JP2001188067A - Dna chip manufacturing method - Google Patents

Dna chip manufacturing method

Info

Publication number
JP2001188067A
JP2001188067A JP28737899A JP28737899A JP2001188067A JP 2001188067 A JP2001188067 A JP 2001188067A JP 28737899 A JP28737899 A JP 28737899A JP 28737899 A JP28737899 A JP 28737899A JP 2001188067 A JP2001188067 A JP 2001188067A
Authority
JP
Japan
Prior art keywords
oligonucleotide
complementary
solid phase
capillary
dna chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28737899A
Other languages
Japanese (ja)
Inventor
Hideji Fujiwake
秀司 藤分
Yoshiaki Osugi
義彰 大杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP28737899A priority Critical patent/JP2001188067A/en
Publication of JP2001188067A publication Critical patent/JP2001188067A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00364Pipettes
    • B01J2219/00367Pipettes capillary
    • B01J2219/00369Pipettes capillary in multiple or parallel arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • B01J2219/00529DNA chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00585Parallel processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00596Solid-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00608DNA chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00722Nucleotides
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B60/00Apparatus specially adapted for use in combinatorial chemistry or with libraries
    • C40B60/14Apparatus specially adapted for use in combinatorial chemistry or with libraries for creating libraries

Abstract

PROBLEM TO BE SOLVED: To shorten the manufacturing time of DNA chips and to reduce manufacturing cost. SOLUTION: Template oligonucleotide 2 is fixed to the inner wall surface of a capillary tube 4 (A), and a large number of capillary tubes 4 in which template oligonucleotide 2 is fixed to the inner wall surfaces are prepared. Then their one-end sides are two-dimensionally arranged and bundled. A PCR reaction liquid 6 is filled in the capillary tubes 4 (B) to synthesize complementary oligonucleotide 8 by the PCR reaction with the template oligonucleotide 2 as a template (C). Than the PCR reaction liquid 6 is removed D, and the template oligonucleotide 2 is dissociated from the oligonucleotide 8 (E). One faces of the capillary tubes 4 are brought into contact with the surface 10 of a nylon film to make a part of an eluate 12 adhere to the surface 10 of the nylon film and to move the oligonucleotide 8 to the side of the surface 10 of the nylon film and fix it to the surface 10 of the nylon film (F).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多数のオリゴヌク
レオチドが固相表面に整列して固定化されたDNAチッ
プの製造方法に関するものである。
[0001] The present invention relates to a method for producing a DNA chip in which a large number of oligonucleotides are aligned and immobilized on a solid phase surface.

【0002】[0002]

【従来の技術】遺伝子の発現の様子をモニタする方法と
して、DNAチップを用いる方法がある。DNAチップ
は、種々遺伝子に対応した多数のオリゴヌクレオチド
(DNAプローブともいう)が固相表面に整列して固定
化されてオリゴヌクレオチドマトリックスが形成された
素子である。DNAチップを用いる方法では、PCR反応
(Polymerase Chain Reaction)を用いて、試料としての
mRNA(メッセンジャーRNA)のcDNA(相補的
なDNA)を合成し、断片化した後に各断片に蛍光標識
をつけて標識断片とする。これらの標識断片をDNAチ
ップに接触させ、DNAチップに固定化されたオリゴヌ
クレオチドにハイブリダイゼーションさせる。標識断片
は配列が相補的なオリゴヌクレオチドに保持され、過剰
量の標識断片は洗浄操作で除去される。その後、蛍光顕
微鏡を用いて保持された標識断片の量及び位置を検出
し、対応するオリゴヌクレオチドの種類を調べる。この
方法は配列既知の遺伝子の発現をモニタするのに適して
いる。
2. Description of the Related Art As a method for monitoring the state of gene expression, there is a method using a DNA chip. A DNA chip is a device in which a large number of oligonucleotides (also referred to as DNA probes) corresponding to various genes are aligned and immobilized on a solid phase surface to form an oligonucleotide matrix. In the method using a DNA chip, cDNA (complementary DNA) of mRNA (messenger RNA) as a sample is synthesized using a PCR reaction (Polymerase Chain Reaction), and after fragmentation, each fragment is labeled with a fluorescent label. Label the fragment. These labeled fragments are brought into contact with a DNA chip, and hybridized to oligonucleotides immobilized on the DNA chip. The labeled fragment is retained on the oligonucleotide whose sequence is complementary, and the excess labeled fragment is removed by a washing operation. Thereafter, the amount and position of the retained labeled fragment are detected using a fluorescence microscope, and the type of the corresponding oligonucleotide is examined. This method is suitable for monitoring the expression of a gene whose sequence is known.

