JP2001186698A - Permanent-magnet motor - Google Patents

Permanent-magnet motor

Info

Publication number
JP2001186698A
JP2001186698A JP36844399A JP36844399A JP2001186698A JP 2001186698 A JP2001186698 A JP 2001186698A JP 36844399 A JP36844399 A JP 36844399A JP 36844399 A JP36844399 A JP 36844399A JP 2001186698 A JP2001186698 A JP 2001186698A
Authority
JP
Japan
Prior art keywords
permanent magnet
rotor
width
stator
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36844399A
Other languages
Japanese (ja)
Other versions
JP3683455B2 (en
Inventor
Kazuaki Takizawa
一晃 瀧澤
Shigemitsu Akutsu
重光 圷
Hiroaki Shinoki
弘明 篠木
Tomoyuki Ito
智之 伊藤
Yuji Saito
祐司 斉藤
Hajime Kondo
一 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP36844399A priority Critical patent/JP3683455B2/en
Publication of JP2001186698A publication Critical patent/JP2001186698A/en
Application granted granted Critical
Publication of JP3683455B2 publication Critical patent/JP3683455B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress increase in loss at a high-speed region. SOLUTION: A nearly cylindrical rotor 12 is composed by alternately laminating a plurality of magnetic bodies and electrical insulators. The rotor 12 is provided with a plurality of protrusion poles 14,..., 14 that project from an area on an outer-periphery surface to the outside in a diametric direction and at the same time are extended along the direction of a rotary axis line. The plurality of protrusion poles 14,..., 14 are arranged with a specific interval in a peripheral direction, and a permanent magnet 15 is fitted between the adjacent protrusion poles 14 and 14. An angle θM where magnetic width M of the permanent magnet 15 occupies is set so that θM/θD becomes approximately 0.6 for an angle θD (180 deg. in terms of electrical angle) occupied by one pole of the rotor 12 for a rotary axis line O in the peripheral direction of the rotor 12, and an angle θT occupied by the protrusion pole 14 is set so that θT/θD becomes approximately 0.4. The radio of (magnet width M of the permanent magnet 15) to (width T of the protrusion pole 14) is set so that it becomes approximately 3:2 in the peripheral direction of the rotor 12. In this case, θD is equal to θM+θT.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、界磁として永久磁
石を用いる永久磁石式モータに関する。
The present invention relates to a permanent magnet motor using a permanent magnet as a field.

【0002】[0002]

【従来の技術】従来、例えば鉄等の磁性体からなる略円
筒状の回転子の外周部に、周方向に所定の間隔を置いて
複数の永久磁石を配置して、固定子に巻回された巻線に
通電電流として交番電流を通電することで固定子側に回
転磁界を発生させ、この回転磁界と永久磁石との間に発
生する吸引/反発力、つまり磁石トルクにより回転子を
回転させる永久磁石式モータが知られている。こうした
永久磁石式モータでは、永久磁石の量を増加することに
よって通電電流当たりの磁石トルク量、つまり磁石トル
ク定数を増加させることができるが、一方で、回転子の
回転数当たりの逆起電圧、つまり逆起電圧定数も比例し
て増大し、この逆起電圧が通電電流の供給電圧と等しく
なると、通電電流がゼロになると共に、磁石トルクもゼ
ロになる。
2. Description of the Related Art Conventionally, a plurality of permanent magnets are arranged at predetermined intervals in a circumferential direction on an outer peripheral portion of a substantially cylindrical rotor made of a magnetic material such as iron and wound around a stator. A rotating magnetic field is generated on the stator side by passing an alternating current through the winding as an energizing current, and the attractor / repulsive force generated between the rotating magnetic field and the permanent magnet, that is, the rotor is rotated by magnet torque. Permanent magnet motors are known. In such a permanent magnet motor, the amount of permanent magnets can be increased to increase the amount of magnet torque per energizing current, that is, the magnet torque constant, but on the other hand, the back electromotive force per rotation speed of the rotor, That is, the back electromotive force constant also increases in proportion, and when the back electromotive voltage becomes equal to the supply voltage of the energizing current, the energizing current becomes zero and the magnet torque also becomes zero.

【0003】また、これに関して、磁石界磁量を等価的
に弱めるような弱め界磁電流を通電することによって、
逆起電圧が通電電流の供給電圧を超えるような領域まで
運転可能な回転数を拡大する制御として、いわゆる弱め
界磁制御が知られている。ただし、逆起電圧が通電電流
の供給電圧を超えるような領域では、弱め界磁電流は回
転トルクの増大には寄与しない。従って、磁石トルクを
増大させると高い回転トルクを発生可能であるが、逆起
電圧定数が大きくなり、比較的小さな回転数にて逆起電
圧が通電電流の供給電圧と等しくなるため、弱め界磁電
流を増大させる必要があり、回転数が高い領域では永久
磁石式モータの損失が増加してしまうという問題があ
る。
[0003] In this regard, by applying a weakening field current that weakens the amount of magnet field equivalently,
So-called field-weakening control is known as control for increasing the operable speed to a region where the back electromotive voltage exceeds the supply voltage of the conduction current. However, in a region where the back electromotive voltage exceeds the supply voltage of the conduction current, the field weakening current does not contribute to an increase in the rotational torque. Therefore, when the magnet torque is increased, a high rotation torque can be generated, but the back electromotive force constant increases, and the back electromotive force becomes equal to the supply voltage of the energizing current at a relatively low rotation speed. It is necessary to increase the current, and there is a problem that the loss of the permanent magnet motor increases in a region where the rotation speed is high.

