JP2001188028A - Infrared-ray stress image device - Google Patents

Infrared-ray stress image device

Info

Publication number
JP2001188028A
JP2001188028A JP37452299A JP37452299A JP2001188028A JP 2001188028 A JP2001188028 A JP 2001188028A JP 37452299 A JP37452299 A JP 37452299A JP 37452299 A JP37452299 A JP 37452299A JP 2001188028 A JP2001188028 A JP 2001188028A
Authority
JP
Japan
Prior art keywords
phase
temperature
stress
image
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP37452299A
Other languages
Japanese (ja)
Inventor
Akihisa Masuki
増喜彰久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP37452299A priority Critical patent/JP2001188028A/en
Publication of JP2001188028A publication Critical patent/JP2001188028A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Image Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an infrared-ray stress image device which can detect the phase where temperature variation with stress becomes maximum at higher S/N than before and speedily and accurately detect the difference between a specific phase (e.g. maximum, zero, or minimum phase, etc.) of a signal syn chronizing with a load and the phase where the stress of a sample becomes maximum. SOLUTION: The infrared-ray stress image device which obtains a stress distribution image by determining the difference between the specific phase of the signal synchronizing with the load and the phase where the stress of the sample becomes maximum by placing the load on the sample in specific cycles, and then integrating and measuring temperature variation on the sample surface resulting from thermoelastic effect by an infrared-ray camera divisionally into a plus temperature image and a minus temperature image in timing to the phase difference and finding the difference image between the two integrated temperature images giving the same sign to specific areas of the difference image including an area where stress is converged and/or an area where ghost is generated and integrating the temperature values given the same sign.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、試料に所定の周期
で荷重を印加し、熱弾性効果による発熱・吸熱作用に基
づく試料表面の温度変化を赤外線カメラで測定すること
によって応力分布を画像化する赤外線応力画像装置に関
し、特に、荷重と同期した同期信号の所定の位相(例え
ば、最大となる位相、ゼロとなる位相、最小となる位相
など)と試料の応力が最大となる位相の位相差を容易に
決定することのできる赤外線応力画像装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides an image of a stress distribution by applying a load to a sample at a predetermined cycle and measuring a temperature change of the sample surface based on a heat generation / absorption action by a thermoelastic effect with an infrared camera. In particular, a phase difference between a predetermined phase (for example, a maximum phase, a zero phase, a minimum phase, etc.) of a synchronization signal synchronized with a load and a phase at which the stress of the sample becomes maximum. The present invention relates to an infrared stress imaging apparatus capable of easily determining the image.

【0002】[0002]

【従来の技術】荷重が印加された物体の各部分に生じる
応力の大きさを測定することは、機械や構造物を設計す
る際に、各部分の形状、使用材料の寸法、材質などを選
択して、完全でしかも経済的な設計を可能にするため
に、極めて重要である。そのため、従来、被測定体に歪
ゲージを貼付し、被測定体に生じる歪を検出して、応力
分布を測定することが行なわれていた。
2. Description of the Related Art Measuring the magnitude of stress generated in each part of an object to which a load is applied is a matter of selecting the shape of each part, the dimensions of the material used, the material, etc. when designing a machine or structure. Thus, it is extremely important to enable a complete and economical design. Therefore, conventionally, a strain gauge has been attached to an object to be measured, a strain generated in the object to be measured has been detected, and a stress distribution has been measured.

【0003】しかしながら、被測定体への歪ゲージの貼
付は面倒で、測定に多大な時間がかかってしまうという
問題があった。これに対し、物体に圧縮・引張荷重を繰
り返し加えると、熱弾性効果に基づく発熱・吸熱現象が
現れる。この発熱および吸熱を比較的短い周期で繰り返
すと、周囲への熱の拡散、あるいは周囲からの熱の流入
が断たれた断熱状態で応力集中部位の表面温度が変化す
る。温度変化量と応力変化量との間には正比例の関係が
あるので、赤外線カメラを用いて荷重が印加された被測
定体の表面温度の変化量を測定することにより、応力分
布を測定する方法が提案されている。このような応力分
布測定方法によれば、従来の歪ゲージなどを利用した応
力分布測定方式に比べて、非接触で迅速かつ簡単に応力
分布を測定することが可能となる。
[0003] However, there is a problem that the attachment of the strain gauge to the object to be measured is troublesome and takes a lot of time for the measurement. On the other hand, when a compression / tensile load is repeatedly applied to the object, a heat generation / endothermic phenomenon based on the thermoelastic effect appears. When the heat generation and heat absorption are repeated in a relatively short cycle, the surface temperature of the stress concentration portion changes in an adiabatic state in which diffusion of heat to the surroundings or inflow of heat from the surroundings is cut off. Since there is a direct relationship between the amount of temperature change and the amount of stress change, a method of measuring the stress distribution by measuring the amount of change in the surface temperature of the object to which a load is applied using an infrared camera. Has been proposed. According to such a stress distribution measuring method, it is possible to measure a stress distribution quickly and easily in a non-contact manner as compared with a conventional stress distribution measuring method using a strain gauge or the like.