【0003】DNAチップの製造方法は、大別して次の
3種類がある。第1の方法では、光化学的に除去できる
保護基で修飾した複数のリンカーを、アミノ基を介し
て、固相表面に結合させて配列しておく。半導体製造技
術で使用されているフォトリソグラフィー技術を応用し
て、所望のリンカー固定位置のみを照射できるマスクを
介して光照射し、保護基を除去する。次に、光化学的に
除去できる保護基をもつ単量体を導入して最初のカップ
リング反応を行なう。これによって、その部分だけオリ
ゴヌクレオチドが伸長される。フォトリソグラフィー及
び単量体の導入を繰り返すことにより、所望のオリゴヌ
クレオチドマトリックスを形成する。
[0003] DNA chip manufacturing methods are roughly classified into the following three types. In the first method, a plurality of linkers modified with a protecting group that can be removed photochemically are arranged to be bound to the surface of a solid phase via an amino group. By applying photolithography technology used in semiconductor manufacturing technology, light is irradiated through a mask capable of irradiating only a desired linker fixing position to remove a protective group. Next, a monomer having a protecting group that can be removed photochemically is introduced, and the first coupling reaction is performed. As a result, the oligonucleotide is extended by that portion. By repeating photolithography and monomer introduction, a desired oligonucleotide matrix is formed.

【0004】第2の方法では、固定化するオリゴヌクレ
オチドを予め準備し、そのオリゴヌクレオチドをガラス
やポリマー膜などの固相表面に微量滴下し、その位置に
共有結合によって固定化する。例えば、固相表面にイソ
チオシアネート基を導入しておき、オリゴヌクレオチド
の末端をアミノ基にしておけば、イソチオシアネート基
固定位置にオリゴヌクレオチドを共有結合によって容易
に固定化することができる。第3の方法では、固定化す
るオリゴヌクレオチドを予め準備し、そのオリゴヌクレ
オチドをガラスやポリマー膜などの固相表面に微量滴下
し、その滴下位置に吸着作用によって固定化する。
In the second method, an oligonucleotide to be immobilized is prepared in advance, a small amount of the oligonucleotide is dropped on a solid surface such as glass or a polymer film, and immobilized by covalent bonding at the position. For example, if an isothiocyanate group is introduced on the surface of the solid phase and the terminal of the oligonucleotide is an amino group, the oligonucleotide can be easily immobilized at the isothiocyanate group fixing position by covalent bonding. In the third method, an oligonucleotide to be immobilized is prepared in advance, a small amount of the oligonucleotide is dropped on a solid phase surface such as glass or a polymer film, and the oligonucleotide is immobilized at the dropping position by an adsorption action.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記の第1の
方法では、オリゴヌクレオチドを伸長するごとに、フォ
トリソグラフィー及び単量体の導入を繰り返さなければ
ならず、DNAチップを作製するのに長時間を要し、製
造コストが高くなるという問題があった。上記の第2の
方法及び第3の方法では、いずれの方法においても、PC
R反応などにより増幅した複数種のオリゴヌクレオチド
を専用のスポッティング装置に取り込み、固相表面に順
次配列して滴下するので、DNAチップを作製するのに
長時間を要し、これらの方法でも製造コストが高くなる
という問題があった。そこで本発明は、DNAチップの
製造時間を短縮することにより、製造コストを低減する
ことを目的とするものである。
However, in the above first method, photolithography and introduction of monomers must be repeated each time the oligonucleotide is extended, which is a long time for producing a DNA chip. There is a problem that it takes time and the manufacturing cost is increased. In the above second and third methods, in either method, the PC
Multiple types of oligonucleotides amplified by the R reaction, etc. are taken into a dedicated spotting device, sequentially arrayed and dropped on the solid surface, and it takes a long time to prepare a DNA chip. There was a problem that becomes high. Therefore, an object of the present invention is to reduce the manufacturing cost by reducing the manufacturing time of a DNA chip.