【0004】このような問題に対して、例えば実開昭5
6−149584号公報に開示された永久磁石式モータ
のように、回転子の外周部に、永久磁石を周方向の両側
から挟み込むような磁性体からなる突極を設けて、磁石
トルクに加えてリラクタンストルクを併用した永久磁石
式モータが知られている。リラクタンストルクは、回転
磁界と突極との間に発生する吸引力に起因する回転トル
クであり、逆起電圧を発生させることがないため、弱め
界磁電流を増大させること無く、高い回転数領域でのモ
ータの損失を増大させること無しに、永久磁石式モータ
の回転トルクを増大させることができる。このリラクタ
ンストルクは、例えば応用電気工学全書1 電気機器
[I](森北出版 1973年)に開示されているよう
に、直軸電機子反作用リアクタンスと横軸電機子反作用
リアクタンスとの差が大きくなるのに伴って増大するこ
とが知られている。ここで、直軸電機子反作用リアクタ
ンスとは、磁束が回転子本体を介して隣り合う突極同士
を貫通するような磁路に対する磁気抵抗であり、横軸電
機子反作用リアクタンスとは、磁束が回転子本体を介し
て隣り合う永久磁石同士を貫通するような磁路に対する
磁気抵抗である。さらに、直軸電機子反作用リアクタン
スと横軸電機子反作用リアクタンスとの差は、突極の周
方向の幅を調整することで変化させることができ、この
差が最大となるのは、例えば電気学会研究会資料SPC
−88−16(1988年)や、特開平7−14336
919号公報に開示された永久磁石式モータのように、
突極の幅を、回転子の一極が占める角度(電気角での1
80°)の1/2の角度、すなわち電気角での90°に
設定した場合であることが知られている。
In response to such a problem, for example,
As in the case of the permanent magnet type motor disclosed in JP-A-6-149584, salient poles made of a magnetic material that sandwiches a permanent magnet from both sides in the circumferential direction are provided on the outer peripheral portion of the rotor, and in addition to magnet torque, A permanent magnet motor using reluctance torque is also known. Reluctance torque is a rotational torque caused by an attractive force generated between a rotating magnetic field and a salient pole, and does not generate a back electromotive force. Therefore, the rotational torque of the permanent magnet motor can be increased without increasing the loss of the motor. This reluctance torque is, as disclosed in, for example, Applied Electrical Engineering Complete Book 1 Electrical Equipment [I] (Morikita Shuppan, 1973), the difference between the linear-axis armature reaction reactance and the horizontal-axis armature reaction reactance increases. It is known that the number increases in accordance with Here, the direct-axis armature reaction reactance is a magnetic resistance with respect to a magnetic path such that magnetic flux penetrates adjacent salient poles through the rotor body, and the horizontal-axis armature reaction reactance means that the magnetic flux rotates. It is a magnetic resistance to a magnetic path that penetrates adjacent permanent magnets through the child main body. Furthermore, the difference between the linear-axis armature reaction reactance and the horizontal-axis armature reaction reactance can be changed by adjusting the circumferential width of the salient poles. Workshop Materials SPC
-88-16 (1988) and JP-A-7-14336.
As in the permanent magnet type motor disclosed in Japanese Patent No. 919,
The width of the salient pole is determined by the angle occupied by one pole of the rotor (1 in electrical angle).
It is known that the angle is set to a half angle of (80 °), that is, 90 ° in electrical angle.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記従来技
術による永久磁石式モータでは、回転数が高い領域で永
久磁石式モータの損失が増加してしまうことを防ぐため
に、回転子の周方向において、永久磁石の磁石幅及び突
極の幅を共に電気角での90°に設定することで、リラ
クタンストルクを最大限に利用して、弱め界磁電流が増
大することを防止することができる。ただし、リラクタ
ンストルクは回転磁界と突極との間に発生する吸引力の
みを利用するだけであるから、永久磁石の磁石幅及び突
極の幅が同一であれば、磁石トルクよりも小さな回転ト
ルクを発生させることになる。従って、所定の回転トル
クを発生させるためには、回転子及び固定子の回転軸線
方向の長さを長くすることが必要となる場合がある。し
かしながら、この場合、固定子に巻回される巻線の長さ
も長くなり、巻線抵抗が増大することによって交番電流
の通電時に銅損が増加すると共に、回転子及び固定子の
体積が増大することによって鉄損が増大して、永久磁石
式モータの損失が増加してしまうという問題が生じる。
本発明は上記事情に鑑みてなされたもので、回転数が高
い領域において損失の増大を抑制することが可能な永久
磁石式モータを提供することを目的とする。
By the way, in the permanent magnet type motor according to the prior art described above, in order to prevent the loss of the permanent magnet type motor from increasing in a high rotation speed region, the rotation direction of the rotor in the circumferential direction is reduced. By setting both the magnet width of the permanent magnet and the width of the salient pole to 90 ° in electrical angle, the reluctance torque can be utilized to the utmost and the increase in the field weakening current can be prevented. However, since the reluctance torque only uses the attractive force generated between the rotating magnetic field and the salient poles, if the permanent magnet and the salient poles have the same width, the rotational torque is smaller than the magnet torque. Will be generated. Therefore, in order to generate a predetermined rotation torque, it may be necessary to increase the length of the rotor and the stator in the rotation axis direction. However, in this case, the length of the winding wound on the stator also increases, and the winding resistance increases, so that the copper loss increases when an alternating current flows, and the volumes of the rotor and the stator increase. As a result, there is a problem that the iron loss increases and the loss of the permanent magnet motor increases.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a permanent magnet motor capable of suppressing an increase in loss in a high rotation speed region.

【0006】[0006]

【課題を解決するための手段】上記課題を解決して係る
目的を達成するために、請求項1に記載の本発明の永久
磁石式モータは、複数の永久磁石(例えば、後述する実
施の形態での永久磁石15)を有する回転子(例えば、
後述する実施の形態での回転子12)と、この回転子を
回転させる回転磁界を発生する固定子(例えば、後述す
る実施の形態での固定子11)とを備えた永久磁石式モ
ータ(例えば、後述する実施の形態での永久磁石式モー
タ10)であって、前記回転子の周方向において、前記
永久磁石の磁石幅Mと、隣り合う前記永久磁石間の間隔
Rとの比率M:Rが、略3:2に設定されていることを
特徴としている。
In order to solve the above-mentioned problems and to achieve the above object, a permanent magnet motor according to the present invention comprises a plurality of permanent magnets (for example, an embodiment described later). Rotor (for example, with a permanent magnet 15 at
A permanent magnet motor (e.g., a rotor 12 in an embodiment described later) and a stator (for example, a stator 11 in an embodiment described later) that generates a rotating magnetic field that rotates the rotor. A permanent magnet motor 10) according to an embodiment to be described later, wherein a ratio M: R of a magnet width M of the permanent magnet and an interval R between adjacent permanent magnets in a circumferential direction of the rotor. Is set to approximately 3: 2.