【0004】[0004]

【発明が解決しようとする課題】ところで、試料に対し
て圧縮・引張荷重を繰り返し印加したときの試料の応力
変化(あるいは温度変化)は、荷重を印加するアクチュ
エータのシステムや試験機に依存するのみならず、試料
の材質や形状にも依存して、荷重に同期した同期信号の
位相に対して、原因を特定できない所定の位相のずれを
生じる。応力変化量(すなわち温度変化量)は、試料に
荷重を印加したときに生じる最高温度と最低温度との温
度差から求められ、かつ、温度データは荷重に同期した
同期信号に同期して取得されるので、検出した温度変化
信号の最大値および最小値を与える同期信号の位相を決
定し、そのときの温度データを測定して差を求めること
が必要である。
The change in stress (or change in temperature) of the sample when a compressive / tensile load is repeatedly applied to the sample depends only on the actuator system or the test machine to which the load is applied. In addition, depending on the material and shape of the sample, a predetermined phase shift that cannot identify the cause occurs with respect to the phase of the synchronization signal synchronized with the load. The amount of stress change (that is, the amount of temperature change) is obtained from the temperature difference between the highest temperature and the lowest temperature generated when a load is applied to the sample, and the temperature data is obtained in synchronization with a synchronization signal synchronized with the load. Therefore, it is necessary to determine the phase of the synchronization signal that gives the maximum value and the minimum value of the detected temperature change signal, measure the temperature data at that time, and obtain the difference.

【0005】しかしながら、現実に得られる温度変化信
号は滑らかな曲線に成らず、ノイズなどが重畳したギザ
ギザな波形であるので、温度の最大値および最小値を与
える同期信号の位相を決定することは容易ではない。こ
のため、従来、検出信号を積算処理してS/N比を向上
させ、温度データ測定のタイミングを、温度の最大値お
よび最小値を与える同期信号の位相に自動的に合わせる
ようにした自動位相調整方式が提案されている。
However, since the actually obtained temperature change signal does not form a smooth curve but has a jagged waveform on which noise and the like are superimposed, it is not possible to determine the phase of the synchronization signal that gives the maximum and minimum values of the temperature. It's not easy. Therefore, conventionally, the detection signal is integrated to improve the S / N ratio, and the timing of the temperature data measurement is automatically adjusted to the phase of the synchronization signal that gives the maximum and minimum values of the temperature. An adjustment scheme has been proposed.

【0006】また、赤外線カメラを用いた応力測定法で
は、最高温度と最低温度との温度差を取るにあたり、荷
重の印加によって試料が位置ずれすることに起因した温
度画像のずれによる見かけの温度差信号、いわゆるゴー
ストが発生する。このゴーストが最大となる位相と応力
が最大となる位相は、お互いにほぼ一致するので、ゴー
ストが最大となる位相を検出し、その位相に温度画像取
得のタイミングを合わせることによって位相を自動調整
する方法も一般的に行なわれている。
In the stress measurement method using an infrared camera, when the temperature difference between the maximum temperature and the minimum temperature is calculated, an apparent temperature difference due to a temperature image shift caused by a position shift of the sample due to application of a load. A signal, a so-called ghost, occurs. Since the phase in which the ghost is maximized and the phase in which the stress is maximized almost coincide with each other, the phase in which the ghost is maximized is detected, and the phase is automatically adjusted by adjusting the temperature image acquisition timing to the phase. The method is also generally performed.

