5 shows a configuration of a conventional demodulation unit 40. In the figure, reference numerals 51 and 52 require (constant) each received signal (IF signal) input from the own-polarized wave and the different-polarized wave receiver.
(AGC circuit) that amplifies the signal to an amplitude level of 54, 54 is a local oscillation circuit (LO), 55 and 56 are mixers for detection (MIX), 57 and 58 are A / D converters (A / D), 6
1 is a signal processing unit for performing digital demodulation processing of the main signal, 6
2 is an FEC operation unit for performing error detection and correction of the demodulated signal,
A signal processing unit (XPIC) 63 generates a signal for cross-polarization interference compensation.

【0008】受信部39にて中間周波信号に変換され、
復調部40に入力された、CH1の主信号(受信偏波V
R系)はAGC回路51でゲイン調整(振幅一定に)さ
れ、更に、ミキサ56で検波され、A/D変換器57で
ディジタル信号に変換される。また、このCH1の復調
部40には、CHn+1 の受信部39にて中間周波信号に
変換されたCHn+1 からの信号(受信偏波HR系)が入
力されており、該信号はAGC回路52でゲイン調整
(振幅一定に)され、更にミキサ56で検波され、A/
D変換器58でディジタル信号に変換される。信号処理
部61はCH1の主信号をディジタル処理で復調すると
共に、その際には、信号処理部63からの交差偏波間干
渉補償用信号により、CH1の主信号系復調信号に含ま
れるCHn+ 1 からの干渉偏波HI成分をキャンセル処理
する。更に、その出力信号は、FEC演算部62で誤り
検出及び必要な誤り訂正が行なわれ、不図示の端局装置
に出力される。
The signal is converted into an intermediate frequency signal by a receiving section 39,
The CH1 main signal (received polarization V
R system) is gain-adjusted (with constant amplitude) by the AGC circuit 51.
The signal is further detected by a mixer 56, and detected by an A / D converter 57.
It is converted to a digital signal. Also, demodulation of this CH1
The part 40 includes CHn + 1To the intermediate frequency signal by the receiver 39
Converted CHn + 1Signal (received polarization HR system)
The signal is gain-adjusted by the AGC circuit 52
(With constant amplitude), and further detected by the mixer 56.
The digital signal is converted by the D converter 58. Signal processing
The unit 61 demodulates the main signal of CH1 by digital processing.
In both cases, at this time, the cross polarization
Included in CH1 main signal demodulated signal due to interference compensation signal
CHn + 1Cancels HI component of interference polarization
I do. Further, the output signal is erroneous in the FEC operation unit 62.
A terminal device (not shown) that performs detection and necessary error correction.
Is output to

【0009】さて、このような通信システムでは、保
守、回線品質劣化時等に、回線劣化状況(例えば、XP
D値)を測定する必要があるが、従来は、次の手段によ
り回線劣化状況を測定していた。即ち、運用中のシステ
ムを停止(又は迂回)してから、まず、送信局100か
らCH1のV偏波の信号だけを送信し、受信局200の
受信部39の入力で自偏波信号のレベルをスペクトラム
アナライザ等を用いて測定し、次に送信局100からC
n+1 のH偏波の信号だけを送信し、受信局200の受
信部39の入力で異偏波信号(H偏波信号)のレベルを
スペクトラムアナライザ等を用いて測定する。そして、
これらの測定結果を用いて、XPD値を算出して、回線
劣化の状況を取得する。
Now, in such a communication system, a line deterioration state (for example, XP
D value) must be measured, but in the past, the state of line deterioration was measured by the following means. That is, after the operating system is stopped (or detoured), first, only the CH1 V-polarized signal is transmitted from the transmitting station 100, and the level of the self-polarized signal is input at the input of the receiving unit 39 of the receiving station 200. Is measured using a spectrum analyzer or the like.
Only the H n + 1 H-polarized signal is transmitted, and the level of the differently-polarized signal (H-polarized signal) is measured at the input of the receiving unit 39 of the receiving station 200 using a spectrum analyzer or the like. And
The XPD value is calculated using these measurement results, and the state of the line deterioration is acquired.