【0007】上記構成の永久磁石式モータによれば、発
生可能な最大回転トルクは不変のまま、銅損と鉄損とを
加算してなる総損失を最小にすることができる。すなわ
ち、例えば磁石幅Mと隣り合う永久磁石間の間隔Rとが
等しくなるように形成された永久磁石式モータに比べ
て、永久磁石の割合が増大することで、逆起電圧定数が
増大するため、弱め界磁電流を含む通電電流は増大する
が、磁束が鎖交する磁性体の体積が減少するため、結果
として鉄損は減少する。一方、固定子に巻回される巻線
の長さが短くなることで巻線抵抗は減少するが、弱め界
磁電流を含んだ通電電流が増大するため、結果として銅
損は増大する。これらの鉄損の減少と銅損の増加に伴っ
て、総損失が最小となる場合は、(永久磁石の磁石幅
M):(隣り合う前記永久磁石に挟み込まれる幅R)が
略3:2となる場合である。このように、永久磁石式モ
ータの総損失が最も小さくなるように設定することで、
永久磁石式モータの発熱を抑制して、所定の冷却限界以
下で永久磁石式モータを作動させることができる。しか
も、永久磁石式モータの最大トルクは不変のまま、運転
可能な回転数領域を高回転側へと最大限に拡大すること
ができる。すなわち、永久磁石式モータの運転可能な回
転数領域が低くなってしまうこと無しに、最大トルクを
増大させることができると共に、最大トルクが減少して
しまうこと無しに、運転可能な回転数領域を高くするこ
とが可能となる。
[0007] According to the permanent magnet motor having the above configuration, the total loss obtained by adding the copper loss and the iron loss can be minimized while the maximum rotational torque that can be generated remains unchanged. That is, for example, as compared with a permanent magnet type motor formed such that the magnet width M and the interval R between the adjacent permanent magnets are equal, the ratio of the permanent magnets increases, and the back electromotive force constant increases. However, although the energizing current including the field weakening current increases, the volume of the magnetic body to which the magnetic flux links decreases, and as a result, the iron loss decreases. On the other hand, as the length of the winding wound on the stator decreases, the winding resistance decreases, but the conduction current including the field weakening current increases, and as a result, the copper loss increases. When the total loss is minimized with the decrease in the iron loss and the increase in the copper loss, (magnet width M of the permanent magnet): (width R sandwiched between the adjacent permanent magnets) is approximately 3: 2. This is the case. In this way, by setting the total loss of the permanent magnet type motor to be the smallest,
Heat generation of the permanent magnet type motor can be suppressed, and the permanent magnet type motor can be operated below a predetermined cooling limit. Moreover, the operable rotation speed range can be maximized to the high rotation side while the maximum torque of the permanent magnet type motor remains unchanged. That is, it is possible to increase the maximum torque without lowering the operable rotational speed range of the permanent magnet type motor, and to increase the operable rotational speed range without reducing the maximum torque. It becomes possible to raise it.

【0008】さらに、請求項2に記載の本発明の永久磁
石式モータは、前記回転子は前記固定子に向かって突出
する突極部(例えば、後述する実施の形態での突極1
4)を備えており、前記永久磁石は前記突極部に対して
周方向に隣接して配置されると共に、前記永久磁石の外
周部(例えば、後述する実施の形態での外周面15A)
は前記固定子に向かって露出しており、前記回転子の周
方向において、前記永久磁石の磁石幅Mと、前記突極部
の幅Tとの比率M:Tが、略3:2に設定されているこ
とを特徴としている。
Further, in the permanent magnet motor according to the present invention, the rotor may be a salient pole portion protruding toward the stator (for example, a salient pole portion in an embodiment described later).
4), wherein the permanent magnet is disposed adjacent to the salient pole portion in the circumferential direction, and an outer peripheral portion of the permanent magnet (for example, an outer peripheral surface 15A in an embodiment described later).
Are exposed toward the stator, and in the circumferential direction of the rotor, the ratio M: T between the magnet width M of the permanent magnet and the width T of the salient pole portion is set to approximately 3: 2. It is characterized by being.

【0009】上記構成の永久磁石式モータによれば、永
久磁石式モータの総損失を最小にして、最大トルク及び
運転可能な回転数領域を高くすることができ、例えば発
生可能な最大回転トルクは不変のまま、運転可能な回転
数領域を高回転側へと最大限に拡大することができると
共に、固定子からの回転磁界と永久磁石の界磁磁束との
相互作用を増大させて、より一層、永久磁石式モータの
効率を向上させることができる。
According to the permanent magnet motor having the above structure, the total loss of the permanent magnet motor can be minimized to increase the maximum torque and the operable rotational speed range. It is possible to maximize the operable rotation speed range to the high rotation side while maintaining the same, and to increase the interaction between the rotating magnetic field from the stator and the field magnetic flux of the permanent magnet to further enhance the operation. Thus, the efficiency of the permanent magnet motor can be improved.

【0010】[0010]

【発明の実施の形態】以下、本発明の永久磁石式モータ
の一実施形態について添付図面を参照しながら説明す
る。図1は本発明の一実施形態に係る永久磁石式モータ
10の固定子11の一部を破断して示す要部斜視図であ
り、図2は図1に示す永久磁石式モータ10の回転子1
2の略1/2円の平面図である。本実施の形態による永
久磁石式モータ10は、いわゆる永久磁石式の交流同期
モータをなすものであって、略円筒状の固定子11と、
この固定子11の内部に配置されて回転軸線O周りに回
転可能とされた略円柱状の回転子12とを備えて構成さ
れている。略円筒状の固定子11は、例えば、珪素鋼板
からなる複数の略円環板状の磁性体及び電気的絶縁材
が、回転軸線Oと同軸に交互に積層されて形成されてお
り、その内周面上から径方向内側に向かって突出すると
共に、回転軸線O方向に沿って伸びる複数のティース1
3,…,13を備えている。そして、これらのティース
13,…,13は、固定子11の周方向に所定間隔をお
いて配置されており、各ティース13には固定子コイル
(図示略)がその中心軸を径方向に向けて巻回されてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of a permanent magnet motor according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a fragmentary perspective view showing a part of a stator 11 of a permanent magnet type motor 10 according to one embodiment of the present invention, and FIG. 2 is a rotor of the permanent magnet type motor 10 shown in FIG. 1
2 is a plan view of a substantially 1/2 circle of FIG. The permanent magnet type motor 10 according to the present embodiment forms a so-called permanent magnet type AC synchronous motor, and includes a substantially cylindrical stator 11,
A substantially cylindrical rotor 12 is provided inside the stator 11 and is rotatable around the rotation axis O. The substantially cylindrical stator 11 is formed by, for example, alternately laminating a plurality of substantially annular disk-shaped magnetic materials and electrical insulating materials made of silicon steel plates coaxially with the rotation axis O. A plurality of teeth 1 projecting radially inward from the peripheral surface and extending along the rotation axis O direction
3,..., 13. These teeth 13,..., 13 are arranged at predetermined intervals in the circumferential direction of the stator 11, and a stator coil (not shown) is provided on each of the teeth 13 so that the center axis thereof is directed in the radial direction. It is wound.