【0007】しかしながら、これらの自動位相調整方法
は、例えば図1に示すように、赤外線カメラによって測
定された被測定体の温度画像の中の所定の1点の画素、
またはその点を含む近傍の複数点の画素、または同一走
査線上に並んだ所定の範囲の複数点の画素において、最
大の温度変化を与える同期信号の位相を求め、その位相
に温度データ取得のタイミングを自動的に合わせるよう
にした位相調整方式であるため、温度画像中のどの位置
に応力の集中があるか、あるいは温度画像中のどの位置
にゴーストが発生するかを予め知っていなければ、位相
合わせのための測定ポイントを決定することができない
という問題があった。また、従来の自動位相調整方式で
は、限られた数の測定ポイントの温度データを積算して
いるに過ぎないため、S/N比が不足し、自動位相合わ
せに時間がかかったり、正確な位相合わせができないと
いう問題があった。
However, these automatic phase adjustment methods use, for example, as shown in FIG. 1, a predetermined one-point pixel in a temperature image of a measured object measured by an infrared camera.
Or, at a plurality of pixels in the vicinity including the point or a plurality of pixels in a predetermined range arranged on the same scanning line, a phase of a synchronization signal that gives a maximum temperature change is obtained, and the timing of temperature data acquisition is determined as the phase. The phase adjustment method automatically adjusts the phase, so if you do not know in advance where the stress is concentrated in the temperature image or where the ghost occurs in the temperature image, the phase There was a problem that a measurement point for alignment could not be determined. Further, in the conventional automatic phase adjustment method, since the temperature data of a limited number of measurement points are merely integrated, the S / N ratio is insufficient, and it takes time for the automatic phase adjustment, or the accurate phase adjustment is performed. There was a problem that they could not be matched.

【0008】本発明の目的は、上述した点に鑑み、応力
による温度変化が最大となる位相を従来よりも高いS/
N比で検出し、荷重に同期した同期信号の所定の位相
(例えば、最大となる位相、ゼロとなる位相、最小とな
る位相など)と試料の応力が最大となる位相の位相差を
迅速かつ正確に決定することのできる赤外線応力画像装
置を提供することにある。
SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to increase the phase at which the temperature change due to stress is maximum, to a higher S / S than in the prior art.
The phase difference between a predetermined phase (for example, a maximum phase, a zero phase, a minimum phase, and the like) of a synchronization signal detected by an N ratio and a load and synchronized with a load is quickly and quickly determined. An object of the present invention is to provide an infrared stress imaging device that can be accurately determined.

【0009】[0009]

【課題を解決するための手段】この目的を達成するた
め、本発明にかかる赤外線応力画像装置は、試料に所定
の周期で荷重を印加し、荷重と同期した同期信号の所定
の位相と試料の応力が最大となる位相の位相差を決定し
た上で、その位相差に合わせたタイミングで熱弾性効果
に由来する試料表面の温度変化をプラス温度画像とマイ
ナス温度画像に分けて赤外線カメラで積算測定し、積算
された2つの温度画像の差画像を求めることにより応力
分布画像を得るようにした赤外線応力画像装置におい
て、応力の集中する領域及び/又はゴーストの発生する
領域を含む前記差画像の所定の領域の温度値を同符号化
し、その同符号化された温度値を積分することにより、
荷重と同期した同期信号の所定の位相と試料の応力が最
大となる位相の位相差を決定するようにしたことを特徴
としている。
In order to achieve this object, an infrared stress imaging apparatus according to the present invention applies a load to a sample at a predetermined cycle, and sets a predetermined phase of a synchronization signal synchronized with the load with a predetermined phase of the sample. After determining the phase difference of the phase that maximizes the stress, the temperature change of the sample surface due to the thermoelastic effect is divided into a plus temperature image and a minus temperature image at the timing that matches the phase difference, and integrated measurement with an infrared camera Then, in the infrared stress imaging apparatus configured to obtain a stress distribution image by obtaining a difference image between the two integrated temperature images, a predetermined image of the difference image including a region where stress is concentrated and / or a region where ghost occurs is obtained. By encoding the temperature values in the region of the same, and integrating the same encoded temperature values,
A phase difference between a predetermined phase of the synchronization signal synchronized with the load and a phase at which the stress of the sample is maximized is determined.