【0006】[0006]

【課題を解決するための手段】本発明のDNAチップの
製造方法は、以下の工程を含むものである。 (A)1又は複数本のキャピラリー部材の内壁に鋳型オ
リゴヌクレオチドを固定化する工程、(B)上記キャピ
ラリー部材内で複製反応を行ない、上記鋳型オリゴヌク
レオチドに相補的なオリゴヌクレオチドを合成する工
程、(C)上記キャピラリー部材の一端側に他の固相表
面を配置し、上記相補的なオリゴヌクレオチドを上記他
の固相表面に移動させる工程、(D)上記相補的なオリ
ゴヌクレオチドを上記他の固相表面に固定化する工程。
The method for producing a DNA chip of the present invention includes the following steps. (A) a step of immobilizing a template oligonucleotide on the inner wall of one or more capillary members; (B) a step of performing a replication reaction in the capillary member to synthesize an oligonucleotide complementary to the template oligonucleotide; (C) disposing another solid phase surface on one end side of the capillary member, and moving the complementary oligonucleotide to the other solid phase surface; and (D) transferring the complementary oligonucleotide to the other solid phase surface. Step of immobilizing on the surface of a solid phase.

【0007】1又は複数本のキャピラリー部材の内壁に
鋳型オリゴヌクレオチドを固定化し、その鋳型オリゴヌ
クレオチドを鋳型として複製反応を行なう。ここで複製
反応とは、鋳型オリゴヌクレオチドに相補的なオリゴヌ
クレオチドを合成することをいい、例えばPCR反応が挙
げられる。相補的なオリゴヌクレオチドを合成した後、
相補的なオリゴヌクレオチドを他の固相表面に移動さ
せ、他の固相表面に固定化する。複数のキャピラリー部
材を用いた場合、相補的なオリゴヌクレオチドを他の固
相表面に整列して固定化すれば、所望のオリゴヌクレオ
チドマトリックスをもつDNAチップを作製することが
できる。
[0007] A template oligonucleotide is immobilized on the inner wall of one or more capillary members, and a replication reaction is performed using the template oligonucleotide as a template. Here, the term “replication reaction” refers to the synthesis of an oligonucleotide complementary to a template oligonucleotide, such as a PCR reaction. After synthesizing a complementary oligonucleotide,
The complementary oligonucleotide is transferred to another solid phase surface and immobilized on another solid phase surface. When a plurality of capillary members are used, a DNA chip having a desired oligonucleotide matrix can be produced by aligning and immobilizing complementary oligonucleotides on another solid phase surface.

【0008】[0008]

【発明の実施の形態】工程(A)は、複数のキャピラリ
ー部材を用い、工程(C)は、他の固相表面への相補的
なオリゴヌクレオチドの移動を2以上のキャピラリー部
材で同時に行なうことが好ましい。その結果、製造時間
を短縮することができる。複数の相補的なオリゴヌクレ
オチドを、一度に又は複数回に分けて、他の固相表面に
整列して固定化すれば、DNAチップを作製することが
できる。ただし、工程(B)の複製反応は、複数のキャ
ピラリー部材についてそれぞれ行なってもよいし、同時
に行なってもよい。
BEST MODE FOR CARRYING OUT THE INVENTION In the step (A), a plurality of capillary members are used, and in the step (C), complementary oligonucleotides are simultaneously transferred to another solid-phase surface by two or more capillary members. Is preferred. As a result, the manufacturing time can be reduced. A DNA chip can be prepared by arranging and immobilizing a plurality of complementary oligonucleotides on the surface of another solid phase at once or by dividing the oligonucleotide into a plurality of times. However, the replication reaction in step (B) may be performed for each of the plurality of capillary members, or may be performed simultaneously.

【0009】工程(A)は、複数のキャピラリー部材の
一端側を二次元的に配列して用い、工程(B)は、すべ
てのキャピラリー部材で同時に複製反応を行ない、工程
(C)は、他の固相表面への相補的なオリゴヌクレオチ
ドの移動をすべてのキャピラリー部材で同時に行ない、
工程(D)は、すべての相補的なオリゴヌクレオチドを
他の固相表面に同時に固定化することが好ましい。その
結果、製造時間をさらに短縮することができる。
In the step (A), one end side of a plurality of capillary members is two-dimensionally arranged and used. In the step (B), a replication reaction is simultaneously performed on all the capillary members. Transfer of complementary oligonucleotides to the solid phase surface of all the capillary members at the same time,
In the step (D), it is preferable that all complementary oligonucleotides are simultaneously immobilized on another solid phase surface. As a result, the manufacturing time can be further reduced.