【0011】略円柱状の回転子12は、例えば、珪素鋼
板からなる複数の略円板状の磁性体及び電気的絶縁材
が、回転軸線Oと同軸に交互に積層されて形成されてい
る。回転子12は、その外周面上から径方向外側に向か
って突出すると共に、回転軸線O方向に沿って伸びる複
数の突極14,…,14を備えている。そして、これら
の突極14,…,14は周方向に所定間隔をおいて配置
されており、隣り合う突極14,14の間に挟み込まれ
るようにして、回転軸線O方向に沿って伸びる略長方形
板状の永久磁石15が装着されており、この永久磁石1
5の外周面15Aは固定子11の内周面に向かって露出
している。
The substantially cylindrical rotor 12 is formed, for example, by laminating a plurality of substantially disk-shaped magnetic bodies made of a silicon steel plate and an electrical insulating material coaxially with the rotation axis O. The rotor 12 has a plurality of salient poles 14,..., 14 projecting radially outward from the outer peripheral surface thereof and extending along the direction of the rotation axis O. The salient poles 14,..., 14 are arranged at a predetermined interval in the circumferential direction, and extend along the rotation axis O direction so as to be sandwiched between the adjacent salient poles 14, 14. A rectangular plate-shaped permanent magnet 15 is mounted.
5 is exposed toward the inner peripheral surface of the stator 11.

【0012】なお、突極14には、その外周部から周方
向の外側に向かって突出する2つの爪部16,16が設
けられており、隣り合う突極14,14の間で対向する
2つの爪部16,16は、永久磁石15の外周面15A
の周方向両端部に当接して、永久磁石15を内周側に向
かって押さえつけるようになっている。また、突極14
の外周面14A及び永久磁石15の外周面15Aは、例
えば回転軸線Oを中心とする所定の同一外径を有してお
り、両外周面14A,15Aは、固定子11のティース
13の内周面に対して所定の間隔をおいて近接配置され
ている。そして、永久磁石15は、例えば径方向に磁化
されており、周方向に所定の間隔をおいて配置された複
数の永久磁石15,…,15は、隣り合う永久磁石1
5,15の磁化方向が互いに反対方向となるように、す
なわち外周側がN極とされた永久磁石15には、外周側
がS極とされた他の永久磁石15が隣接するように配置
されている。
The salient pole 14 is provided with two claw portions 16 projecting outward from the outer peripheral portion thereof in the circumferential direction. The two claw portions 16, 16 are provided on the outer peripheral surface 15A of the permanent magnet 15.
, And presses the permanent magnet 15 toward the inner peripheral side. In addition, salient pole 14
The outer peripheral surface 14A of the permanent magnet 15 and the outer peripheral surface 15A of the permanent magnet 15 have, for example, a predetermined same outer diameter centered on the rotation axis O, and the outer peripheral surfaces 14A and 15A are the inner peripheral surfaces of the teeth 13 of the stator 11. It is arranged close to the surface at a predetermined interval. The permanent magnets 15 are magnetized, for example, in the radial direction, and the plurality of permanent magnets 15,...
The permanent magnets 15 and 15 are arranged so that the magnetization directions thereof are opposite to each other, that is, another permanent magnet 15 whose outer periphery is an S pole is adjacent to the permanent magnet 15 whose outer periphery is an N pole. .

【0013】図2に示すように、回転子12の周方向で
回転軸線Oに対して、回転子12の一極が占める角度θ
D、すなわち電気角での180°に対して、永久磁石1
5の磁石幅Mが占める角度θMは、θM/θDが約0.6
となるように設定され、突極14の幅Tが占める角度θ
Tは、θT/θDが約0.4となるように設定されてい
る。すなわち、(永久磁石15の磁石幅M):(突極1
4の幅T)が略3:2となるように設定されている。な
お、回転子12の一極が占める角度θDは、隣り合う永
久磁石15,15の各中心位置と、回転軸線Oとを結ぶ
2つの直線のなす角であり、θD=θM+θTである。
As shown in FIG. 2, the angle θ occupied by one pole of the rotor 12 with respect to the rotation axis O in the circumferential direction of the rotor 12 is shown.
D , ie, 180 ° in electrical angle, the permanent magnet 1
The angle θ M occupied by the magnet width M of 5 is θ M / θ D of about 0.6.
The angle θ occupied by the width T of the salient pole 14
T is set such that θ T / θ D is approximately 0.4. That is, (magnet width M of permanent magnet 15): (salient pole 1
4 is set to be approximately 3: 2. The angle θ D occupied by one pole of the rotor 12 is an angle formed by two straight lines connecting the center positions of the adjacent permanent magnets 15 and 15 with the rotation axis O, and θ D = θ M + θ T. It is.