【0010】[0010]

【発明が解決しようとする課題】しかし、上記従来の回
線劣化状況(XPD値)の測定は、受信局200の受信
部39の入力で自偏波、異偏波双方のレベルを直接測定
しているため、次なる問題がある。即ち、運用時におけ
る受信部39には異偏波信号の漏れ込み分を含む自偏波
信号が入力されるため、周波数の等しいこれらの信号を
スペクトラムアナライザでレベル測定したとしても、夫
々のレベルを個々に測定することはできず、レベルの高
い一方のレベル(通常は自偏波信号の方がレベルが高
い)だけしか測定することができない。従って、XPD
値を測定するためには、異偏波信号が自偏波信号に埋れ
てしまわないように、一旦運用しているシステムを停止
(又は迂回)し、送信局100から異偏波信号のみの送
信を行い、異偏波信号のレベル測定を行わなければなら
ず、運用システムを停止(又は迂回)することなく、回
線劣化状況(XPD値)を測定することは困難であっ
た。
However, in the conventional measurement of the line degradation state (XPD value), the level of both the own polarization and the different polarization is directly measured at the input of the receiving section 39 of the receiving station 200. Therefore, there are the following problems. That is, since the self-polarized signal including the leakage of the differently-polarized signal is input to the receiving unit 39 during operation, even if these signals having the same frequency are measured with a spectrum analyzer, the respective levels are not changed. It cannot be measured individually, but only one of the higher levels (usually the self-polarized signal has a higher level) can be measured. Therefore, XPD
In order to measure the value, the operating system is temporarily stopped (or bypassed) so that the different polarization signal is not buried in the own polarization signal, and the transmission station 100 transmits only the different polarization signal. To measure the level of the different polarization signal, and it is difficult to measure the line degradation state (XPD value) without stopping (or bypassing) the operation system.

【0011】本発明は上記従来技術の問題点に鑑みなさ
れたもので、その目的とする所は、回線運用時でも主信
号系に影響を与えることなく回線劣化状況(XPD値)
の測定を可能とする異偏波干渉量のモニタ方法及びその
装置を提供することにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object the purpose of the present invention is to provide a circuit degradation state (XPD value) without affecting the main signal system even during line operation.
It is an object of the present invention to provide a method and apparatus for monitoring the amount of interference of different polarizations, which enables measurement of the amount of interference.

【0012】[0012]

【課題を解決するための手段】上記の課題は例えば図1
の構成により解決される。即ち、本発明(1)の異偏波
干渉量のモニタ方法は、予め主信号系受信回路38の入
力に複数XPDレベルの異偏波干渉信号を入力し、かつ
復調部40の入力で雑音を付加してその復調出力のビッ
トエラー率BERが所定値(例えば1×10-4)となる
時のC/N−XPD(異偏波干渉量)特性を測定してお
き、前記主信号系受信回路38の運用時には、ある受信
偏分波信号CH1−inの受信部39の出力を分岐させ
てその一方を前記主信号系受信回路38の復調部40及
び他方を(好ましくはこれと同一構成の)XPDモニタ
回路70Aで夫々復調すると共に、前記XPDモニタ回
路70Aの入力にその復調出力のビットエラー率BER
が前記所定値(1×10-4)となるまでの雑音Nを付加
し、その時のC/N値と前記C/N−XPD特性とから
前記主信号系受信回路38のXPD値を推定するもので
ある。
The above-mentioned problem is solved, for example, by referring to FIG.
Is solved. That is, in the method of monitoring the amount of different polarization interference according to the present invention (1), different polarization interference signals of a plurality of XPD levels are input to the input of the main signal receiving circuit 38 in advance, and noise is input to the demodulator 40. In addition, the C / N-XPD (different polarization interference amount) characteristic when the bit error rate BER of the demodulated output becomes a predetermined value (for example, 1 × 10 −4 ) is measured, and the main signal system reception is performed. In the operation of the circuit 38, the output of the receiving unit 39 of a certain received polarization split signal CH1-in is branched, and one of the branched signals is divided into the demodulation unit 40 of the main signal receiving circuit 38 and the other (preferably having the same configuration as this). The demodulation is performed by the XPD monitor circuit 70A, and the bit error rate BER of the demodulated output is input to the input of the XPD monitor circuit 70A.
Is added to the predetermined value (1 × 10 −4 ), and the XPD value of the main signal receiving circuit 38 is estimated from the C / N value at that time and the C / N-XPD characteristic. Things.

【0013】図1において、C/N−XPD(異偏波干
渉量)特性データは、予め主信号系受信回路38に複数
XPDレベルの異偏波干渉信号を入力し、かつ復調部4
0の入力で雑音を付加してその復調出力のビットエラー
率BERが所定値(例えば1×10-4)となる時のC/
N−XPD特性を表しており、図の右側のカーブは交差
偏波間干渉補償機能(XPIC)をOFFさせた場合を
示している。
In FIG. 1, C / N-XPD (different polarization interference amount) characteristic data is obtained by inputting different polarization interference signals of a plurality of XPD levels to a main signal receiving circuit 38 in advance, and
When noise is added at the input of 0 and the bit error rate BER of the demodulated output becomes a predetermined value (for example, 1 × 10 −4 ), C /
The N-XPD characteristic is shown, and the curve on the right side of the figure shows the case where the cross polarization interference compensation function (XPIC) is turned off.