【0010】ところで、従来の製造方法によって同じオ
リゴヌクレオチドマトリックスをもつDNAチップを大
量に製造する場合、各DNAチップごとに同じ操作を繰
り返して1枚ずつ製造する必要があり、その製造コスト
が下がらないという問題があった。そこで、工程(C)
は、工程(B)で合成した相補的なオリゴヌクレオチド
のうちの一部のみを他の固相表面に移動させる操作であ
り、工程(D)の後に、他の固相表面とは異なる1又は
複数の固相表面に残りの相補的なオリゴヌクレオチドを
順次移動させ、固定化する工程(E)を含むことが好ま
しい。その結果、同じオリゴヌクレオチドマトリックス
をもつDNAチップを大量に、かつ容易に製造すること
ができる。工程(C)における他の固相表面への相補的
なオリゴヌクレオチドの移動は、相補的なオリゴヌクレ
オチドを電気的に移動させる操作であることが好まし
い。その結果、相補的なオリゴヌクレオチドを確実に他
の固相表面に移動させることができる。
When a large number of DNA chips having the same oligonucleotide matrix are produced by a conventional production method, it is necessary to repeat the same operation for each DNA chip to produce one chip at a time, and the production cost does not decrease. There was a problem. Then, step (C)
Is an operation of transferring only a part of the complementary oligonucleotide synthesized in the step (B) to another solid-phase surface, and after the step (D), 1 or It is preferable to include a step (E) of sequentially moving the remaining complementary oligonucleotides to the surfaces of the plurality of solid phases and immobilizing them. As a result, a large amount of DNA chips having the same oligonucleotide matrix can be easily produced. It is preferable that the transfer of the complementary oligonucleotide to the other solid phase surface in the step (C) is an operation of electrically transferring the complementary oligonucleotide. As a result, the complementary oligonucleotide can be reliably transferred to another solid phase surface.

【0011】[0011]

【実施例】図1は、一実施例を示すフロー図である。た
だし、この実施例は本明細書の特許請求の範囲を限定す
るものではない。 (A)DNAチップに固定化するオリゴヌクレオチドに
相補的な配列をもつ鋳型オリゴヌクレオチド2を中空の
キャピラリーチューブ(キャピラリー部材)4の内部に
導入し、キャピラリーチューブ4の内壁表面に固定化す
る。鋳型オリゴヌクレオチド2の固定化は、鋳型オリゴ
ヌクレオチド2の末端にアミノ基を導入し、キャピラリ
ーチューブ4の内壁表面にイソチオシアネート基を導入
して、共有結合によって行なった。ただし、固定化の方
法は、オリゴヌクレオチドにアミノ基以外の官能基を導
入し、その官能基に共有結合性を有する物質でキャピラ
リーチューブ4の内壁に表面処理を施して共有結合させ
る方法や、オリゴヌクレオチドの荷電を利用して、ポリ
陽イオンでキャピラリーチューブ4の内壁に表面処理を
施して静電結合させる方法など、他の方法を用いてもよ
い。
FIG. 1 is a flowchart showing one embodiment. However, this example does not limit the scope of the claims of this specification. (A) A template oligonucleotide 2 having a sequence complementary to an oligonucleotide to be immobilized on a DNA chip is introduced into a hollow capillary tube (capillary member) 4 and immobilized on the inner wall surface of the capillary tube 4. The immobilization of the template oligonucleotide 2 was carried out by introducing an amino group into the end of the template oligonucleotide 2 and introducing an isothiocyanate group to the inner wall surface of the capillary tube 4, and by covalent bonding. However, the immobilization method includes introducing a functional group other than an amino group into the oligonucleotide and subjecting the inner wall of the capillary tube 4 to a surface treatment with a substance having a covalent bond to the functional group so that the oligonucleotide is covalently bonded. Another method may be used, such as a method in which the inner wall of the capillary tube 4 is subjected to a surface treatment with a polycation to make electrostatic coupling by utilizing the charge of the nucleotide.

【0012】(B)それぞれ異なる鋳型オリゴヌクレオ
チド2を内壁に固定化したキャピラリーチューブ4を多
数準備し、それらの一端側を二次元的に配列して束ね
る。ただし、図1では1本のキャピラリーチューブ4の
みを示す。鋳型オリゴヌクレオチド2を鋳型としてPCR
反応を行なう。PCR反応を行なう装置としては、例えばT
he RapidCycler(IDAHO TECHNOLOGY INC.(米国)の製
品)を用いることができる。PCRバッファー、プライマ
ー、dNTP(デオキシヌクレオチド・トリフォスフェ
ート)、DNAポリメラーゼなど、PCR反応に必要な溶
液を混合してPCR反応液6を調製し、キャピラリーチュ
ーブ4内にPCR反応液6を充填する。
(B) A number of capillary tubes 4 having different template oligonucleotides 2 immobilized on the inner wall are prepared, and one end side thereof is two-dimensionally arranged and bundled. However, only one capillary tube 4 is shown in FIG. PCR using template oligonucleotide 2 as a template
Perform the reaction. As a device for performing a PCR reaction, for example, T
he RapidCycler (a product of IDAHO TECHNOLOGY INC. (USA)) can be used. A PCR reaction solution 6 is prepared by mixing solutions necessary for the PCR reaction, such as a PCR buffer, primers, dNTP (deoxynucleotide triphosphate), and DNA polymerase, and the capillary reaction tube 6 is filled with the PCR reaction solution 6.