【0014】本実施の形態による永久磁石式モータ10
によれば、発生可能な最大回転トルクを不変とした場
合、例えば磁石幅Mと突極14の幅Tとが等しくなるよ
うに形成された永久磁石式モータに比べて、固定子11
に巻回される巻線の長さが短くなることで巻線抵抗は減
少するが、永久磁石15の割合が増大することで逆起電
圧定数が増大するため、弱め界磁電流を含んだ通電電流
が増大して、結果として銅損は増大する。しかしなが
ら、磁束が鎖交する磁性体の体積が減少することで鉄損
は減少して、銅損と鉄損の加算された総損出としては最
小値を示すようになる。このように、永久磁石式モータ
10の総損失が最小となるように設定することで、永久
磁石式モータ10の発熱を抑制して、所定の冷却限界以
下で永久磁石式モータ10を作動させることができる。
しかも、永久磁石式モータ10の最大トルクを増大させ
ても運転可能な回転数領域が低くなることを防ぐと共
に、運転可能な回転数領域を高くしても発生可能な最大
トルクが減少してしまうことを防ぐことができ、例えば
発生可能な最大トルクは不変のまま、運転可能な回転数
領域を高回転側へと最大限に拡大することができる。さ
らに、永久磁石15の外周面15Aを固定子11に対し
て露出して配置することで、固定子11からの回転磁界
と永久磁石15の界磁磁束との相互作用を増大させて、
永久磁石式モータ10を低損失、かつ高効率にて運転す
ることができる。
The permanent magnet type motor 10 according to the present embodiment
According to the present invention, when the maximum rotational torque that can be generated is not changed, for example, compared to a permanent magnet type motor formed so that the magnet width M and the width T of the salient pole 14 are equal, the stator 11
As the length of the winding wound around the coil becomes short, the winding resistance decreases, but the back electromotive force constant increases due to the increase in the ratio of the permanent magnet 15, so that the energization including the field weakening current is performed. The current increases, resulting in an increase in copper losses. However, since the volume of the magnetic material with which the magnetic flux links decreases, the iron loss decreases, and the total loss including the copper loss and the iron loss shows a minimum value. In this way, by setting the total loss of the permanent magnet type motor 10 to be minimized, the heat generation of the permanent magnet type motor 10 is suppressed, and the permanent magnet type motor 10 is operated below a predetermined cooling limit. Can be.
Moreover, even if the maximum torque of the permanent magnet type motor 10 is increased, the operable rotation speed region is prevented from being lowered, and the maximum torque that can be generated even if the operable rotation speed region is increased is reduced. For example, it is possible to maximize the operable speed range to the high speed side while keeping the maximum torque that can be generated unchanged. Furthermore, by arranging the outer peripheral surface 15A of the permanent magnet 15 so as to be exposed to the stator 11, the interaction between the rotating magnetic field from the stator 11 and the field magnetic flux of the permanent magnet 15 is increased,
The permanent magnet motor 10 can be operated with low loss and high efficiency.

【0015】なお、本実施形態においては、永久磁石1
5の外周面15Aが固定子11の内周面に向かって露出
しているとしたが、これに限定されず、図3に示す本実
施形態の変形例に係る永久磁石式モータの回転子22の
略1/2円の平面図のように、回転子22の外周部近傍
において、複数の永久磁石15,…,15が周方向に所
定の間隔をおいて埋め込まれていても良い。すなわち、
略円柱状の回転子22は、例えば珪素鋼板からなる複数
の略円板状の磁性体及び電気的絶縁体が回転軸線O方向
に沿って交互に積層されて形成されている。そして、回
転子22の内部であって外周部近傍には、回転軸線O方
向に沿って伸びる複数の磁石装着孔23,…,23が周
方向に所定の間隔をおいて貫設されており、この磁石装
着孔23に永久磁石15が装着されている。
In this embodiment, the permanent magnet 1
5 is exposed toward the inner peripheral surface of the stator 11, but is not limited to this. The rotor 22 of the permanent magnet type motor according to the modification of the present embodiment shown in FIG. A plurality of permanent magnets 15,..., 15 may be embedded at predetermined intervals in the circumferential direction in the vicinity of the outer periphery of the rotor 22, as shown in a plan view of a substantially half circle. That is,
The substantially columnar rotor 22 is formed by alternately laminating a plurality of substantially disk-shaped magnetic bodies and electrical insulators made of, for example, a silicon steel plate along the rotation axis O direction. Inside the rotor 22 and near the outer peripheral portion, a plurality of magnet mounting holes 23,..., 23 extending in the direction of the rotation axis O are provided at predetermined intervals in the circumferential direction. The permanent magnet 15 is mounted in the magnet mounting hole 23.

【0016】そして、回転子22の周方向で回転軸線O
に対して、回転子22の一極が占める角度θD、すなわ
ち電気角での180°に対して、永久磁石15の磁石幅
Mが占める角度θMは、θM/θDが約0.6となるよう
に設定され、隣り合う永久磁石15,15に挟み込まれ
る回転子22の挟込部22aの幅Rが占める角度θ
Rは、θR/θDが約0.4となるように設定されてい
る。なお、θD=θM+θRである。すなわち、(永久磁
石15の磁石幅M):(挟込部22aの幅R)が略3:
2となるように設定されている。
The rotation axis O in the circumferential direction of the rotor 22 is
With respect to the angle θ D occupied by one pole of the rotor 22, that is, 180 ° in electrical angle, the angle θ M occupied by the magnet width M of the permanent magnet 15 is θ M / θ D of about 0.1. 6, the angle θ occupied by the width R of the sandwiching portion 22a of the rotor 22 sandwiched between the adjacent permanent magnets 15, 15.
R is set so that θ R / θ D is approximately 0.4. Note that θ D = θ M + θ R. That is, (magnet width M of the permanent magnet 15) :( width R of the sandwiching portion 22a) is approximately 3:
2 is set.