【0014】ところで、この例のXPDモニタ回路70
Aは主信号系受信回路38の復調部40と同一構成(同
一復調特性)であるため、もし雑音Nを付加しない場合
は、両回路で起こる復調作用(特性)は略同一と考えて
良い。そこで、ここではXPDモニタ回路70Aにおけ
る動作を説明する。
The XPD monitor circuit 70 of this embodiment
Since A has the same configuration (same demodulation characteristics) as the demodulation unit 40 of the main signal receiving circuit 38, if no noise N is added, the demodulation effects (characteristics) occurring in both circuits may be considered to be substantially the same. Therefore, the operation of the XPD monitor circuit 70A will be described here.

【0015】今、XPDモニタ回路70Aがある未知の
XPD=大(異偏波干渉分=小)で動作している時は、
相対的に大きな雑音Nを付加した時に例えば図のa点で
BER=1×10-4となる。またXPDモニタ回路70
Aが他のある未知のXPD=小(異偏波干渉分=大)で
動作している時は、相対的に小さな雑音Nを付加した時
に例えば図のb点でBER=1×10-4となる。そこ
で、予め主信号系受信回路38につき複数XPDレベル
(即ち、XPD値をパラメータとする)の異偏波干渉信
号を入力してその時に加えた雑音(C/N)との組合せ
によりその復調出力のビットエラー率BERが所定値
(例えば1×10-4)となる時のC/N−XPD特性を
測定しておく。
Now, when the XPD monitor circuit 70A operates at a certain unknown XPD = large (different polarization interference = small),
When relatively large noise N is added, for example, BER = 1 × 10 −4 at point a in the figure. The XPD monitor circuit 70
When A is operating with another unknown XPD = small (different polarization interference = large), when relatively small noise N is added, for example, BER = 1 × 10 −4 at point b in FIG. Becomes Therefore, a plurality of different polarization interference signals of a plurality of XPD levels (that is, using the XPD value as a parameter) are input to the main signal receiving circuit 38 in advance, and the demodulated output is combined with the noise (C / N) added at that time. The C / N-XPD characteristic when the bit error rate BER of the above becomes a predetermined value (for example, 1 × 10 −4 ) is measured.

【0016】そして、この主信号系受信回路38の運用
中においては、XPDモニタ回路70A(即ち、主信号
系受信回路38)がある未知のXPD値で動作している
場合に、今、ある雑音Nを付加した時に例えば図のe点
でBER=1×10-4になったとすると、上記C/N−
XPD(XPIC−OFF)特性からその時の動作XP
D値を知ることができる。なお、この時のC/N値は直
接測定しても良いし、又は受信キャリアCAの振幅と加
えた雑音Nの大きさから求めても良い。なお、上記C/
N−XPD特性のC/N軸に代えて、雑音N軸を採用
し、N−XPD特性とすることは、本発明に含まれるも
のである。
During the operation of the main signal receiving circuit 38, when the XPD monitor circuit 70A (that is, the main signal receiving circuit 38) is operating at a certain unknown XPD value, a certain noise is generated. For example, if BER = 1 × 10 −4 at point e in the figure when N is added, the above C / N−
From the XPD (XPIC-OFF) characteristic, the operation XP at that time
D value can be known. The C / N value at this time may be measured directly, or may be obtained from the amplitude of the received carrier CA and the magnitude of the added noise N. The above C /
The use of the noise N axis instead of the C / N axis of the N-XPD characteristic to provide the N-XPD characteristic is included in the present invention.

【0017】なお、この時、運用中の主信号系受信回路
38では、交差偏波間干渉補償機能(XPIC)がON
しているため、そのC/N−XPDカーブ(図のXPI
C−ON)は動作XPD値がより小(異偏波干渉分がよ
り大)となった時にBER=1×10-4となる様な位置
まで改善(シフト)されている。
At this time, in the operating main signal receiving circuit 38, the cross-polarization interference compensation function (XPIC) is turned on.
The C / N-XPD curve (XPI in the figure)
C-ON) has been improved (shifted) to a position where BER = 1 × 10 −4 when the operating XPD value becomes smaller (the amount of different polarization interference becomes larger).

【0018】かくして、本発明(1)によれば、主信号
系受信回路38が運用中であっても該主信号系信号処理
に何ら影響を与えることなく、また本回線を迂回する必
要も無く、動作XPD値の測定が可能となる。
Thus, according to the present invention (1), even when the main signal system receiving circuit 38 is in operation, there is no influence on the main signal system signal processing and there is no need to bypass the main circuit. , The operation XPD value can be measured.