【0013】(C)加熱及び冷却処理を施してPCR反応
を行なわせる。キャピラリーチューブ4内では、鋳型オ
リゴヌクレオチド2に相補的なオリゴヌクレオチド8が
合成され、鋳型オリゴヌクレオチド2にハイブリダイゼ
ーションする。 (D)オリゴヌクレオチド8が形成された後、キャピラ
リーチューブ4内の洗浄を行なってPCR反応液6を除去
する。 (E)キャピラリーチューブ4内に、尿素やホルムアミ
ドなどの変性剤を含む解離液(図示は省略)を導入し、
ハイブリダイゼーションした鋳型オリゴヌクレオチド2
とオリゴヌクレオチド8を解離させる。鋳型オリゴヌク
レオチド2とオリゴヌクレオチド8を解離させる手段は
熱変性でもよい。
(C) A PCR reaction is carried out by performing a heating and cooling treatment. In the capillary tube 4, an oligonucleotide 8 complementary to the template oligonucleotide 2 is synthesized and hybridized to the template oligonucleotide 2. (D) After the oligonucleotide 8 is formed, the inside of the capillary tube 4 is washed to remove the PCR reaction solution 6. (E) A dissociation solution (not shown) containing a denaturant such as urea or formamide is introduced into the capillary tube 4,
Hybridized template oligonucleotide 2
And oligonucleotide 8 are dissociated. The means for dissociating the template oligonucleotide 2 and the oligonucleotide 8 may be heat denaturation.

【0014】(F)キャピラリーチューブ4の一端面に
対向してナイロン膜表面10(他の固相表面)を配置
し、キャピラリーチューブ4の一端面をナイロン膜表面
10に接触させる。キャピラリーチューブ4の一端面を
ナイロン膜表面10に接触させると、キャピラリーチュ
ーブ4内の解離液12(工程(E)で鋳型オリゴヌクレ
オチド2とオリゴヌクレオチド8が解離して得られた溶
液)の一部は、ナイロン膜表面10の付着力によってキ
ャピラリーチューブ4外に流出し、ナイロン膜表面10
に付着する。オリゴヌクレオチド8は、キャピラリーチ
ューブ4外に流出した解離液12とともにナイロン膜表
面10に移動され、ナイロン膜表面10の付着力によっ
てナイロン膜表面10に固定化される。図示は省略され
ているが、一端側が二次元に配列された多数のキャピラ
リーチューブ内でそれぞれ合成された相補的なオリゴヌ
クレオチドを同時にナイロン膜表面10に移動させて固
定化することにより、DNAチップを作製する。その
後、ナイロン膜表面10に紫外線照射を行なって、オリ
ゴヌクレオチド8a,8bをナイロン膜表面10に共有
結合的に保持してもよい。
(F) A nylon membrane surface 10 (another solid-phase surface) is arranged so as to face one end surface of the capillary tube 4, and one end surface of the capillary tube 4 is brought into contact with the nylon membrane surface 10. When one end surface of the capillary tube 4 is brought into contact with the nylon membrane surface 10, a part of the dissociation solution 12 (the solution obtained by dissociating the template oligonucleotide 2 and the oligonucleotide 8 in the step (E)) in the capillary tube 4 Flows out of the capillary tube 4 due to the adhesive force of the nylon membrane surface 10, and the nylon membrane surface 10
Adheres to The oligonucleotide 8 is moved to the nylon membrane surface 10 together with the dissociation solution 12 flowing out of the capillary tube 4 and is immobilized on the nylon membrane surface 10 by the adhesive force of the nylon membrane surface 10. Although not shown, the complementary oligonucleotides synthesized in a number of two-dimensionally arrayed capillary tubes at one end are simultaneously moved to the nylon membrane surface 10 and immobilized to immobilize the DNA chip. Make it. Thereafter, ultraviolet light may be applied to the nylon film surface 10 to covalently hold the oligonucleotides 8a and 8b on the nylon film surface 10.