【0017】次に、上述した実施の形態による永久磁石
式モータ10の作動時での総損失を算出した結果につい
て添付図面を参照しながら説明する。ここで、図4は、
後述する実施例1にて永久磁石式モータ10に所定の回
転トルクを発生させる場合に、(θM/θD)の値に応じ
て変化する回転子12及び固定子11の積み厚、すなわ
ち回転軸線O方向の長さを示すグラフ図であり、図5
は、後述する実施例1にて所定の回転数及び出力を得る
場合に、(θM/θD)の値に応じて変化する通電電流の
大きさを示すグラフ図であり、図6は、後述する実施例
1にて所定の回転数及び出力を得る場合に、(θM
θD)の値に応じて変化する銅損及び鉄損を示すグラフ
図であり、図7は、後述する実施例1及び実施例2にて
所定の回転数及び出力を得る場合に、(θM/θD)の値
に応じて変化する総損失を示すグラフ図である。
Next, the result of calculating the total loss during the operation of the permanent magnet motor 10 according to the above-described embodiment will be described with reference to the accompanying drawings. Here, FIG.
When a predetermined rotational torque is generated in the permanent magnet type motor 10 in the first embodiment described later, the stacked thickness of the rotor 12 and the stator 11 that changes according to the value of (θ M / θ D ), that is, the rotation FIG. 5 is a graph showing the length in the direction of the axis O, and FIG.
FIG. 6 is a graph showing the magnitude of an energizing current that changes according to the value of (θ M / θ D ) when a predetermined rotation speed and output are obtained in Example 1 described later. When a predetermined rotation speed and output are obtained in the first embodiment described below, (θ M /
FIG. 7 is a graph showing copper loss and iron loss that change in accordance with the value of (θ D ). FIG. 7 shows a case where a predetermined rotation speed and output are obtained in Embodiments 1 and 2 described below. FIG. 4 is a graph showing the total loss that changes according to the value of ( M / θ D ).

【0018】なお、以下において、実施例1では、回転
子の外径を約140mmとし、極数を10極とし、最大
トルク約240Nmとし、突極14及び永久磁石15の
径方向の厚さを約5mmとして、(永久磁石15の磁石
幅Mが占める角度θM)/(回転子22の一極が占める
角度θD)の値に応じて変化する回転子12及び固定子
11の積み厚(mm)、すなわち回転軸線O方向の長さ
と、固定子11に巻回される巻線の巻線抵抗(mΩ)と
を算出した。さらに、回転数が11000rpm(最高
回転数)での出力を50kWとした場合の通電電流
(A)と、銅損(W)及び鉄損(W)からなる総損出
(W)とを算出した。結果を表1に示した。
In the following, in the first embodiment, the outer diameter of the rotor is set to about 140 mm, the number of poles is set to 10, the maximum torque is set to about 240 Nm, and the radial thicknesses of the salient poles 14 and the permanent magnets 15 are set. Assuming that the width is about 5 mm, the stacking thickness of the rotor 12 and the stator 11 (the angle θ M occupied by the magnet width M of the permanent magnet 15) / (the angle θ D occupied by one pole of the rotor 22) changes. mm), that is, the length in the direction of the rotation axis O and the winding resistance (mΩ) of the winding wound around the stator 11 were calculated. Further, the current flowing (A) when the output at a rotation speed of 11000 rpm (maximum rotation speed) was set to 50 kW, and the total loss (W) composed of copper loss (W) and iron loss (W) were calculated. . The results are shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】また、実施例2では、回転子の外径を約1
40mmとし、極数を10極とし、最大トルク約160
Nmとし、突極14及び永久磁石15の径方向の厚さを
約5mmとして、(永久磁石15の磁石幅Mが占める角
度θM)/(回転子22の一極が占める角度θD)の値に
応じて変化する回転子12及び固定子11の積み厚(m
m)と、固定子11に巻回される巻線の巻線抵抗(m
Ω)とを算出した。さらに、回転数が15000rpm
(最高回転数)での出力を35kWとした場合の通電電
流(A)と、銅損(W)及び鉄損(W)からなる総損出
(W)を算出した。結果を表2に示した。
In the second embodiment, the outer diameter of the rotor is set to about 1
40 mm, the number of poles is 10 and the maximum torque is about 160
Nm, the radial thickness of the salient poles 14 and the permanent magnets 15 is about 5 mm, and (angle θ M occupied by the magnet width M of the permanent magnets 15) / (angle θ D occupied by one pole of the rotor 22). The stacking thickness of the rotor 12 and the stator 11 (m
m) and the winding resistance of the winding wound around the stator 11 (m
Ω) was calculated. Furthermore, the rotation speed is 15,000 rpm
The conduction current (A) when the output at (maximum rotation speed) was 35 kW and the total loss (W) consisting of copper loss (W) and iron loss (W) were calculated. The results are shown in Table 2.

【0021】[0021]

【表2】 [Table 2]

【0022】先ず、図4に示すように、回転子12の一
極分に対して永久磁石15の占める割合が増大すると、
単位積み厚当たりの回転トルクが増大することから、所
定の回転トルクを発生させるのに必要な積み厚が減少す
る。また、図5に示すように、回転子12の一極分に対
して永久磁石15の占める割合が増大すると、逆起電圧
定数が増大するために、弱め界磁電流を含む通電電流は
増加する。さらに、図6に示すように、回転子12の一
極分に対して永久磁石15の占める割合が増大すると、
弱め界磁電流を含む通電電流は増大するが、磁束が鎖交
する磁性体の体積が減少するため、結果として鉄損は減
少する。一方、銅損の場合には、固定子11に巻回され
る巻線の長さが短くなることで巻線抵抗は減少するが、
弱め界磁電流を含んだ通電電流が増大するため、結果と
して銅損は増大する。従って、図7に示すように、回転
子12の一極分に対して永久磁石15の占める割合が増
大すると、鉄損の減少と、銅損の増加とに伴って、総損
失が最小値となる位置が現れる。この位置は、θM/θD
が約0.6となる位置であって、突極14の幅Tが占め
る角度θTに対しては、θT/θDが約0.4となり、
(永久磁石15の磁石幅M):(突極14の幅T)が略
3:2となる位置である。
First, as shown in FIG. 4, when the ratio of the permanent magnet 15 to one pole of the rotor 12 increases,
Since the rotational torque per unit stack thickness increases, the stack thickness required to generate a predetermined rotational torque decreases. Further, as shown in FIG. 5, when the ratio of the permanent magnet 15 to one pole of the rotor 12 increases, the back electromotive force constant increases, so that the conduction current including the field weakening current increases. . Further, as shown in FIG. 6, when the ratio of the permanent magnet 15 to one pole of the rotor 12 increases,
The conduction current including the field-weakening current increases, but the volume of the magnetic body with which the magnetic flux links decreases, and as a result, the iron loss decreases. On the other hand, in the case of copper loss, although the winding resistance wound around the stator 11 is reduced by shortening the length of the winding,
Since the conduction current including the field weakening current increases, the copper loss increases as a result. Therefore, as shown in FIG. 7, when the ratio of the permanent magnet 15 to one pole of the rotor 12 increases, the total loss becomes a minimum value with a decrease in iron loss and an increase in copper loss. Appears. This position is θ M / θ D
Is about 0.6, and for the angle θ T occupied by the width T of the salient pole 14, θ T / θ D becomes about 0.4,
(Magnet width M of permanent magnet 15): This is a position where (width T of salient pole 14) is approximately 3: 2.