【0019】また上記の課題は例えば図1の構成により
解決される。即ち、本発明(2)の無線装置は、同一周
波数の交差偏波から互いに交差する偏波信号を夫々抽出
して受信、復調する無線装置において、前記復調前の信
号を分岐する分岐手段53と、該分岐された信号に雑音
を付加し、C/N比を変化させる雑音付加手段71と、
該雑音が付加された信号を復調する復調手段70Aと、
該復調されたデータのビットエラー率を算出するBER
算出手段76と、前記C/N比と前記ビットエラー率と
の関係から回線劣化状況を推定する推定手段90とを備
えるものである。
The above-mentioned problem can be solved, for example, by the structure shown in FIG. That is, the wireless device of the present invention (2) is a wireless device that extracts and receives and demodulates mutually cross-polarized signals from cross-polarized waves of the same frequency. Noise adding means 71 for adding noise to the split signal and changing the C / N ratio;
Demodulation means 70A for demodulating the noise-added signal;
BER for calculating a bit error rate of the demodulated data
It comprises a calculating means 76 and an estimating means 90 for estimating the state of line degradation from the relationship between the C / N ratio and the bit error rate.

【0020】また本発明(3)の無線装置は、同一周波
数の交差偏波から互いに交差する偏波信号を夫々抽出し
て受信、復調する無線装置において、前記復調前の信号
を分岐する分岐手段と、該分岐された信号に雑音を付加
し、C/N比を変化させる雑音付加手段と、該雑音が付
加された信号を復調する復調手段と、該復調されたデー
タのビットエラー率を算出するBER算出手段と、該B
ER算出手段が算出したビットエラー率が所定の値とな
るように前記雑音付加手段が付加する雑音レベルを制御
する雑音レベル制御手段と、ビットエラー率が前記所定
の値となる場合におけるC/N比と回線劣化状況との関
係を記憶する記憶手段と、該BER算出手段が算出した
BERが前記所定の値となったときの、前記C/N比に
対応する回線劣化状況を出力する回線劣化状況推定手段
とを備えるものである。
In the wireless device of the present invention (3), in a wireless device for extracting and receiving and demodulating mutually crossed polarized signals from cross polarized waves of the same frequency, a branching means for branching the signal before demodulation. Noise adding means for adding noise to the branched signal to change the C / N ratio, demodulating means for demodulating the signal to which the noise is added, and calculating a bit error rate of the demodulated data. BER calculation means for performing
Noise level control means for controlling a noise level added by the noise addition means so that the bit error rate calculated by the ER calculation means becomes a predetermined value; and C / N when the bit error rate becomes the predetermined value. Storage means for storing the relationship between the ratio and the line degradation state; and line degradation for outputting the line degradation state corresponding to the C / N ratio when the BER calculated by the BER calculation means reaches the predetermined value. And a situation estimating means.

【0021】[0021]

【発明の実施の形態】以下、添付図面に従って本発明に
好適なる実施の形態を詳細に説明する。なお、全図を通
して同一符号は同一又は相当部分を示すものとする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings. Note that the same reference numerals indicate the same or corresponding parts throughout the drawings.

【0022】図2は実施の形態による多重無線装置の一
部構成を示す図で、例えば上記図4の多重無線通信シス
テムの受信局200側に適用して好適なるものである。
図において、70は異偏波干渉量をモニタするためのX
PDモニタ、71は可変レベルの雑音を付加可能な雑音
付加回路、72はミキサ(MIX)、73はA/D変換
器(A/D)、74は信号処理部、75はFEC演算
部、76はBER演算部である。チャネル対応部381
の構成は上記図5で述べたものと同様で良い。
FIG. 2 is a diagram showing a partial configuration of a multiplex radio apparatus according to the embodiment, which is suitably applied to, for example, the receiving station 200 side of the multiplex radio communication system of FIG.
In the figure, reference numeral 70 denotes X for monitoring the amount of interference of different polarizations.
PD monitor, 71 is a noise adding circuit that can add variable level noise, 72 is a mixer (MIX), 73 is an A / D converter (A / D), 74 is a signal processing unit, 75 is an FEC operation unit, and 76 Is a BER operation unit. Channel corresponding unit 38 1
May be the same as that described with reference to FIG.