【0010】[0010]

【発明の実施の形態】以下、図面を参照して、本発明の
実施の形態を説明する。図2は、赤外線応力画像装置の
一実施例を示す図である。繰り返し荷重発生装置2によ
り被測定体1に所定の周期で繰り返し荷重をかけると、
応力の集中した部分は熱弾性効果により繰り返し荷重の
周期に同期して温度が上下する。固体における通常の応
力変化に伴う温度変化の値は非常に小さいため、赤外線
カメラ3で撮影しながら、荷重印加のタイミングに所定
の位相で同期させて温度画像データを繰り返し取って積
算を行ない、微小な温度変化を信号として取り出す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a diagram illustrating an embodiment of the infrared stress imaging apparatus. When a load is repeatedly applied to the DUT 1 at a predetermined cycle by the repetitive load generator 2,
The temperature of the portion where the stress is concentrated rises and falls in synchronization with the cycle of the repeated load due to the thermoelastic effect. Since the value of the temperature change accompanying the normal stress change in the solid is very small, the temperature image data is repeatedly taken in synchronization with the load application timing at a predetermined phase while taking an image with the infrared camera 3, and the integration is performed. The temperature change is extracted as a signal.

【0011】すなわち、図3に示すように、荷重と同期
した同期信号のプラス側のタイミングとマイナス側のタ
イミング(厳密には、温度変化の最大、最小のタイミン
グに合わせる。これは、応力の最大、最小のタイミング
と一致する)とその前後の所定の範囲(例えば、最大応
力値及び最小応力値から、それらの7割程度の応力値ま
での範囲)のデータをサンプリングして積算し、図2の
プラス温度画像積算メモリー4上、及びマイナス温度画
像積算メモリー5上において、各画素ごとに積算された
プラス温度画像とマイナス温度画像を得る。そして、引
き算手段6で2つの温度画像間の引き算を行なうことに
より、温度の変化量に相当する応力画像7を得る。
That is, as shown in FIG. 3, the timing on the plus side and the timing on the minus side of the synchronization signal synchronized with the load (strictly, the timing is adjusted to the maximum and minimum timings of the temperature change. , Which coincides with the minimum timing) and data in a predetermined range before and after that (for example, a range from the maximum stress value and the minimum stress value to about 70% of those stress values) and sampled and integrated. On the plus temperature image integrating memory 4 and the minus temperature image integrating memory 5, the plus temperature image and the minus temperature image integrated for each pixel are obtained. Then, the subtraction means 6 performs subtraction between the two temperature images to obtain a stress image 7 corresponding to the amount of change in temperature.

【0012】このような構成において、効率良く応力分
布画像を取得するためには、図3に示すように、被測定
体に印加される荷重に同期した同期信号の周期から所定
の位相だけずれた温度信号の最大値、および最小値の位
置に温度画像取得のタイミングを合わせることが必要に
なる。従来は、図1に示すように、赤外線カメラによっ
て測定された被測定体の温度画像の中の所定の1点の画
素、またはその点を含む近傍の複数点の画素、または同
一走査線上に並んだ所定の範囲の複数点の画素におい
て、最大の温度変化を与える同期信号の位相を求め、そ
の位相に温度データ測定のタイミングを自動的に合わせ
るようにしていたのであるが、本発明では、図4に示す
ように、被測定体の温度差画像全体、または圧縮・引張
部位やゴースト発生部位が含まれる所定の範囲を設定し
て、温度差画像の各画素の温度差データの絶対値を取
り、その絶対値を設定範囲全体に渡って積分する操作を
同期信号の様々な位相に対して行ない、被測定体の温度
差画像全体、または圧縮・引張部位やゴースト発生部位
が含まれる所定の範囲の温度差画像の温度差データの絶
対値の積分値が最大になるような同期信号の位相を求
め、その位相に温度画像取得のタイミングを合わせるよ
うにする。
In such a configuration, in order to efficiently obtain a stress distribution image, as shown in FIG. 3, the phase is shifted by a predetermined phase from the period of the synchronization signal synchronized with the load applied to the measured object. It is necessary to match the temperature image acquisition timing to the positions of the maximum value and the minimum value of the temperature signal. Conventionally, as shown in FIG. 1, a pixel at a predetermined point in a temperature image of an object to be measured measured by an infrared camera, or pixels at a plurality of nearby points including the point, or aligned on the same scanning line In a plurality of pixels in a predetermined range, the phase of the synchronization signal that gives the maximum temperature change is obtained, and the timing of temperature data measurement is automatically adjusted to that phase. As shown in FIG. 4, by setting the entire temperature difference image of the measured object or a predetermined range including the compression / tensile portion and the ghost occurrence portion, the absolute value of the temperature difference data of each pixel of the temperature difference image is obtained. The operation of integrating the absolute value over the entire set range is performed for various phases of the synchronization signal, and the entire temperature difference image of the measured object, or a predetermined range including a compression / tensile portion or a ghost occurrence portion is included. Temperature Calculated temperature difference absolute value of the integral value of the synchronizing signal so as to maximize the phase of the data of the image, so timing the temperature image acquisition to the phase.

【0013】ここで、温度差データの絶対値を取る理由
は、積分を実行する際に、温度差データにプラスの部分
とマイナスの部分とがあると、互いに相殺されてしまう
ので、それを防ぐためである。従って、この操作は、温
度差データの絶対値を取るのと同等の効果を有する操
作、例えば、温度差データを2乗したり4乗したりする
ことにより同符号の値に変換する操作で置き換えること
も可能である。これらの操作により、応力による温度変
化の絶対値が最大となる位相を従来よりも高いS/N比
で検出し、荷重と同期した同期信号の所定の位相(例え
ば、最大となる位相、ゼロとなる位相、最小となる位相
など)と被測定体の応力が最大となる位相の位相差を迅
速かつ正確に決定することが可能になる。
Here, the reason for taking the absolute value of the temperature difference data is that if a plus portion and a minus portion are present in the temperature difference data during the integration, they will be offset each other, so that this is prevented. That's why. Therefore, this operation is replaced with an operation having an effect equivalent to obtaining the absolute value of the temperature difference data, for example, an operation of converting the temperature difference data to a value of the same sign by squaring or squaring the temperature difference data. It is also possible. By these operations, the phase at which the absolute value of the temperature change due to the stress is maximum is detected at a higher S / N ratio than before, and the predetermined phase of the synchronization signal synchronized with the load (for example, the maximum phase, zero phase) And the phase at which the stress of the measured object becomes the maximum can be quickly and accurately determined.

【0014】図5は、このような本発明にかかる自動位
相調整方法の操作の流れを図示したものである。まず最
初に、予め設定された所定の温度画像領域において、位
相判定のため、温度画像を取得する位相を決める。次
に、圧縮・引張荷重のプラス位相側の所定のタイミング
でプラス温度画像を取得すると共に、圧縮・引張荷重の
マイナス位相側の所定のタイミングでマイナス温度画像
を取得する。次に、得られたプラス温度画像とマイナス
温度画像を引き算手段により温度差画像に変換する。次
に、得られた温度差画像の画素ごとの温度差データを絶
対値化して、設定領域全体に渡って積分する。次に、積
分結果が最大であるか否かを判定し、もし積分結果が最
大でなければ、最初の工程に戻って、温度画像を取得す
る位相を再設定し、同じ判定操作を繰り返す。もし、積
分結果が最大であれば、温度画像の取得位相をその位相
に決定する。
FIG. 5 shows the flow of operation of such an automatic phase adjustment method according to the present invention. First, in a predetermined temperature image region set in advance, a phase for acquiring a temperature image is determined for phase determination. Next, a plus temperature image is obtained at a predetermined timing on the plus phase side of the compression / tensile load, and a minus temperature image is obtained at a predetermined timing on the minus phase side of the compression / tensile load. Next, the obtained plus temperature image and minus temperature image are converted into a temperature difference image by subtraction means. Next, the temperature difference data for each pixel of the obtained temperature difference image is converted into an absolute value and integrated over the entire set area. Next, it is determined whether or not the integration result is the maximum. If the integration result is not the maximum, the process returns to the first step, the phase for acquiring the temperature image is reset, and the same determination operation is repeated. If the integration result is the maximum, the acquisition phase of the temperature image is determined to be the phase.

【0015】尚、積分結果の値が最大であるか否かの判
定は、その位相の前後の位相で測定された温度差画像の
積分結果の値と比較することにより、容易に行なうこと
ができる。
The determination as to whether or not the value of the integration result is the maximum can be easily made by comparing the value of the integration result of the temperature difference image measured at the phase before and after that phase. .

【0016】[0016]

【発明の効果】以上述べたごとく、本発明の赤外線応力
画像装置によれば、被測定体の荷重印加に伴って観測さ
れる表面温度変化の温度差画像の温度差データを同符号
化して、設定領域全体に渡って積分することにより、表
面温度の温度変化が最大となる位相を決定するようにし
たので、温度画像取得に最適な位相を高いS/N比で検
出することができ、迅速かつ正確に温度画像取得の位相
を決定することができる。また、広い温度画像領域の温
度データに基づいて位相合わせを行なうので、応力が集
中する特定部位やゴーストが発生する特定部位を予め知
っておく必要がない。
As described above, according to the infrared stress imaging apparatus of the present invention, the temperature difference data of the temperature difference image of the surface temperature change observed with the application of the load to the measured object is encoded, By integrating over the entire set area, the phase at which the temperature change of the surface temperature is maximized is determined, so that the optimal phase for acquiring the temperature image can be detected at a high S / N ratio, and the phase can be quickly detected. And the phase of temperature image acquisition can be accurately determined. Further, since the phase matching is performed based on the temperature data of the wide temperature image area, it is not necessary to know in advance the specific part where the stress is concentrated or the specific part where the ghost occurs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の赤外線応力画像装置の位相調整方法の特
徴を示す図である。
FIG. 1 is a diagram showing characteristics of a phase adjustment method of a conventional infrared stress imaging apparatus.

【図2】赤外線応力画像装置の一実施例を示す図であ
る。
FIG. 2 is a diagram showing one embodiment of an infrared stress imaging apparatus.

【図3】荷重変化と温度変化の位相関係を示す図であ
る。
FIG. 3 is a diagram showing a phase relationship between a load change and a temperature change.

【図4】本発明の赤外線応力画像装置の位相調整方法の
特徴を示す図である。
FIG. 4 is a diagram showing characteristics of the phase adjustment method of the infrared stress imaging apparatus of the present invention.

【図5】本発明の赤外線応力画像装置における位相調整
方法のフローチャートである。
FIG. 5 is a flowchart of a phase adjustment method in the infrared stress imaging apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1・・・被測定体、2・・・繰り返し負荷発生装置、3・・・赤
外線カメラ、4・・・プラス温度画像積算メモリー、5・・・
マイナス温度画像積算メモリー、6・・・引き算手段、7・
・・応力画像。
DESCRIPTION OF SYMBOLS 1 ... Measurement object, 2 ... Repeated load generator, 3 ... Infrared camera, 4 ... Plus temperature image accumulation memory, 5 ...
Minus temperature image accumulation memory, 6 ... subtraction means, 7
..Stress images.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】試料に所定の周期で荷重を印加し、荷重と
同期した同期信号の所定の位相と試料の応力が最大とな
る位相の位相差を決定した上で、その位相差に合わせた
タイミングで熱弾性効果に由来する試料表面の温度変化
をプラス温度画像とマイナス温度画像に分けて赤外線カ
メラで積算測定し、積算された2つの温度画像の差画像
を求めることにより応力分布画像を得るようにした赤外
線応力画像装置において、応力の集中する領域及び/又
はゴーストの発生する領域を含む前記差画像の所定の領
域の温度値を同符号化し、その同符号化された温度値を
積分することにより、荷重と同期した同期信号の所定の
位相と試料の応力が最大となる位相の位相差を決定する
ようにしたことを特徴とする赤外線応力画像装置。
A load is applied to a sample at a predetermined cycle, and a phase difference between a predetermined phase of a synchronization signal synchronized with the load and a phase at which the stress of the sample is maximized is determined. At the timing, the temperature change of the sample surface due to the thermoelastic effect is divided into a plus temperature image and a minus temperature image, integrated and measured with an infrared camera, and a difference image between the two integrated temperature images is obtained to obtain a stress distribution image. In the infrared stress imaging apparatus configured as above, the temperature values of a predetermined area of the difference image including the area where the stress is concentrated and / or the area where the ghost is generated are coded the same, and the coded temperature values are integrated. The infrared stress imaging apparatus according to claim 1, wherein a phase difference between a predetermined phase of the synchronization signal synchronized with the load and a phase at which the stress of the sample is maximized is determined.
JP37452299A 1999-12-28 1999-12-28 Infrared-ray stress image device Withdrawn JP2001188028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37452299A JP2001188028A (en) 1999-12-28 1999-12-28 Infrared-ray stress image device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37452299A JP2001188028A (en) 1999-12-28 1999-12-28 Infrared-ray stress image device

Publications (1)

Publication Number Publication Date
JP2001188028A true JP2001188028A (en) 2001-07-10

Family

ID=18503994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37452299A Withdrawn JP2001188028A (en) 1999-12-28 1999-12-28 Infrared-ray stress image device

Country Status (1)

Country Link
JP (1) JP2001188028A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006029963A (en) * 2004-07-15 2006-02-02 Takahide Sakagami Method and device for measuring degree of thermal influence by plastic deformation
JP2006153865A (en) * 2004-10-29 2006-06-15 Kobe Steel Ltd Stress measurement method and intensity evaluation method utilizing infrared imager
JP2006267089A (en) * 2005-02-28 2006-10-05 Kobe Steel Ltd Method for estimating stress of structural member
JP2008232708A (en) * 2007-03-19 2008-10-02 Jfe Steel Kk Deterioration degree diagnosis method, deterioration degree diagnostic device, and deterioration diagnosis program
JP2011002352A (en) * 2009-06-19 2011-01-06 Jtekt Corp Rotary device stress measuring method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006029963A (en) * 2004-07-15 2006-02-02 Takahide Sakagami Method and device for measuring degree of thermal influence by plastic deformation
JP4610955B2 (en) * 2004-07-15 2011-01-12 ▲隆▼英 阪上 Method and apparatus for measuring thermal influence due to plastic deformation
JP2006153865A (en) * 2004-10-29 2006-06-15 Kobe Steel Ltd Stress measurement method and intensity evaluation method utilizing infrared imager
JP4578384B2 (en) * 2004-10-29 2010-11-10 株式会社神戸製鋼所 Stress measurement method and strength evaluation method using infrared imaging device
JP2006267089A (en) * 2005-02-28 2006-10-05 Kobe Steel Ltd Method for estimating stress of structural member
JP4630201B2 (en) * 2005-02-28 2011-02-09 株式会社神戸製鋼所 Stress estimation method for structural members
JP2008232708A (en) * 2007-03-19 2008-10-02 Jfe Steel Kk Deterioration degree diagnosis method, deterioration degree diagnostic device, and deterioration diagnosis program
JP2011002352A (en) * 2009-06-19 2011-01-06 Jtekt Corp Rotary device stress measuring method

Similar Documents

Publication Publication Date Title
TWI328962B (en)
US20070219745A1 (en) Method and Apparatus for Measuring Small Displacement
JP2010169506A (en) Device and method for measuring contact force
JP2001324305A (en) Image correspondent position detector and range finder equipped with the same
CN108871185B (en) Method, device and equipment for detecting parts and computer readable storage medium
JP5000895B2 (en) Position correction method in infrared thermoelastic stress measurement
JPWO2009110589A1 (en) Shape measuring apparatus and method, and program
JP2001188028A (en) Infrared-ray stress image device
JP2006284304A5 (en)
JP2002531854A (en) How to increase the signal-to-noise ratio in nondestructive testing.
JP3009579B2 (en) Infrared stress imaging system
JP2009204382A (en) Mtf measuring method and mtf measuring instrument
JP5017556B2 (en) Deformation measuring device, deformation measuring method, and deformation measuring program
KR101437920B1 (en) A correctopn method for the camera wobble when measuring the vibration displacement using camera image
JP2020193820A5 (en)
CN109444150A (en) Contactless crackle measurement method and its device
JP3032381B2 (en) Stress imaging system
US11199394B2 (en) Apparatus for three-dimensional shape measurement
TWI413765B (en) Object characteristic measurement method and system
JP5970892B2 (en) Strain measuring apparatus, method, and program
JPS6138443A (en) Method for imaging stress distribution
CN106998421B (en) Method and device for controlling camera to shoot
JP3040288B2 (en) Infrared stress imaging system
JPH0629834B2 (en) Method of imaging fatigue status of subject
JP3716573B2 (en) Non-contact temperature distribution measuring device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070306