【0023】[0023]

【発明の効果】以上説明したように、本発明の永久磁石
式モータによれば、永久磁石式モータの総損失を最小化
することができ、永久磁石式モータの発熱を抑制して効
率を向上させることができる。しかも、永久磁石式モー
タの最大トルクを増大させても運転可能な回転数領域が
低くなることを防ぐと共に、運転可能な回転数領域を高
くしても発生可能な最大トルクが減少してしまうことを
防ぐことができ、例えば発生可能な最大トルクは不変の
まま、運転可能な回転数領域を高回転側へと最大限に拡
大することができる。さらに、請求項2に記載の本発明
の永久磁石式モータによれば、永久磁石式モータの総損
失を最小化して、発生可能な最大トルク及び運転可能な
回転領域を高くすることができることに加えて、固定子
からの回転磁界と永久磁石の界磁磁束との相互作用を増
大させて、より一層、永久磁石式モータの効率を向上さ
せることができる。
As described above, according to the permanent magnet type motor of the present invention, the total loss of the permanent magnet type motor can be minimized, and the heat generation of the permanent magnet type motor is suppressed to improve the efficiency. Can be done. Moreover, even if the maximum torque of the permanent magnet type motor is increased, the operable speed range is prevented from being lowered, and the maximum operable speed range is reduced even if the operable speed range is increased. For example, it is possible to maximize the operable speed range to the high speed side while keeping the maximum torque that can be generated unchanged. Further, according to the permanent magnet motor of the present invention described in claim 2, in addition to minimizing the total loss of the permanent magnet motor, the maximum torque that can be generated and the operable rotation range can be increased. Thus, the interaction between the rotating magnetic field from the stator and the field magnetic flux of the permanent magnet is increased, and the efficiency of the permanent magnet motor can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施形態に係る永久磁石式モータ
の固定子の一部を破断して示す要部斜視図である。
FIG. 1 is a fragmentary perspective view showing a part of a stator of a permanent magnet type motor according to an embodiment of the present invention in a cutaway manner.

【図2】 図1に示す永久磁石式モータの回転子の略1
/2円の平面図である。
FIG. 2 is a schematic view of a rotor 1 of the permanent magnet type motor shown in FIG. 1;
It is a top view of a / 2 circle.

【図3】 本実施形態の変形例に係る永久磁石式モータ
の回転子の略1/2円の平面図である。
FIG. 3 is a plan view of a substantially half circle of a rotor of a permanent magnet motor according to a modified example of the embodiment.

【図4】 実施例1にて永久磁石式モータに所定の回転
トルクを発生させる場合に、(θM/θD)の値に応じて
変化する回転子及び固定子の積み厚を示すグラフ図であ
る。
FIG. 4 is a graph showing the stacked thickness of the rotor and the stator that changes according to the value of (θ M / θ D ) when a predetermined rotational torque is generated in the permanent magnet type motor in the first embodiment. It is.

【図5】 実施例1にて所定の回転数及び出力を得る場
合に、(θM/θD)の値に応じて変化する通電電流の大
きさを示すグラフ図である。
FIG. 5 is a graph showing the magnitude of an energizing current that changes according to the value of (θ M / θ D ) when a predetermined number of rotations and output are obtained in the first embodiment.

【図6】 実施例1にて所定の回転数及び出力を得る場
合に、(θM/θD)の値に応じて変化する銅損及び鉄損
を示すグラフ図である。
FIG. 6 is a graph showing copper loss and iron loss that change in accordance with the value of (θ M / θ D ) when a predetermined rotation speed and output are obtained in the first embodiment.

【図7】 実施例1及び実施例2にて所定の回転数及び
出力を得る場合に、(θM/θD)の値に応じて変化する
総損失を示すグラフ図である。
FIG. 7 is a graph showing the total loss that changes according to the value of (θ M / θ D ) when a predetermined number of rotations and output are obtained in the first and second embodiments.

【符号の説明】[Explanation of symbols]

10 永久磁石式モータ 11 固定子 12 回転子 14 突極(突極部) 15 永久磁石 Reference Signs List 10 permanent magnet motor 11 stator 12 rotor 14 salient pole (salient pole) 15 permanent magnet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 篠木 弘明 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 伊藤 智之 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 斉藤 祐司 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 近藤 一 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 Fターム(参考) 5H621 AA03 GA01 GA04 HH01 JK02 JK03 5H622 AA03 CA02 CA05 CB04 CB05 CB06 PP10 PP11  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hiroaki Shinoki 1-4-1 Chuo, Wako-shi, Saitama Prefecture Inside Honda R & D Co., Ltd. (72) Inventor Tomoyuki Ito 1-4-1 Chuo, Wako-shi, Saitama Inside Honda R & D Co., Ltd. (72) Inventor Yuji Saito 1-4-1 Chuo, Wako-shi, Saitama Prefecture Inside Honda R & D Co., Ltd. (72) Inventor Kazuto Kondo 1-4-1-1 Chuo, Wako-shi, Saitama F-term in Honda R & D Co., Ltd. (Reference) 5H621 AA03 GA01 GA04 HH01 JK02 JK03 5H622 AA03 CA02 CA05 CB04 CB05 CB06 PP10 PP11