【0023】但し、この復調部40にはCH1の主信号
(受信偏波VR)を主信号系受信回路とXPDモニタ7
0とに2分配するためのハイブリッド(HYB)53が
設けられる。また好ましくは上記XPDモニタ70にお
けるミキサ72,A/D変換器73,信号処理部74,
FEC演算部75の各構成(特に回路特性等)は夫々C
H1の主信号処理系におけるミキサ55,A/D変換器
57,信号処理部61,FEC演算部62と同一であ
る。更に、予め主信号系受信回路40のにつき、C/N
−XPD特性を測定した際の、雑音付加回路71、BE
R測定部76は共通である。尚、特性が略同一なら回路
構成が同一であることを要求するものでは無い。
However, the demodulation section 40 supplies the main signal of the CH1 (reception polarization VR) to the main signal receiving circuit and the XPD monitor 7.
A hybrid (HYB) 53 for two distributions to 0 and 0 is provided. Preferably, the mixer 72, the A / D converter 73, the signal processing unit 74,
Each configuration (particularly, circuit characteristics, etc.) of the FEC operation unit 75 is C
This is the same as the mixer 55, the A / D converter 57, the signal processing unit 61, and the FEC operation unit 62 in the main signal processing system of H1. Further, the C / N ratio of the main signal receiving circuit 40 is determined in advance.
The noise adding circuit 71, BE when measuring the XPD characteristic;
The R measurement unit 76 is common. If the characteristics are substantially the same, there is no requirement that the circuit configuration be the same.

【0024】従って、もし雑音を付加しない時は、CH
1の主信号系とXPDモニタ70とで同一の復調特性
(BER)が得られる。また、雑音を付加すると、XP
Dモニタ70では現在のXPD値に雑音が付加された形
となり、その受信状態が悪化してそのBER値が増加す
る。この状態で、FEC演算部75は、受信1フレーム
中にビット誤りが存在した場合に、ビット誤りの個数に
応じて例えばパルス(エラーパルス)信号を出力する。
BER測定部76は、FEC演算部75からのパルス出
力を単位時間当たりでカウントし、単位時間当たりのビ
ットエラーレートBERを算出する。
Therefore, if no noise is added, CH
The same demodulation characteristic (BER) can be obtained by the main signal system 1 and the XPD monitor 70. When noise is added, XP
In the D monitor 70, noise is added to the current XPD value, the reception state deteriorates, and the BER value increases. In this state, when a bit error exists in one received frame, the FEC operation unit 75 outputs, for example, a pulse (error pulse) signal according to the number of bit errors.
The BER measuring unit 76 counts the pulse output from the FEC calculating unit 75 per unit time and calculates a bit error rate BER per unit time.

【0025】また、図示しないが、XPDモニタ70の
雑音付加回路71に雑音を付加させ、かつその時のBE
R測定部76の出力をモニタし、そのビットエラー率が
一定となるまで雑音を付加させ、その際には、予め測定
しておいた復調部40についてのC/N−XPD特性に
基づき、復調部40の動作XPDを推定するXPD推定
手段90を更に備える。
Although not shown, noise is added to the noise adding circuit 71 of the XPD monitor 70, and the BE at that time is added.
The output of the R measurement unit 76 is monitored, and noise is added until the bit error rate becomes constant. At this time, demodulation is performed based on the C / N-XPD characteristics of the demodulation unit 40 measured in advance. An XPD estimating unit 90 for estimating the operation XPD of the unit 40 is further provided.

【0026】係る構成により、ハイブリッド53で信号
を分岐し、これをXPDモニタ70に入力し、この状態
で、XPD推定手段90は、ある未知のXPD値で動作
中のXPDモニタ70の入力に対して雑音を付加し、そ
のBERが所定値(例えば1×10-4)になる時のC/
N値を測定し、これを予め主信号系回路について測定し
ておいたC/N−XPD特性に参照することで、そのC
/N値に対応するXPD(D/U)値を推定できる。
With this configuration, the signal is branched by the hybrid 53 and input to the XPD monitor 70. In this state, the XPD estimating means 90 receives the signal of the operating XPD monitor 70 at a certain unknown XPD value. When the BER reaches a predetermined value (for example, 1 × 10 -4 ), C /
By measuring the N value and referring to the C / N-XPD characteristic measured in advance for the main signal system circuit,
The XPD (D / U) value corresponding to the / N value can be estimated.

【0027】図3は実施の形態におけるC/N−XPD
特性を説明する図で、図3(A)はC/N−BER特性
を示している。図において、一般にC/Nが大きい(雑
音Nが小さい)状態ではビットエラーは殆ど発生しない
が、C/Nが小さく(雑音Nが大きくなる)とビットエ
ラーが発生し、図示の様なグラフが得られる。この時、
BERが1×10-3〜1×10-5の範囲ではC/NとB
ERとの関係が明瞭(一意的)となっており、ここでは
例えば1×10-4を採用する。
FIG. 3 shows C / N-XPD according to the embodiment.
FIG. 3A illustrates the C / N-BER characteristic. In the figure, generally, bit error hardly occurs when C / N is large (noise N is small), but bit error occurs when C / N is small (noise N is large). can get. At this time,
C / N and B when BER is in the range of 1 × 10 −3 to 1 × 10 −5
The relationship with ER is clear (unique), and for example, 1 × 10 −4 is adopted here.

【0028】図3(B)はBERが所定値(例えば1×
10-4)となる時のC/N−XPD特性を示している。
図において、今、XPDモニタ回路70(即ち、主信号
系受信回路)がある未知のXPD=大(異偏波干渉分=
小)で動作している時は、相対的に大きな雑音Nを付加
した時に例えば図のa点でBER=1×10-4となる。
またXPDモニタ回路70が他のある未知のXPD=小
(異偏波干渉分=大)で動作している時は、相対的に小
さな雑音Nを付加した時に例えば図のb点でBER=1
×10-4となる。
FIG. 3B shows that the BER is a predetermined value (for example, 1 ×
10-4 ) shows the C / N-XPD characteristic at the time when it becomes 10-4 ).
In the figure, the XPD monitor circuit 70 (ie, main signal receiving circuit) has an unknown XPD = large (different polarization interference =
When operating at (small), when relatively large noise N is added, for example, BER = 1 × 10 −4 at point a in the figure.
When the XPD monitor circuit 70 is operating with another unknown XPD = small (different polarization interference = large), when a relatively small noise N is added, for example, BER = 1 at point b in FIG.
× 10 -4 .

【0029】そこで、予め主信号系受信回路38につき
複数XPDレベルの異偏波干渉信号(即ち、XPD値を
パラメータとして)を入力してその時に加えた雑音(C
/N)との組合せによりその復調出力のビットエラー率
BERが所定値(例えば1×10-4)となる時のC/N
−XPD特性を測定しておく。そして、この主信号系受
信回路38の運用中においては、XPDモニタ回路70
(即ち、主信号系受信回路38)がある未知のXPD値
で動作している場合に、今、ある雑音Nを付加した時に
例えば図のe点でBER=1×10-4になったとする
と、上記C/N−XPD(XPIC−OFF)特性から
その時の動作XPD値を知ることができる。なお、この
時、運用中の主信号系受信回路38では、交差偏波間干
渉補償機能(XPIC)がONしているため、そのC/
N−XPDカーブ(図のXPIC−ON)は動作XPD
値がより小(異偏波干渉分がより大)となった時にBE
R=1×10-4となる様な位置まで改善(シフト)され
ている。
Therefore, a plurality of XPD-level different polarization interference signals (that is, the XPD values are used as parameters) are input to the main signal receiving circuit 38 in advance, and the noise (C
/ N) when the bit error rate BER of the demodulated output becomes a predetermined value (for example, 1 × 10 −4 ) by the combination with C / N).
-Measure XPD characteristics. During the operation of the main signal receiving circuit 38, the XPD monitor circuit 70
If the main signal receiving circuit 38 is operating with an unknown XPD value, and BER = 1 × 10 −4 at a point e in the figure when a certain noise N is added, The operating XPD value at that time can be known from the C / N-XPD (XPIC-OFF) characteristic. At this time, since the cross-polarization interference compensation function (XPIC) is ON in the operating main signal receiving circuit 38, the C / C
The N-XPD curve (XPIC-ON in the figure) is the operating XPD
BE becomes smaller when the value becomes smaller (the amount of cross polarization interference becomes larger).
It is improved (shifted) to a position where R = 1 × 10 −4 .

【0030】なお、上記本発明に好適なる実施の形態を
述べたが、本発明思想を逸脱しない範囲内で各部の構
成、制御、及びこれらの組合せの様々な変更が行えるこ
とは言うまでも無い。例えば、上記ビットエラー率の測
定方法等について、他の公知手段との置換を妨げるもの
では無い。
Although the preferred embodiment of the present invention has been described, it goes without saying that various changes in the configuration, control, and combinations thereof can be made without departing from the spirit of the present invention. . For example, the method of measuring the bit error rate and the like do not prevent replacement with other known means.

【0031】[0031]

【発明の効果】以上述べた如く本発明によれば、主信号
系受信回路の運用中でも、該主信号系信号処理に何ら影
響を与えることなく、また主信号回線を迂回する必要も
無く、運用XPD値の測定が可能となり、よってコチャ
ンネル配置の多重無線通信システムにおけるチャネル増
設性及び保守性等の向上に寄与する所が極めて大きい。
As described above, according to the present invention, even when the main signal system receiving circuit is in operation, it does not affect the main signal system signal processing and does not need to bypass the main signal line. It is possible to measure the XPD value, which greatly contributes to the improvement of channel addition and maintenance in a multiplex wireless communication system with co-channel arrangement.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理を説明する図である。FIG. 1 is a diagram illustrating the principle of the present invention.

【図2】実施の形態による多重無線装置の一部構成を示
す図である。
FIG. 2 is a diagram showing a partial configuration of a multiplex radio apparatus according to an embodiment.

【図3】実施の形態におけるC/N−XPD特性を説明
する図である。
FIG. 3 is a diagram illustrating C / N-XPD characteristics in the embodiment.

【図4】従来技術を説明する(1)である。FIG. 4 is (1) illustrating a conventional technique.

【図5】従来技術を説明する(2)である。FIG. 5 is a diagram (2) illustrating a conventional technique.

【符号の説明】[Explanation of symbols]

311 〜31n チャネル対応部 32 変調部 33 送信部 34 合波部 35,36 アンテナ 37 偏分波部 381 〜38n チャネル対応部 39 受信部 40 復調部 51,52 アンプ(AGC回路) 54 局部発振回路(LO) 55,56,72 ミキサ(MIX) 61,74 信号処理部 62,75 FEC演算部 63 信号処理部(XPIC) 70 XPDモニタ 71 雑音付加回路 76 BER演算部 100 送信局 200 受信局31 1 to 31 n channel corresponding section 32 Modulating section 33 transmitting section 34 multiplexing section 35, 36 antenna 37 polarization splitting section 38 1 to 38 n channel corresponding section 39 receiving section 40 demodulating section 51, 52 amplifier (AGC circuit) 54 Local oscillation circuit (LO) 55, 56, 72 Mixer (MIX) 61, 74 Signal processing unit 62, 75 FEC operation unit 63 Signal processing unit (XPIC) 70 XPD monitor 71 Noise adding circuit 76 BER operation unit 100 Transmission station 200 Reception Station

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5K014 EA08 GA02 HA05 HA10 5K022 DD03 DD31 5K042 AA06 BA11 CA02 CA12 CA18 DA01 DA27 EA03 EA15 FA11 FA21 GA11 HA11 JA01 JA08 LA11 MA04 5K052 AA03 BB02 DD04 EE17 EE40 FF31 GG26 GG48 GG57  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 予め主信号系受信回路に複数XPDレベ
ルの異偏波干渉信号と雑音とを入力してその復調出力の
ビットエラー率が所定値となる時のC/N−XPD(異
偏波干渉量)特性を測定しておき、前記主信号系受信回
路の運用時には、ある受信偏分波信号を分岐させてその
一方を前記主信号系受信回路及び他方をXPDモニタ回
路で夫々復調すると共に、前記XPDモニタ回路の入力
にその復調出力のビットエラー率が前記所定値となるま
での雑音を付加し、その時のC/N値と前記C/N−X
PD特性とから前記主信号系受信回路のXPD値を推定
することを特徴とする異偏波干渉量のモニタ方法。
1. A C / N-XPD (heteropolarization) when a bit error rate of a demodulated output thereof is input to a main signal receiving circuit in advance by inputting a plurality of XPD levels of different polarization interference signals and noise to a predetermined value. (Wave interference amount) characteristics are measured in advance, and when the main signal receiving circuit is operated, a received polarization split signal is branched and one of the signals is demodulated by the main signal receiving circuit and the other is demodulated by the XPD monitor circuit. At the same time, noise is added to the input of the XPD monitor circuit until the bit error rate of the demodulated output reaches the predetermined value, and the C / N value at that time and the C / N-X
A method for monitoring the amount of interference of different polarization interference, comprising estimating an XPD value of the main signal receiving circuit from PD characteristics.
【請求項2】 同一周波数の交差偏波から互いに交差す
る偏波信号を夫々抽出して受信、復調する無線装置にお
いて、 前記復調前の信号を分岐する分岐手段と、 該分岐された信号に雑音を付加し、C/N比を変化させ
る雑音付加手段と、 該雑音が付加された信号を復調する復調手段と、 該復調されたデータのビットエラー率を算出するBER
算出手段と、 前記C/N比と前記ビットエラー率との関係から回線劣
化状況を推定する推定手段とを備えることを特徴とする
無線装置。
2. A radio apparatus for extracting and receiving and demodulating polarization signals crossing each other from cross polarizations of the same frequency, wherein: a branching means for branching the signal before demodulation; Noise adding means for changing the C / N ratio, demodulating means for demodulating the signal to which the noise is added, and BER for calculating the bit error rate of the demodulated data.
A wireless device comprising: a calculating unit; and an estimating unit that estimates a channel degradation state from a relationship between the C / N ratio and the bit error rate.
【請求項3】 同一周波数の交差偏波から互いに交差す
る偏波信号を夫々抽出して受信、復調する無線装置にお
いて、 前記復調前の信号を分岐する分岐手段と、 該分岐された信号に雑音を付加し、C/N比を変化させ
る雑音付加手段と、 該雑音が付加された信号を復調する復調手段と、 該復調されたデータのビットエラー率を算出するBER
算出手段と、 該BER算出手段が算出したビットエラー率が所定の値
となるように前記雑音付加手段が付加する雑音レベルを
制御する雑音レベル制御手段と、 ビットエラー率が前記所定の値となる場合におけるC/
N比と回線劣化状況との関係を記憶する記憶手段と、 該BER算出手段が算出したBERが前記所定の値とな
ったときの、前記C/N比に対応する回線劣化状況を出
力する回線劣化状況推定手段とを備えることを特徴とす
る無線装置。
3. A radio apparatus for extracting and receiving and demodulating polarization signals crossing each other from cross polarizations of the same frequency, wherein: a branching means for branching the signal before demodulation; Noise adding means for changing the C / N ratio, demodulating means for demodulating the signal to which the noise is added, and BER for calculating the bit error rate of the demodulated data.
Calculation means; noise level control means for controlling the noise level added by the noise addition means so that the bit error rate calculated by the BER calculation means becomes a predetermined value; and the bit error rate becomes the predetermined value. C / in case
Storage means for storing a relationship between the N ratio and the line degradation state; and a line for outputting a line deterioration state corresponding to the C / N ratio when the BER calculated by the BER calculation means reaches the predetermined value. A wireless device comprising: a deterioration state estimating unit.
JP37544199A 1999-12-28 1999-12-28 Method and device for monitoring different polarization interference quantity Withdrawn JP2001189710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37544199A JP2001189710A (en) 1999-12-28 1999-12-28 Method and device for monitoring different polarization interference quantity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37544199A JP2001189710A (en) 1999-12-28 1999-12-28 Method and device for monitoring different polarization interference quantity

Publications (1)

Publication Number Publication Date
JP2001189710A true JP2001189710A (en) 2001-07-10

Family

ID=18505532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37544199A Withdrawn JP2001189710A (en) 1999-12-28 1999-12-28 Method and device for monitoring different polarization interference quantity

Country Status (1)

Country Link
JP (1) JP2001189710A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047865A (en) * 2009-08-28 2011-03-10 Fujitsu Ltd Device and method for antenna evaluation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047865A (en) * 2009-08-28 2011-03-10 Fujitsu Ltd Device and method for antenna evaluation

Similar Documents

Publication Publication Date Title
JP3298911B2 (en) Wireless receiver
US10164700B2 (en) Fault detection method and fault detection device for external antenna
JP2882147B2 (en) Transmission power control method
JP2005237038A (en) Communication system and communication method
US7659708B2 (en) Broadcast receiver having integrated spectrum analysis
US6047019A (en) Receiver for spectrum spread communication system
JPH1056394A (en) Method and device for d.c. offset and spurious am suppression of direct conversion and reception device
US4313220A (en) Circuit and method for reducing polarization crosstalk caused by rainfall
CN101461155A (en) Diversity receiving device and diversity receiving method
US8526533B2 (en) Systems and methods for measuring I-Q mismatch
JP2001177452A (en) Diversity transmission/reception method and system
JP2001189710A (en) Method and device for monitoring different polarization interference quantity
EP0684703B1 (en) Circuit for removing random fm noise
JPH0613951A (en) Diversity system in mobile communication using single-frequency alternate communication system
KR100251586B1 (en) Apparatus for automatic gain control of digital radio mobile telecommunication system
KR100948427B1 (en) Signal receiver/transmitter and control mecthod thereof
US6567646B1 (en) Method and apparatus in a radio communication system
KR100579784B1 (en) Oscillation control system of relay station using frequency hopping
JP5185017B2 (en) Coaxial cable loss compensation system
JP2002077094A (en) Cross polarized wave interference eliminating system
JP2734310B2 (en) Wireless transmission equipment
JP2654546B2 (en) Alarm detection method for diversity receiver
US20180184354A1 (en) Dynamic crossband link method and wireless extender
KR20020053736A (en) Transmitting/receiving system and transmitting/receiving apparatus
KR200332434Y1 (en) Interference Signal Elimination Circuit of Radio Relay Apparatus for In-phase Elimination Form using Primary Signal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070306