【0015】工程(F)の後、鋳型オリゴヌクレオチド
2を除去しないようにキャピラリーチューブ4内を洗浄
し、再度PCR反応液6を充填してオリゴヌクレオチド8
を合成し、そのオリゴヌクレオチド8を他の固相表面に
移動及び固定化する操作を繰り返せば、同じオリゴヌク
レオチドマトリックスをもつDNAチップを容易に製造
することができる。この実施例では、オリゴヌクレオチ
ド8を合成した後、PCR反応液を除去したが、同じオリ
ゴヌクレオチドマトリックスをもつDNAチップを2以
上製造する場合には、相補的なオリゴヌクレオチドをPC
R反応によって多数合成し、PCR反応液を除去せずに、相
補的なオリゴヌクレオチドを含むPCR反応液を複数のナ
イロン膜に順次移動させ、固定化するようにすれば、同
じオリゴヌクレオチドマトリックスをもつDNAチップ
を容易に製造することができる。また、
After the step (F), the inside of the capillary tube 4 is washed so as not to remove the template oligonucleotide 2, and the PCR reaction solution 6 is filled again to remove the oligonucleotide 8
Is synthesized, and the operation of moving and immobilizing the oligonucleotide 8 to another solid phase surface is repeated, whereby a DNA chip having the same oligonucleotide matrix can be easily produced. In this example, after the oligonucleotide 8 was synthesized, the PCR reaction solution was removed. However, when two or more DNA chips having the same oligonucleotide matrix were to be produced, the complementary oligonucleotide was replaced with a PC.
By synthesizing a large number by R reaction and transferring the PCR reaction solution containing complementary oligonucleotides sequentially to multiple nylon membranes without removing the PCR reaction solution and immobilizing it, it has the same oligonucleotide matrix A DNA chip can be easily manufactured. Also,

【0016】オリゴヌクレオチド8をナイロン膜表面1
0に移動させる際に、キャピラリーチューブ4の他端側
(ナイロン膜表面10に対向する側とは反対側)を陰極
とし、ナイロン膜表面10側を陽極として、キャピラリ
ーチューブ4の他端側、ナイロン膜表面10間に電圧を
印加することによって電気的に移動させてもよい。ま
た、キャピラリーチューブ4の他端側から加圧して解離
液12を押し出してもよい。
Oligonucleotide 8 is applied to nylon membrane surface 1
0, the other end of the capillary tube 4 (the side opposite to the side facing the nylon membrane surface 10) is used as a cathode, the nylon membrane surface 10 is used as an anode, and the other end of the capillary tube 4 is used as a nylon. The film may be electrically moved by applying a voltage between the film surfaces 10. Alternatively, the dissociation solution 12 may be extruded by applying pressure from the other end of the capillary tube 4.

【0017】この実施例では、DNAチップのオリゴヌ
クレオチドマトリックス形成領域としてナイロン膜を用
いているが本発明はこれに限定されるものではなく、ガ
ラスや他のポリマー膜など、オリゴヌクレオチドを固定
化できる固相であれば如何なるものであってもよい。ま
た、オリゴヌクレオチドの代わりに、DNAのホスホジ
エステル結合をペプチド結合に変換した人工核酸(ペプ
チド核酸ともいう)を用いてもよい。
In this embodiment, the nylon membrane is used as the oligonucleotide matrix forming region of the DNA chip. However, the present invention is not limited to this, and the oligonucleotide can be immobilized on glass or another polymer membrane. Any solid phase may be used. Instead of the oligonucleotide, an artificial nucleic acid (also referred to as a peptide nucleic acid) in which a phosphodiester bond of DNA is converted into a peptide bond may be used.

【0018】[0018]

【発明の効果】本発明のDNAチップの製造方法では、
1又は複数本のキャピラリー部材の内壁に鋳型オリゴヌ
クレオチドを固定化し、そのキャピラリー部材内で複製
反応を行なって鋳型オリゴヌクレオチドに相補的なオリ
ゴヌクレオチドを合成し、その後、相補的なオリゴヌク
レオチドを他の固相表面に移動させ、相補的なオリゴヌ
クレオチドを他の固相表面に固定化するようにしたの
で、DNAチップを短時間かつ低コストで製造すること
ができる。
According to the method for producing a DNA chip of the present invention,
The template oligonucleotide is immobilized on the inner wall of one or more capillary members, and a replication reaction is performed in the capillary member to synthesize an oligonucleotide complementary to the template oligonucleotide. Since the oligonucleotide is transferred to the solid phase surface and the complementary oligonucleotide is immobilized on another solid phase surface, a DNA chip can be manufactured in a short time and at low cost.

【0019】さらに、複数のキャピラリー部材を用い、
他の固相表面への相補的なオリゴヌクレオチドの移動を
2以上のキャピラリー部材で同時に行なうようにすれ
ば、製造時間をさらに短縮することができる。さらに、
複数のキャピラリー部材の一端側を二次元的に配列して
用い、すべてのキャピラリー部材で同時に複製反応を行
ない、他の固相表面への相補的なオリゴヌクレオチドの
移動をすべてのキャピラリー部材で同時に行ない、すべ
ての相補的なオリゴヌクレオチドを他の固相表面に同時
に固定化するようにすれば、製造時間をさらに短縮し、
かつ製造コストを低減できる。さらに、相補的なオリゴ
ヌクレオチドのうちの一部のみを他の固相表面に移動さ
せ、他の固相表面とは異なる1又は複数の固相表面に残
りの相補的なオリゴヌクレオチドを順次移動させ、固定
化するようにすれば、同じオリゴヌクレオチドマトリッ
クスをもつDNAチップを大量に、かつ容易に製造する
ことができる。
Furthermore, using a plurality of capillary members,
If the transfer of the complementary oligonucleotide to the surface of another solid phase is performed simultaneously by two or more capillary members, the production time can be further reduced. further,
One end side of a plurality of capillary members is arranged two-dimensionally, and a replication reaction is performed simultaneously on all the capillary members, and a complementary oligonucleotide is transferred to another solid phase surface simultaneously on all the capillary members. By immobilizing all complementary oligonucleotides simultaneously on other solid-phase surfaces, the production time can be further reduced,
And the manufacturing cost can be reduced. Further, only a part of the complementary oligonucleotides is moved to another solid surface, and the remaining complementary oligonucleotides are sequentially moved to one or more solid surfaces different from the other solid surfaces. If immobilized, a large amount of DNA chips having the same oligonucleotide matrix can be easily manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 一実施例を示すフロー図である。FIG. 1 is a flowchart showing one embodiment.

【符号の説明】[Explanation of symbols]

2,8 オリゴヌクレオチド 4 キャピラリーチューブ 6 PCR反応液 10 ナイロン膜 12 解離液 2,8 Oligonucleotide 4 Capillary tube 6 PCR reaction solution 10 Nylon membrane 12 Dissociation solution

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4B024 AA11 AA20 CA01 CA09 HA14 HA19 4B029 AA07 AA23 BB20 CC03 CC08 CC11 FA12 FA15 4B063 QA01 QA08 QQ42 QR32 QR84 QS02 QS25 QS34 QS39 QX02 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4B024 AA11 AA20 CA01 CA09 HA14 HA19 4B029 AA07 AA23 BB20 CC03 CC08 CC11 FA12 FA15 4B063 QA01 QA08 QQ42 QR32 QR84 QS02 QS25 QS34 QS39 QX02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 以下の工程を含むDNAチップの製造方
法。 (A)1又は複数のキャピラリー部材の内壁に鋳型オリ
ゴヌクレオチドを固定化する工程、(B)前記キャピラ
リー部材内で複製反応を行ない、前記鋳型オリゴヌクレ
オチドに相補的なオリゴヌクレオチドを合成する工程、
(C)前記キャピラリー部材の一端側に他の固相表面を
配置し、前記相補的なオリゴヌクレオチドを前記他の固
相表面に移動させる工程、(D)前記相補的なオリゴヌ
クレオチドを前記他の固相表面に固定化する工程。
1. A method for producing a DNA chip comprising the following steps. (A) a step of immobilizing a template oligonucleotide on the inner wall of one or a plurality of capillary members, (B) a step of performing a replication reaction in the capillary member to synthesize an oligonucleotide complementary to the template oligonucleotide,
(C) arranging another solid-phase surface on one end side of the capillary member, and moving the complementary oligonucleotide to the other solid-phase surface; and (D) transferring the complementary oligonucleotide to the other solid-phase surface. Step of immobilizing on the surface of a solid phase.
【請求項2】 前記工程(A)は、複数のキャピラリー
部材を用い、前記工程(C)は、前記他の固相表面への
前記相補的なオリゴヌクレオチドの移動を2以上のキャ
ピラリー部材で同時に行なわせる操作を含む請求項1に
記載のDNAチップの製造方法。
2. The step (A) uses a plurality of capillary members, and the step (C) uses the two or more capillary members to simultaneously transfer the complementary oligonucleotide to the other solid phase surface. The method for producing a DNA chip according to claim 1, further comprising an operation to be performed.
【請求項3】 前記工程(A)は、複数のキャピラリー
部材の一端側を二次元的に配列して用い、前記工程
(B)は、すべてのキャピラリー部材で同時に前記複製
反応を行ない、前記工程(C)は、前記他の固相表面へ
の前記相補的なオリゴヌクレオチドの移動をすべてのキ
ャピラリー部材で同時に行ない、前記工程(D)は、す
べての前記相補的なオリゴヌクレオチドを前記他の固相
表面に同時に固定化する操作を含む請求項2に記載のD
NAチップの製造方法。
3. The step (A) uses two-dimensionally arranged one end sides of a plurality of capillary members, and the step (B) performs the replication reaction simultaneously on all the capillary members. (C) performs the transfer of the complementary oligonucleotide to the other solid phase surface simultaneously in all the capillary members, and the step (D) includes transferring all the complementary oligonucleotides to the other solid phase. 3. D according to claim 2, comprising the step of simultaneously immobilizing on the phase surface.
Manufacturing method of NA chip.
【請求項4】 前記工程(C)は、前記工程(B)で合
成した相補的なオリゴヌクレオチドのうちの一部のみを
前記他の固相表面に移動させる操作であり、前記工程
(D)の後に、前記他の固相表面とは異なる1又は複数
の固相表面に残りの前記相補的なオリゴヌクレオチドを
順次移動させ、固定化する工程(E)を含む請求項1か
ら3のいずれかに記載のDNAチップの製造方法。
4. The step (C) is an operation of transferring only a part of the complementary oligonucleotide synthesized in the step (B) to the other solid phase surface, and the step (D) 4. The method according to claim 1, further comprising a step (E) of sequentially moving the remaining complementary oligonucleotides to one or more solid phase surfaces different from the other solid phase surface and immobilizing the remaining complementary oligonucleotides. 3. The method for producing a DNA chip according to item 1.
【請求項5】 前記工程(C)における他の固相表面へ
の相補的なオリゴヌクレオチドの移動は、相補的なオリ
ゴヌクレオチドを電気的に移動させる操作である請求項
1から4のいずれかに記載のDNAチップの製造方法。
5. The method according to claim 1, wherein the transfer of the complementary oligonucleotide to another surface of the solid phase in the step (C) is an operation of electrically transferring the complementary oligonucleotide. The method for producing a DNA chip according to the above.
JP28737899A 1999-10-07 1999-10-07 Dna chip manufacturing method Pending JP2001188067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28737899A JP2001188067A (en) 1999-10-07 1999-10-07 Dna chip manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28737899A JP2001188067A (en) 1999-10-07 1999-10-07 Dna chip manufacturing method

Publications (1)

Publication Number Publication Date
JP2001188067A true JP2001188067A (en) 2001-07-10

Family

ID=17716589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28737899A Pending JP2001188067A (en) 1999-10-07 1999-10-07 Dna chip manufacturing method

Country Status (1)

Country Link
JP (1) JP2001188067A (en)

Similar Documents

Publication Publication Date Title
US5905024A (en) Method for performing site-specific affinity fractionation for use in DNA sequencing
US8357490B2 (en) Integrated instrument performing synthesis and amplification, and a system and method thereof
US7211654B2 (en) Linkers and co-coupling agents for optimization of oligonucleotide synthesis and purification on solid supports
RU2552215C2 (en) Device and method of selecting nucleic acids by means of micro-arrays
JP3488465B2 (en) Microfabricated flow-through porosity device for separately detecting binding reactions
US11753743B2 (en) High-throughput single-cell polyomics
UA48119C2 (en) Method for determining the nucleic acid molecule sequence (versions) and a set for use at the nucleic acid sequence
JP7375998B2 (en) Biochip, its preparation method and use
WO1997007245A1 (en) Methods and devices for parallel multiplex polynucleotide sequencing
CN102482717A (en) Carrier For Holding Nucleic Acids
JP2023511465A (en) Kits, systems and flow cells
JP2001128683A (en) Method for fixing dna fragment and method for detecting dna chip and nucleic acid fragment
JP2001116750A (en) Method for manufacturing reactive chip, reactive chip manufactured by the method and reactive substance
JP2001188067A (en) Dna chip manufacturing method
JP2001108677A (en) Manufacturing method for dna chip
JP2001299346A (en) Solid phase pcr method using immobilized primer
EP1471355B1 (en) Method of fixing biomolecule to carrier
EP3931355B1 (en) Time-based cluster imaging of amplified contiguity preserved liarary fragments of genomic dna
JP2001108676A (en) Dna chip manufacturing method
JP2001136964A (en) Method for preparing pcr plate and dna chip