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数の永久磁石を有する回転子と、この
回転子を回転させる回転磁界を発生する固定子とを備え
た永久磁石式モータであって、 前記回転子の周方向において、前記永久磁石の磁石幅M
と、隣り合う前記永久磁石間の間隔Rとの比率M:R
が、略3:2に設定されていることを特徴とする永久磁
石式モータ。
1. A permanent magnet motor comprising: a rotor having a plurality of permanent magnets; and a stator for generating a rotating magnetic field for rotating the rotor, wherein the permanent magnet is provided in a circumferential direction of the rotor. Magnet width M of magnet
And the ratio M: R of the interval R between the adjacent permanent magnets
However, the ratio is set to approximately 3: 2.
【請求項2】 前記回転子は前記固定子に向かって突出
する突極部を備えており、 前記永久磁石は前記突極部に対して周方向に隣接して配
置されると共に、前記永久磁石の外周部は前記固定子に
向かって露出しており、 前記回転子の周方向において、前記永久磁石の磁石幅M
と、前記突極部の幅Tとの比率M:Tが、略3:2に設
定されていることを特徴とする請求項1に記載の永久磁
石式モータ。
2. The rotor has a salient pole protruding toward the stator. The permanent magnet is disposed adjacent to the salient pole in a circumferential direction, and the permanent magnet is Is exposed toward the stator, and has a magnet width M of the permanent magnet in the circumferential direction of the rotor.
2. The permanent magnet motor according to claim 1, wherein a ratio M: T between the width of the salient pole portion and the width T is set to approximately 3: 2. 3.
JP36844399A 1999-12-24 1999-12-24 Permanent magnet motor Expired - Fee Related JP3683455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36844399A JP3683455B2 (en) 1999-12-24 1999-12-24 Permanent magnet motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36844399A JP3683455B2 (en) 1999-12-24 1999-12-24 Permanent magnet motor

Publications (2)

Publication Number Publication Date
JP2001186698A true JP2001186698A (en) 2001-07-06
JP3683455B2 JP3683455B2 (en) 2005-08-17

Family

ID=18491837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36844399A Expired - Fee Related JP3683455B2 (en) 1999-12-24 1999-12-24 Permanent magnet motor

Country Status (1)

Country Link
JP (1) JP3683455B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223995A (en) * 2004-02-04 2005-08-18 Honda Motor Co Ltd Rotor for dynamo-electric machine
US6984908B2 (en) * 2003-08-26 2006-01-10 Deere & Company Permanent magnet motor
CN100344045C (en) * 2003-10-10 2007-10-17 本田技研工业株式会社 Permanent magnet type rotor and brushless motor
JP2011050179A (en) * 2009-08-27 2011-03-10 Honda Motor Co Ltd Rotor and motor
CN102035281A (en) * 2009-09-29 2011-04-27 罗伯特·博世有限公司 Motor with least cogging torque
US8049388B2 (en) 2006-08-31 2011-11-01 Abb Oy Rotor for a permanent-magnet electrical machine
JP2012010498A (en) * 2010-06-25 2012-01-12 Yaskawa Electric Corp Rotary electric machine and manufacturing method for the same
US20150061444A1 (en) * 2013-09-03 2015-03-05 Aisin Seiki Kabushiki Kaisha Electric motor
CN105141099A (en) * 2015-09-21 2015-12-09 华中科技大学 Consequent pole brushless permanent magnet motor and electronic power-assisted steering system based on motor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984908B2 (en) * 2003-08-26 2006-01-10 Deere & Company Permanent magnet motor
CN100344045C (en) * 2003-10-10 2007-10-17 本田技研工业株式会社 Permanent magnet type rotor and brushless motor
JP2005223995A (en) * 2004-02-04 2005-08-18 Honda Motor Co Ltd Rotor for dynamo-electric machine
US8049388B2 (en) 2006-08-31 2011-11-01 Abb Oy Rotor for a permanent-magnet electrical machine
JP2011050179A (en) * 2009-08-27 2011-03-10 Honda Motor Co Ltd Rotor and motor
CN102035281A (en) * 2009-09-29 2011-04-27 罗伯特·博世有限公司 Motor with least cogging torque
CN102035281B (en) * 2009-09-29 2016-08-03 罗伯特·博世有限公司 There is the motor of least cogging torque
JP2012010498A (en) * 2010-06-25 2012-01-12 Yaskawa Electric Corp Rotary electric machine and manufacturing method for the same
US20150061444A1 (en) * 2013-09-03 2015-03-05 Aisin Seiki Kabushiki Kaisha Electric motor
JP2015050880A (en) * 2013-09-03 2015-03-16 アイシン精機株式会社 Electric motor
US9570949B2 (en) * 2013-09-03 2017-02-14 Aisin Seiki Kabushiki Kaisha Electric motor with permanent magnet having curved outer wall and flat rear wall
CN105141099A (en) * 2015-09-21 2015-12-09 华中科技大学 Consequent pole brushless permanent magnet motor and electronic power-assisted steering system based on motor

Also Published As

Publication number Publication date
JP3683455B2 (en) 2005-08-17

Similar Documents

Publication Publication Date Title
JP5659031B2 (en) Permanent magnet rotating electric machine
US7919900B2 (en) Motor apparatus including Lundell motor having Lundell-type rotor
JP4900132B2 (en) Rotor and rotating electric machine
JP4619179B2 (en) Rotating electric machine
JP2017093097A (en) Rotary electric machine
WO2017023250A1 (en) Permanent magnet synchronous motor
US20090134731A1 (en) Magnet type synchronous machine
JPH05304737A (en) Permanent magnet type motor
WO2021131071A1 (en) Hybrid-field double-gap synchronous machine and drive system
JP4577068B2 (en) Rotating electric machine
JPS61254054A (en) Motor
JP2001186698A (en) Permanent-magnet motor
JP2001197694A (en) Rotor for synchronous machine, synchronous motor and synchronous generator
JP2010279215A (en) Rotor of embedded magnet type synchronous motor
JP7047337B2 (en) Permanent magnet type rotary electric machine
JP2017011858A (en) Rotary electric machine, magnet, and manufacturing method for magnet
JPH10304633A (en) Synchronous rotary machine using permanent magnet and method for driving it
JP3541343B2 (en) Rotor structure of synchronous machine, synchronous motor and synchronous generator
JP2005102475A (en) Motor
JP4823425B2 (en) DC motor
JP2017158326A (en) Intra-magnetic-field thermal treatment device, manufacturing method of stator of rotary machine, and rotary machine
JP2007288838A (en) Embedded magnet type motor
WO2016075728A1 (en) Axial-gap motor
JP5197551B2 (en) Permanent magnet rotating electric machine
JP7392388B2 (en) rotating electric machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050525

R150 Certificate of patent or registration of utility model

Ref document number: 3683455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080603

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110603

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110603

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130603

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130603

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees