JP2001185747A - Insulation board superior in heat resistance for solar cells and its manufacturing method - Google Patents

Insulation board superior in heat resistance for solar cells and its manufacturing method

Info

Publication number
JP2001185747A
JP2001185747A JP36704699A JP36704699A JP2001185747A JP 2001185747 A JP2001185747 A JP 2001185747A JP 36704699 A JP36704699 A JP 36704699A JP 36704699 A JP36704699 A JP 36704699A JP 2001185747 A JP2001185747 A JP 2001185747A
Authority
JP
Japan
Prior art keywords
insulating film
film
paint
layer
alkali silicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36704699A
Other languages
Japanese (ja)
Other versions
JP4865119B2 (en
Inventor
Katsumasa Anami
克全 阿波
Tomonori Makino
智訓 牧野
Atsushi Kajimoto
淳 梶本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP36704699A priority Critical patent/JP4865119B2/en
Publication of JP2001185747A publication Critical patent/JP2001185747A/en
Application granted granted Critical
Publication of JP4865119B2 publication Critical patent/JP4865119B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PROBLEM TO BE SOLVED: To obtain an insulation board for solar cells, having an insulation film which causes no defects such as pin-holes and never rusts, if heated at high temperatures when solar cells are formed. SOLUTION: The solar cell insulation board has a first layer of insulation film 2 made of an alkali silicate paint compounded with alumina particulates, and a second layer of insulation film 3 made of a silicone paint formed one above the other on a metal board 1, the metal board preferably uses a stainless steel plate superior in corrosion resistance, and the first layer of insulation film is preferably formed as a single or double layer of 1 μm or more, using an alkali silicate paint compounded with alumina particulates of 1 μm or less in mean grain size at a ratio of 10-30%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、太陽電池セル形成時の
高温加熱によっても良好な絶縁性が劣化しない耐熱性に
優れた太陽電池用絶縁基板及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulating substrate for a solar cell which is excellent in heat resistance such that good insulating properties are not deteriorated even by heating at a high temperature when forming a solar cell, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】太陽電池用の基板として、ガラス板,樹
脂フィルム,金属板等が使用されている。なかでも、金
属基板は、ガラス板に比較して可撓性に優れ、樹脂フィ
ルムにない耐熱性をもつことが長所である。金属基板に
太陽電池セルを直接形成すると、各セルの一方の電極が
金属基板を介して電気的に並列接続されるため、実用に
供する電力が得られない。金属基板までをも切断してセ
ルを分離することにより並列接続が避けられるが、これ
では製造性が低下することは勿論、複数のセルを集積す
る際にセル間に余分な隙間ができ、太陽電池モジュール
の単位面積当りの発電効率が低下する。
2. Description of the Related Art As a substrate for a solar cell, a glass plate, a resin film, a metal plate or the like is used. Above all, a metal substrate has advantages in that it is excellent in flexibility as compared with a glass plate and has heat resistance not found in a resin film. When solar cells are directly formed on a metal substrate, one electrode of each cell is electrically connected in parallel via the metal substrate, so that practical power cannot be obtained. The parallel connection can be avoided by separating the cells by cutting even the metal substrate, but this not only reduces the manufacturability, but also creates an extra gap between the cells when integrating a plurality of cells, and the The power generation efficiency per unit area of the battery module decreases.

【0003】そこで、金属基板の表面を絶縁処理する方
法が採用されている。たとえば、スピナー,スプレー,
浸漬法等で液状樹脂をステンレス鋼板の表面に塗布し、
高温焼成によって膜厚2μm程度の高分子樹脂皮膜を形
成する方法(特開昭59−47776号公報),スパッ
タリング,蒸着,イオンプレーティング,プラズマCV
D,熱分解CVD等でシリカ,アルミナ,シリコンナイ
トライド等の無機系絶縁皮膜を形成する方法(特開昭5
9−47775号公報),有機シリケートに絶縁性微粒
子を添加した塗料を硬化させ、シリカを主体とする無機
・有機複合系絶縁皮膜を形成する方法(特開平2−18
001号公報)等がある。
Therefore, a method of insulating the surface of a metal substrate has been adopted. For example, spinner, spray,
Apply liquid resin to the surface of stainless steel plate by dipping method etc.
A method of forming a polymer resin film having a thickness of about 2 μm by high-temperature baking (Japanese Patent Laid-Open No. 59-47776), sputtering, vapor deposition, ion plating, plasma CV
D, a method of forming an inorganic insulating film such as silica, alumina, silicon nitride or the like by thermal decomposition CVD, etc.
JP-A-9-47775), a method of curing a coating material obtained by adding insulating fine particles to an organic silicate to form an inorganic / organic composite insulating film mainly composed of silica (Japanese Patent Laid-Open No. 2-18)
001 publication).

【0004】また、特開平11−238891号公報で
は、アルミナ微粒子を添加したアルカリシリケート(ケ
イ酸塩)系塗料をステンレス鋼板の表面に塗布して無機
系絶縁皮膜を形成している。しかし、アルカリシリケー
ト系塗料は、通常、珪砂及び炭酸アルカリ又は水酸化ア
ルカリを溶融して得たガラスを水溶化することにより得
られるアルカリ性水溶液である。そのため、大半のアル
カリシリケート系塗料は、透水性及び通気性(透湿性)
が非常に強く、防水性を示さない。これらの欠点はケイ
フッ化物,各種鉱酸,金属粉末,多価金属酸化物等の添
加により改善され、アルミナ微粒子の添加(特開平11
−238891号公報)も一つの改善手段である。
In Japanese Patent Application Laid-Open No. H11-238891, an inorganic insulating coating is formed by applying an alkali silicate (silicate) -based paint containing fine alumina particles to the surface of a stainless steel plate. However, the alkali silicate paint is usually an alkaline aqueous solution obtained by making glass obtained by melting silica sand and alkali carbonate or alkali hydroxide water-soluble. Therefore, most alkali silicate paints are water-permeable and breathable (moisture-permeable).
Is very strong and does not show waterproofness. These disadvantages are improved by the addition of silicofluoride, various mineral acids, metal powders, polyvalent metal oxides, etc.
Japanese Unexamined Patent Publication No. 2-338891) is another means for improvement.

【0005】[0005]

【発明が解決しようとする課題】従来から提案されてい
る各種絶縁皮膜の中で、シリコーン樹脂を主成分とする
絶縁皮膜は、ロールコーティング等で形成できるため製
造コスト面で優れ、結合エネルギーの大きなシロキサン
結合を主鎖とする樹脂骨格であることから耐熱性にも優
れている。しかも、有機成分を含んでいることから、無
機系絶縁皮膜に比較して太陽電池セル形成時の加熱に起
因したクラックの発生も起こりにくい。しかし、有機成
分は、太陽電池セル形成時の加熱によって分解・消失
し、絶縁皮膜に微細なピンホールを発生させ、各太陽電
池セル間を短絡させる原因となる。低温加熱によって非
晶質シリコンを堆積する場合には耐熱性に優れた有機成
分を選択することによりピンホールの発生を軽減できる
が、より高温で非晶質シリコンを堆積させ、或いは薄膜
多結晶シリコンを堆積させる場合等では有機成分の分解
・消失に起因してピンホールが多発しやすい。ピンホー
ルの発生を防止するために有機成分を減少させると、無
機系絶縁皮膜と同様に太陽電池セル形成時の加熱によっ
て微細なクラックが生じ、太陽電池セル間の短絡原因に
なる。
Among the various insulating films proposed so far, the insulating film containing a silicone resin as a main component can be formed by roll coating or the like, so that the manufacturing cost is excellent and the bonding energy is large. Since the resin skeleton has a siloxane bond as a main chain, it has excellent heat resistance. In addition, cracks due to heating during the formation of the solar cell are less likely to occur as compared with the inorganic insulating film, since they contain an organic component. However, the organic component is decomposed and disappears by heating at the time of forming the solar cell, generating fine pinholes in the insulating film, and causing a short circuit between the solar cells. When amorphous silicon is deposited by heating at low temperature, the generation of pinholes can be reduced by selecting an organic component having excellent heat resistance, but amorphous silicon can be deposited at a higher temperature or thin-film polycrystalline silicon can be deposited. In the case of depositing, for example, pinholes are likely to occur frequently due to decomposition and disappearance of organic components. When the organic component is reduced to prevent the generation of pinholes, fine cracks are generated by heating at the time of forming the solar cell, as in the case of the inorganic insulating film, which causes a short circuit between the solar cells.

【0006】アルカリシリケート系塗料を用いた場合で
も、ロールコーティング等で絶縁皮膜を形成できるため
製造コスト面で優れている。また、シリカの網目構造の
中にアルカリ金属が取り込まれた樹脂骨格をもつことか
ら粘着性にも優れており、太陽電池セル形成時の加熱で
も無機系絶縁皮膜にみられたようなクラックが生じがた
い。しかし、アルカリシリケート系塗料が水性塗料であ
ることから、形成された絶縁皮膜に水分が残存しやす
い。皮膜形成時の加熱温度よりも太陽電池セル形成時の
加熱温度が高いと残存水分が蒸発し、絶縁皮膜にフクレ
を発生させる。フクレが数十μm程度に成長すると、フ
クレの頂上部に微細なクラックが発生し、太陽電池セル
間の短絡原因になる。皮膜形成時の加熱温度を高くする
ことによりフクレ及びフクレの成長を防止できるが、4
00℃を超える加熱温度では皮膜形成後にフクレが発生
する。そのため、アルカリシリケート系塗料で成膜され
る絶縁皮膜は、低温加熱で非晶質シリコンを堆積する場
合には使用可能であるが、より高温で非晶質シリコンを
堆積させ、或いは薄膜多結晶シリコンを堆積させる場合
には太陽電池用絶縁基板として利用できない。
[0006] Even when an alkali silicate-based paint is used, an insulating film can be formed by roll coating or the like, which is excellent in manufacturing cost. In addition, since the silica network has a resin skeleton with alkali metal incorporated therein, it has excellent adhesiveness, and cracks such as those seen in inorganic insulating films occur even when heated during solar cell formation. It is hard. However, since the alkali silicate-based coating is a water-based coating, moisture tends to remain in the formed insulating film. If the heating temperature at the time of forming the solar cell is higher than the heating temperature at the time of forming the film, the remaining moisture evaporates, causing blisters on the insulating film. When the swelling grows to about several tens of μm, a fine crack is generated at the top of the swelling, which causes a short circuit between the solar cells. By increasing the heating temperature during film formation, blisters and blister growth can be prevented.
At a heating temperature exceeding 00 ° C., blisters occur after the film is formed. For this reason, an insulating film formed by an alkali silicate paint can be used when depositing amorphous silicon by heating at a low temperature, but it is possible to deposit amorphous silicon at a higher temperature, or to use thin-film polycrystalline silicon. Cannot be used as an insulating substrate for solar cells.

【0007】[0007]

【課題を解決するための手段】本発明は、このような問
題を解消すべく案出されたものであり、加熱時に発生す
る欠陥の形態が異なるアルカリシリケート系塗料及びシ
リコーン系塗料を組み合わせ、各絶縁皮膜の欠陥を互い
の絶縁皮膜で補い合ってアルカリシリケート系塗料及び
シリコーン系塗料それぞれの長所を活用し、高温加熱下
での絶縁性を向上させた太陽電池用絶縁基板を提供する
ことを目的とする。本発明の太陽電池用絶縁基板は、そ
の目的を達成するため、金属基板の表面に、アルミナ微
粒子を配合したアルカリシリケート系塗料からなる第1
層の絶縁皮膜と、シリコーン系塗料からなる第2層の絶
縁皮膜が順次形成されていることを特徴とする。
SUMMARY OF THE INVENTION The present invention has been devised to solve such a problem, and combines an alkali silicate-based coating and a silicone-based coating having different forms of defects generated upon heating. The purpose of the present invention is to provide an insulating substrate for a solar cell in which the defects of the insulating films are compensated for by each other and the advantages of the alkali silicate-based paint and the silicone-based paint are utilized to improve the insulating properties under high-temperature heating. I do. In order to achieve the object, the insulating substrate for a solar cell according to the present invention comprises a first substrate made of an alkali silicate-based coating in which alumina particles are blended on the surface of a metal substrate.
The insulating film of the layer and the insulating film of the second layer made of a silicone-based paint are sequentially formed.

【0008】金属基板には、耐食性に優れたステンレス
鋼板の使用が好ましい。第1層の絶縁皮膜は、平均粒径
1μm以下のアルミナ微粒子を10〜30質量%の割合
で配合したアルカリシリケート系塗料を用い、単層又は
複層として1μm以上の膜厚で形成することが好まし
い。第2層の絶縁皮膜も、膜厚2μm以上で形成するこ
とが好ましい。この太陽電池用絶縁基板は、アルミナ微
粒子を配合したアルカリシリケート系塗料を金属基板の
表面に塗布し、乾燥・焼成して第1層の絶縁皮膜を形成
した後、第1層の絶縁皮膜の上にシリコーン系塗料を塗
布し,乾燥・焼成して第2層の絶縁皮膜を形成すること
により製造される。
For the metal substrate, it is preferable to use a stainless steel plate having excellent corrosion resistance. The insulating film of the first layer may be formed as a single layer or a multilayer having a thickness of 1 μm or more using an alkali silicate paint in which alumina fine particles having an average particle diameter of 1 μm or less are blended at a ratio of 10 to 30% by mass. preferable. The second insulating film is also preferably formed with a thickness of 2 μm or more. This insulating substrate for solar cells is obtained by applying an alkali silicate-based coating compounded with alumina fine particles to the surface of a metal substrate, drying and baking to form a first insulating film. It is manufactured by applying a silicone-based paint to the resin, drying and baking to form a second insulating film.

【0009】[0009]

【作用及び実施の形態】本発明に従った太陽電池用絶縁
基板は、図1に示すように金属基板1の上に第1層の絶
縁皮膜2及び第2層の絶縁皮膜3を順次積層している。
第1層の絶縁皮膜2はアルミナ微粒子4を配合したアル
カリシリケート系塗料から成膜され、第2層の絶縁皮膜
3はシリコーン系塗料から成膜される。第1層の絶縁皮
膜2は、図2に示すように複層構造として設けることも
できる。第1層の絶縁皮膜2は、アルカリシリケート系
塗料を塗布して形成した無機系絶縁皮膜であり、アルカ
リ金属が取り込まれた骨格構造をもつことから粘着性に
優れ、太陽電池セル形成時の加熱で熱膨張係数の相違に
由来する無機系絶縁皮膜特有の大きなクラックが発生し
がたい。しかし、水性塗料であるため、400℃を超え
るような高温でセルが形成される太陽電池用途に使用す
ると、残存水分の蒸発に起因して絶縁皮膜にフクレが発
生する欠点がある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The insulating substrate for a solar cell according to the present invention has a first insulating film 2 and a second insulating film 3 sequentially laminated on a metal substrate 1 as shown in FIG. ing.
The first insulating film 2 is formed from an alkali silicate paint containing alumina fine particles 4, and the second insulating film 3 is formed from a silicone paint. The first insulating film 2 can be provided as a multilayer structure as shown in FIG. The first insulating film 2 is an inorganic insulating film formed by applying an alkali silicate paint, and has excellent adhesiveness due to having a skeletal structure in which an alkali metal is incorporated. Thus, large cracks peculiar to the inorganic insulating film derived from the difference in thermal expansion coefficient are unlikely to occur. However, since it is a water-based paint, when it is used for a solar cell application in which cells are formed at a high temperature exceeding 400 ° C., there is a disadvantage that blisters are generated in the insulating film due to evaporation of residual moisture.

【0010】本発明者等は、アルカリシリケート系塗料
からなる無機系絶縁皮膜を多層に形成することにより絶
縁皮膜のフクレ防止を図ることを検討した。しかし、下
層側にある絶縁皮膜のフクレ発生は防止できるが、表層
側の絶縁皮膜にフクレが発生するため、直下にある絶縁
皮膜の発生しているフクレを抑えることができず、フク
レ防止効果は小さなものであった。また、フクレを起こ
すほどの蒸気圧を抑えるためには、実際にフクレが発生
した下層側絶縁皮膜と同じ組成の上層側絶縁皮膜では耐
圧が不足する。
The present inventors have studied to prevent blistering of the insulating film by forming a multilayered inorganic insulating film composed of an alkali silicate paint. However, although blistering of the insulating film on the lower layer side can be prevented, blistering occurs on the insulating film on the surface layer side. It was small. In addition, in order to suppress the vapor pressure enough to cause blisters, the upper insulating film having the same composition as the lower insulating film in which blisters actually occur has insufficient pressure resistance.

【0011】そこで、アルカリシリケート系塗料からな
る無機系絶縁皮膜に発生しがちなフクレを上層の絶縁皮
膜で抑えつけて防止するため、第2層の絶縁皮膜3をフ
クレの発生しない系とし、更にアルカリシリケート系塗
料からなる第1層の絶縁皮膜2よりも強固な骨格構造を
もつ絶縁皮膜を形成することが必要であると考えた。こ
のような前提に立って、シロキサン結合を主鎖とするシ
リコーン系塗料を用いて第2層の絶縁皮膜3を形成する
とき、強固な骨格構造をもつ絶縁皮膜3が上層に形成さ
れ、結果として第1層の絶縁皮膜2に発生するフクレが
抑えられることを見出した。また、高温加熱による耐熱
試験後、樹脂の分解や収縮に伴うクラックが第2層の絶
縁皮膜3に検出されるものの、第1層の絶縁皮膜2を起
点とするフクレの発生が観察されない。しかも、太陽電
池セル形成時の加熱でシリコーン系絶縁皮膜3にピンホ
ールが生成しても、ピンホールを介して太陽電池セルが
金属基板1に導通することが第1層の絶縁皮膜2で防止
される。
Therefore, in order to prevent blisters, which tend to occur on the inorganic insulating film made of an alkali silicate paint, by using an upper insulating film to prevent the blisters, the second insulating film 3 is made of a system free of blisters. It was considered necessary to form an insulating film having a stronger skeletal structure than the first insulating film 2 made of an alkali silicate paint. On such a premise, when the second layer insulating film 3 is formed using a silicone-based paint having a siloxane bond as a main chain, the insulating film 3 having a strong skeleton structure is formed on the upper layer, and as a result, It has been found that blisters generated in the first insulating film 2 can be suppressed. Further, after the heat test by heating at a high temperature, cracks due to the decomposition and shrinkage of the resin are detected in the second insulating film 3, but no blisters starting from the first insulating film 2 are observed. Moreover, even if pinholes are formed in the silicone-based insulating film 3 due to heating during the formation of the solar cell, conduction of the solar cell to the metal substrate 1 via the pinhole is prevented by the first-layer insulating film 2. Is done.

【0012】第1層の絶縁皮膜2の形成に使用されるア
ルカリシリケート系塗料としては、たとえばケイ酸ナト
リウム系,ケイ酸カリウム系,ケイ酸リチウム系及びそ
れらの複合系等がある。第2層の絶縁皮膜3の形成に使
用されるシリコーン系塗料としては、たとえばメチルシ
リコーン,メチルフェニルシリコーン等の純シリコーン
系やアルキド変性、ポリエステル変性シリコーン等があ
る。第1層の絶縁皮膜2には、平均粒径1μm以下のア
ルミナ微粒子4を10〜30質量%の割合で分散配合す
ることが好ましい。耐水性に劣るアルカリシリケート系
の皮膜を絶縁皮膜に使用する場合、皮膜に吸収された水
分に起因する短絡が懸念される。この点、アルカリシリ
ケート系皮膜にアルミナ微粒子を分散配合すると、皮膜
中を水分が通ることがアルミナ微粒子で妨げられ、耐水
性が改善される。
Examples of the alkali silicate paint used for forming the first insulating film 2 include a sodium silicate paint, a potassium silicate paint, a lithium silicate paint and a composite thereof. Examples of the silicone paint used to form the second insulating film 3 include pure silicone such as methyl silicone and methyl phenyl silicone, and alkyd-modified and polyester-modified silicone. It is preferable that alumina fine particles 4 having an average particle diameter of 1 μm or less are dispersed and blended in the first insulating film 2 at a ratio of 10 to 30% by mass. When an alkali silicate-based film having poor water resistance is used for the insulating film, a short circuit due to moisture absorbed by the film is concerned. In this regard, when the alumina fine particles are dispersed and blended in the alkali silicate coating, the passage of moisture through the coating is prevented by the alumina fine particles, and the water resistance is improved.

【0013】アルミナ微粒子4の平均粒径が1μmを超
えると、絶縁皮膜がRmaxで数μmオーダの表面粗さに
なり、1μm以下の薄膜で形成される太陽電池セルの発
電層に膜切れが生じ短絡が発生しやすくなる。アルミナ
微粒子4の配合量が第1層の絶縁皮膜2中の固形分比率
として10質量%未満では、耐水性,耐食性,耐候性等
といった耐久性が劣化しやすい。逆に30質量%を超え
る配合量では、アルミナ微粒子4が二次凝集しやすく,
アルカリシリケート系塗料の貯蔵安定性が劣化する。第
1層の絶縁皮膜2は、好ましくは1μm以上の膜厚で形
成される。1μmに満たない膜厚では、金属基板1の凹
凸によって第1層の絶縁皮膜2に破れ等の欠陥が発生し
やすく、十分な絶縁特性が得られない。第2層の絶縁皮
膜3も、第1層の絶縁皮膜2のフクレ抑制に有効な皮膜
強度を付与するために1μm以上の膜厚で形成すること
が好ましい。
When the average particle size of the alumina fine particles 4 exceeds 1 μm, the insulating film has a surface roughness of the order of several μm at Rmax, and the power generation layer of a solar cell formed of a thin film of 1 μm or less is cut off. Short circuits are likely to occur. If the amount of the alumina fine particles 4 is less than 10% by mass as the solid content ratio in the first insulating film 2, the durability such as water resistance, corrosion resistance, weather resistance and the like is likely to deteriorate. On the other hand, when the amount is more than 30% by mass, the alumina fine particles 4 are liable to secondary aggregation,
The storage stability of the alkali silicate paint deteriorates. The first insulating film 2 is preferably formed with a thickness of 1 μm or more. If the film thickness is less than 1 μm, defects such as tearing are likely to occur in the first insulating film 2 due to unevenness of the metal substrate 1 and sufficient insulating properties cannot be obtained. The second layer insulating film 3 is also preferably formed with a film thickness of 1 μm or more in order to provide a film strength effective for suppressing blistering of the first layer insulating film 2.

【0014】第1層の絶縁皮膜2は、95×10-7/℃
程度の熱膨張係数をもつ。熱膨張係数の相違に起因する
クラックの発生を防止するためには、第1層の絶縁皮膜
2に近い熱膨張係数をもつ金属基板1の使用が好まし
い。この点、ステンレス鋼板は、SUS430で約10
4×10-7/℃であり、太陽電池用基板材料として好適
である。また、第1層の絶縁皮膜2を複層構成で設ける
とき、熱膨張係数差に起因するクラックの発生が緩和さ
れると共に、絶縁安定性も向上する。
The first insulating film 2 has a thickness of 95 × 10 −7 / ° C.
It has a degree of thermal expansion coefficient. In order to prevent the occurrence of cracks due to the difference in thermal expansion coefficient, it is preferable to use a metal substrate 1 having a thermal expansion coefficient close to that of the first insulating film 2. In this respect, stainless steel plate is about 10
It is 4 × 10 −7 / ° C., which is suitable as a substrate material for solar cells. In addition, when the first-layer insulating film 2 is provided in a multilayer structure, the generation of cracks due to the difference in thermal expansion coefficient is reduced, and the insulation stability is improved.

【0015】[0015]

【実施例】成 膜 法 成膜例1(本発明例):第1層の絶縁皮膜2形成用アル
カリシリケート系塗料として、皮膜中の固形分比率がケ
イ酸ナトリウム(SiO2:58〜61質量%,Na
2O:19〜21質量%)50質量%,ケイ酸カリウム
(SiO2:19〜21質量%,K2O:8〜10質量
%)35重量%となるように調合し、平均粒径0.2μ
mのアルミナ微粒子を15質量%の割合で配合した。第
2層の絶縁皮膜3のシリコーン系塗料には、耐熱塗料パ
イロサーム#0400P(日本グレーベカシュー株式会
社製)を使用した。この塗料は、Si−Oの側鎖にメチ
ル基等が付加されたシリコーン樹脂からなり、顔料とし
て金属酸化物を含んでいる。金属基板1として、アルカ
リ脱脂した板厚0.15mm,板幅300mmのSUS
430ステンレス鋼板を使用した。アルカリシリケート
系塗料をステンレス鋼帯にロールコータで塗布した後、
300℃×1分で焼き付け、膜厚4μmの第1層の絶縁
皮膜2を形成した。更に、第1層の絶縁皮膜2の上にシ
リコーン系塗料を塗布し、350℃×2分で焼き付け、
膜厚15μmの第2層の絶縁皮膜3を形成した。
EXAMPLES deposition method Film Formation Example 1 (Embodiment): As the insulating film 2 for forming an alkali silicate coating of the first layer, the solid content ratio of sodium silicate in the coating (SiO 2: 58-61 wt %, Na
2 O: 19 to 21 wt%) 50 wt%, potassium silicate (SiO 2: 19 to 21 wt%, K 2 O: 8 to 10 wt%) were blended so that 35 wt%, average particle diameter 0 .2μ
m of alumina fine particles were blended at a ratio of 15% by mass. As the silicone-based paint for the second insulating film 3, Pyrotherm # 0400P (produced by Nippon Grebekashu Co., Ltd.) was used. This paint is made of a silicone resin in which a methyl group or the like is added to the side chain of Si—O, and contains a metal oxide as a pigment. SUS with a thickness of 0.15 mm and a width of 300 mm, which has been degreased with alkali, as the metal substrate 1
A 430 stainless steel plate was used. After applying the alkali silicate paint to the stainless steel strip with a roll coater,
Baking was performed at 300 ° C. for 1 minute to form a first-layer insulating film 2 having a thickness of 4 μm. Further, a silicone-based paint is applied on the first insulating film 2 and baked at 350 ° C. for 2 minutes.
A second insulating film 3 having a thickness of 15 μm was formed.

【0016】成膜例2(本発明例):耐熱塗料オキツモ
6831(オキツモ株式会社製:成膜例1と同様なシリ
コーン系塗料)をシリコーン系塗料に使用する以外は、
成膜例1と同様に絶縁皮膜を形成した。得られた絶縁皮
膜の膜厚は、第1層の絶縁皮膜2が6μm,第2層の絶
縁皮膜3が14μmであった。 成膜例3(本発明例):アルカリシリケート系塗料に添
加するアルミナ微粒子の平均粒径を1μmとする以外
は、成膜例1と同様に絶縁皮膜を形成した。得られた絶
縁皮膜の膜厚は、第1層の絶縁皮膜2が5μm,第2層
の絶縁皮膜3が13μmであった。
Film forming example 2 (Example of the present invention): heat-resistant paint Okitsumo 6831 (manufactured by Okitsumo Co., Ltd .: same silicone paint as in film forming example 1) is used as the silicone-based paint.
An insulating film was formed in the same manner as in Film-forming Example 1. The thickness of the obtained insulating film was 6 μm for the first insulating film 2 and 14 μm for the second insulating film 3. Film-forming Example 3 (Example of the present invention): An insulating film was formed in the same manner as in Film-forming Example 1, except that the average particle diameter of the alumina fine particles added to the alkali silicate-based paint was 1 μm. The thickness of the obtained insulating film was 5 μm for the first insulating film 2 and 13 μm for the second insulating film 3.

【0017】成膜例4(本発明例):アルカリシリケー
ト系塗料に添加するアルミナ微粒子の濃度を第1層の絶
縁皮膜2中の固形分比率として10質量%とする以外
は、成膜例1と同様に絶縁皮膜を形成した。得られた絶
縁皮膜の膜厚は、第1層の絶縁皮膜2が5μm,第2層
の絶縁皮膜3が15μmであった。 成膜例5(本発明例):アルカリシリケート系塗料に添
加するアルミナ微粒子の濃度を第1層の絶縁皮膜2中の
固形分比率として30質量%とする以外は、成膜例1と
同様に絶縁皮膜を形成した。得られた絶縁皮膜の膜厚
は、第1層の絶縁皮膜2が6μm,第2層の絶縁皮膜3
が14μmであった。 成膜例6(本発明例):第1層の絶縁皮膜2用のアルカ
リシリケート系塗料をロールコートする際にアプリケー
タロールの周速を遅くする以外は、成膜例1と同様に絶
縁皮膜を形成した。得られた絶縁皮膜の膜厚は、第1層
の絶縁皮膜2が1μm,第2層の絶縁皮膜3が13μm
であった。
Film forming example 4 (Example of the present invention): Film forming example 1 except that the concentration of the alumina fine particles added to the alkali silicate paint was set to 10% by mass as the solid content ratio in the first insulating film 2. An insulating film was formed in the same manner as described above. The thickness of the obtained insulating film was 5 μm for the first insulating film 2 and 15 μm for the second insulating film 3. Film-forming Example 5 (Example of the present invention): Same as Film-forming Example 1 except that the concentration of the alumina fine particles added to the alkali silicate-based coating material is 30% by mass as the solid content ratio in the first-layer insulating film 2. An insulating film was formed. The thickness of the obtained insulating film is 6 μm for the first insulating film 2 and 3 μm for the second insulating film 3.
Was 14 μm. Film-forming example 6 (Example of the present invention): The same as the film-forming example 1 except that the peripheral speed of the applicator roll is reduced when the alkali silicate paint for the first insulating film 2 is roll-coated. Was formed. The thickness of the obtained insulating film was 1 μm for the first insulating film 2 and 13 μm for the second insulating film 3.
Met.

【0018】成膜例7(本発明例):第2層の絶縁皮膜
3用のシリコーン系塗料をロールコートする際にアプリ
ケータロールの周速を遅くする以外は、成膜例1と同様
に絶縁皮膜を形成した。得られた絶縁皮膜の膜厚は、第
1層の絶縁皮膜2が5μm,第2層の絶縁皮膜3が1μ
mであった。 成膜例8(本発明例):アルカリシリケート系塗料から
なる第1層の絶縁皮膜2とシリコーン系塗料からなる第
2層の絶縁皮膜3との間に、中間層として第1層と同じ
条件で絶縁皮膜を形成する以外は、成膜例1と同様に絶
縁皮膜を形成した。得られた絶縁皮膜の膜厚は、第1層
の絶縁皮膜2が5μm,中間層の絶縁皮膜が5μm,第
2層の絶縁皮膜3が10μmであった。
Film-forming example 7 (Example of the present invention): Same as film-forming example 1 except that the peripheral speed of the applicator roll is reduced when the silicone-based paint for the second insulating film 3 is roll-coated. An insulating film was formed. The thickness of the obtained insulating film was 5 μm for the first insulating film 2 and 1 μm for the second insulating film 3.
m. Film forming example 8 (example of the present invention): the same conditions as the first layer as an intermediate layer between the first layer insulating film 2 made of an alkali silicate paint and the second layer insulating film 3 made of a silicone paint. An insulating film was formed in the same manner as in Film-forming Example 1 except that the insulating film was formed in Step 1. The thickness of the obtained insulating film was 5 μm for the first insulating film 2, 5 μm for the intermediate insulating film, and 10 μm for the second insulating film 3.

【0019】成膜例9(比較例):成膜例1と同じ条件
下で膜厚6μmの第1層の絶縁皮膜2のみを形成した。 成膜例10(比較例):成膜例1と同じ条件下で膜厚1
6μmの第2層の絶縁皮膜3のみを形成した。 成膜例11(比較例):成膜例2と同じ条件下で膜厚1
5μmの第2層の絶縁皮膜3のみを形成した。 成膜例12(比較例):アルカリシリケート系塗料に平
均粒径5μmのアルミナ微粒子を添加する以外は,成膜
例1と同様に絶縁皮膜を形成した。得られた絶縁皮膜の
膜厚は、第1層の絶縁皮膜2が6μm,第2層の絶縁皮
膜3が15μmであった。
Film forming example 9 (comparative example): Only the first insulating film 2 having a thickness of 6 μm was formed under the same conditions as in film forming example 1. Film forming example 10 (comparative example): film thickness 1 under the same conditions as film forming example 1
Only a 6 μm second insulating film 3 was formed. Film forming example 11 (comparative example): film thickness 1 under the same conditions as film forming example 2
Only the second insulating film 3 having a thickness of 5 μm was formed. Film-forming Example 12 (Comparative Example): An insulating film was formed in the same manner as in Film-forming Example 1, except that alumina fine particles having an average particle size of 5 μm were added to the alkali silicate paint. The thickness of the obtained insulating film was 6 μm for the first insulating film 2 and 15 μm for the second insulating film 3.

【0020】成膜例13(比較例):皮膜中の固形分比
率として70質量%のアルミナ微粒子をアルカリシリケ
ート系塗料に配合する以外は、成膜例1と同様に絶縁皮
膜を形成した。得られた絶縁皮膜の膜厚は,第1層の絶
縁皮膜2が6μm,第2層の絶縁皮膜3が15μmであ
った。
Film-forming Example 13 (Comparative Example): An insulating film was formed in the same manner as in Film-forming Example 1, except that alumina fine particles having a solid content ratio of 70% by mass in the film were mixed with the alkali silicate paint. The thickness of the obtained insulating film was 6 μm for the first insulating film 2 and 15 μm for the second insulating film 3.

【0021】塗 膜 性 能 評 価 耐熱性試験:絶縁皮膜が形成された各ステンレス鋼板か
ら300mm×300mmの試験片を切り出し、耐熱試
験に供した。耐熱試験では、絶縁皮膜側に直径50mm
のAl電極を幅方向及び長手方向共に60mm間隔で合
計25個形成し、真空焼鈍炉(到達真空度:1〜3×1
-2Pa)に装入して500℃に90分間保持した後、
電極表面と試験片裏面との間に1Vの電圧を印加し、面
積抵抗が1MΩ・cm 2以上となる電極の個数をカウン
トした。1MΩ・cm2以上の電極の個数が25個であ
るサンプルを◎,23個以上を○,22個以下を×とし
て耐熱性を評価した。 塗料安定性:成膜例1〜13で調製した各塗料を40℃
に1ヶ月放置した後、塗料中の微粒子の平均粒径を粒度
分布計で測定し、二次凝集の度合いを調査した。平均粒
径が1μm以下を◎,2μm以下を○,2μmを超える
ものを×として塗料安定性を評価した。
[0021]Evaluation of coating film performance Heat resistance test: Each stainless steel sheet with insulating film formed
Cut out a test piece of 300 mm x 300 mm from
Tested. In the heat resistance test, 50 mm in diameter was
Al electrodes at 60 mm intervals in both the width and length directions
A total of 25 pieces are formed, and a vacuum annealing furnace (attained vacuum degree: 1-3 × 1)
0-2Pa) and kept at 500 ° C. for 90 minutes,
Apply a voltage of 1 V between the electrode surface and the back of the test piece,
Product resistance is 1MΩcm TwoCount the number of electrodes
I did it. 1MΩ · cmTwoThe number of the above electrodes is 25
サ ン プ ル, 23 or more samples as ,, 22 or less samples as ×
The heat resistance was evaluated. Paint stability: Each paint prepared in film forming examples 1 to 13 was heated to 40 ° C.
After one month, the average particle size of the fine particles in the paint
It was measured with a distribution meter and the degree of secondary aggregation was investigated. Average grain
◎: 1 μm or less, ○: 2 μm or less, more than 2 μm
The coating stability was evaluated as “×”.

【0022】表1の調査結果にみられるように、成膜例
1〜8(本発明例)の絶縁皮膜は、何れも優れた耐熱性
を呈し、太陽電池セル形成時の加熱雰囲気に曝されても
ピンホール等の欠陥の発生がないことが判る。使用した
塗料も貯蔵安定性に優れ、長期にわたって品質が安定し
た絶縁皮膜の形成に使用される。これに対し、アルカリ
シリケート系塗料又はシリコーン系塗料からなる絶縁皮
膜のみを形成した成膜例9〜11では。塗料安定性に優
れるものの、耐熱性に劣っていた。複層構造の塗膜を形
成した場合でも、第1層の絶縁皮膜2に平均粒径の大き
なアルミナ微粒子4を分散させた成膜例では、耐熱性に
優れるものの塗料安定性に劣っていた。第1層の絶縁皮
膜2に過剰のアルミナ微粒子4を分散させた成膜例13
では、耐熱性及び塗料安定性共に劣っていた。この対比
から明らかなように、アルミナ微粒子4を分散させたア
ルカリシリケート系絶縁皮膜2の上にシリコーン系絶縁
皮膜3を形成するとき、耐熱性に優れた絶縁皮膜が得ら
れ、太陽電池セル形成時の加熱によっても短絡原因にな
るピンホール等の欠陥発生のない耐熱性に優れた太陽電
池用絶縁基板が提供される。
As can be seen from the investigation results in Table 1, all of the insulating films of Film-forming Examples 1 to 8 (Examples of the present invention) exhibit excellent heat resistance and are exposed to the heating atmosphere at the time of forming the solar cell. It can be seen that no defects such as pinholes occur. The used paint also has excellent storage stability and is used for forming an insulating film whose quality is stable over a long period of time. On the other hand, in film-forming examples 9 to 11 in which only an insulating film made of an alkali silicate paint or a silicone paint was formed. The paint stability was excellent, but the heat resistance was poor. Even when a coating film having a multilayer structure was formed, in a film forming example in which alumina fine particles 4 having a large average particle size were dispersed in the insulating film 2 of the first layer, the coating stability was poor although the heat resistance was excellent. Film forming example 13 in which excessive alumina fine particles 4 are dispersed in first insulating film 2
Was inferior in both heat resistance and paint stability. As is clear from this comparison, when the silicone-based insulating film 3 is formed on the alkali-silicate-based insulating film 2 in which the alumina fine particles 4 are dispersed, an insulating film having excellent heat resistance is obtained, and the The present invention provides an insulating substrate for a solar cell which is excellent in heat resistance and free from defects such as pinholes which may cause a short circuit even by heating.

【0023】 [0023]

【0024】[0024]

【発明の効果】以上に説明したように、本発明の太陽電
池用絶縁基板は、金属基板の上にアルミナ微粒子を分散
させたアルカリシリケート系絶縁皮膜及びシリコーン系
絶縁皮膜を順次形成しているので、各皮膜の欠陥が他方
の皮膜で互いに補われ、太陽電池セル形成時に高温加熱
されても絶縁性が低下することがない。しかも、アルカ
リシリケート系塗料に配合するアルミナ微粒子の粒径及
び分散量を調整するとき、耐熱性,耐久性及び塗料安定
性が向上し,高品質の太陽電池用絶縁基板が得られる。
As described above, the insulating substrate for a solar cell according to the present invention has an alkali silicate insulating film and a silicon insulating film in which alumina fine particles are dispersed on a metal substrate in order. In addition, the defects of each film are compensated for by the other film, and the insulating property does not decrease even if the film is heated at a high temperature during the formation of the solar cell. In addition, when adjusting the particle size and the amount of dispersion of the alumina fine particles to be added to the alkali silicate paint, heat resistance, durability and paint stability are improved, and a high-quality insulating substrate for a solar cell can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 金属基板表面にアルミナ微粒子分散アルカリ
シリケート系絶縁皮膜(第1層)及びシリコーン系絶縁
皮膜(第2層)を順次積層した太陽電池用絶縁基板の断
面図
FIG. 1 is a cross-sectional view of a solar cell insulating substrate in which an alumina silicate-based insulating film (first layer) and a silicone-based insulating film (second layer) are sequentially laminated on a metal substrate surface.

【図2】 第1層を複層とし、その上にシリコーン系絶
縁皮膜(第2層)を形成した太陽電池用絶縁基板の断面
FIG. 2 is a cross-sectional view of an insulating substrate for a solar cell in which a first layer has a plurality of layers and a silicone-based insulating film (second layer) is formed thereon.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 梶本 淳 千葉県市川市高谷新町7番1号 日新製鋼 株式会社技術研究所内 Fターム(参考) 5F051 AA03 AA05 BA17 BA18 GA02 GA06 GA20  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Jun Kajimoto 7-1 Takaya Shinmachi, Ichikawa-shi, Chiba F-term in Nisshin Steel R & D Co., Ltd. F-term (reference) 5F051 AA03 AA05 BA17 BA18 GA02 GA06 GA20

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属基板の表面に、平均粒径1μm以下
のアルミナ微粒子を固形分比率として10〜30質量%
の割合で配合したアルカリシリケート系塗料からなる第
1層の絶縁皮膜と、シリコーン系塗料からなる第2層の
絶縁皮膜が順次形成されている耐熱性に優れた太陽電池
用絶縁基板。
1. An alumina fine particle having an average particle diameter of 1 μm or less as a solid content ratio of 10 to 30% by mass on a surface of a metal substrate.
An insulating substrate for a solar cell having excellent heat resistance in which a first layer insulating film made of an alkali silicate paint and a second layer insulating film made of a silicone paint are sequentially formed.
【請求項2】 ステンレス鋼板を金属基板として使用す
る請求項1記載の太陽電池用絶縁基板。
2. The solar cell insulating substrate according to claim 1, wherein a stainless steel plate is used as the metal substrate.
【請求項3】 アルミナ微粒子を配合したアルカリシリ
ケート系塗料を金属基板の表面に塗布し、乾燥・焼成し
て第1層の絶縁皮膜を形成した後、第1層の絶縁皮膜の
上にシリコーン系塗料を塗布し,乾燥・焼成して第2層
の絶縁皮膜を形成することを特徴とする太陽電池用絶縁
基板の製造方法。
3. An alkali silicate-based coating compounded with alumina fine particles is applied to the surface of a metal substrate, dried and fired to form a first-layer insulating film, and then a silicone-based coating is formed on the first-layer insulating film. A method for producing an insulating substrate for a solar cell, comprising applying a paint, drying and firing to form a second insulating film.
JP36704699A 1999-12-24 1999-12-24 Insulating substrate for solar cell having excellent heat resistance and method for producing the same Expired - Fee Related JP4865119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36704699A JP4865119B2 (en) 1999-12-24 1999-12-24 Insulating substrate for solar cell having excellent heat resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36704699A JP4865119B2 (en) 1999-12-24 1999-12-24 Insulating substrate for solar cell having excellent heat resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001185747A true JP2001185747A (en) 2001-07-06
JP4865119B2 JP4865119B2 (en) 2012-02-01

Family

ID=18488333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36704699A Expired - Fee Related JP4865119B2 (en) 1999-12-24 1999-12-24 Insulating substrate for solar cell having excellent heat resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP4865119B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007502536A (en) * 2003-08-12 2007-02-08 サンドビック インテレクチュアル プロパティー アクティエボラーグ New metal strip
JP2007088044A (en) * 2005-09-20 2007-04-05 Nippon Steel Materials Co Ltd Coated stainless steel foil and thin film solar cell
US7530757B2 (en) 2001-08-27 2009-05-12 Mitsubishi Heavy Industries, Ltd. Rotor coupling having insulated structure
JP2011108883A (en) * 2009-11-18 2011-06-02 Mitsubishi Chemicals Corp Solar cell
JP2014216514A (en) * 2013-04-26 2014-11-17 大同特殊鋼株式会社 Rare-earth magnet and production method therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176977A (en) * 1982-04-09 1983-10-17 Kanegafuchi Chem Ind Co Ltd Flexible thin film photovoltaic apparatus
JPS63168056A (en) * 1986-12-29 1988-07-12 Taiyo Yuden Co Ltd Amorphous semiconductor solar battery
JPH0334472A (en) * 1989-06-30 1991-02-14 Taiyo Yuden Co Ltd Amorphous semiconductor photovoltaic element
JPH11121773A (en) * 1997-10-08 1999-04-30 Nisshin Steel Co Ltd Insulating substrate for solar cells and manufacture thereof
JPH11238891A (en) * 1998-02-20 1999-08-31 Nisshin Steel Co Ltd Insulating substrate for solar cell
JPH11261090A (en) * 1998-03-09 1999-09-24 Nisshin Steel Co Ltd Solar battery substrate and its manufacture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176977A (en) * 1982-04-09 1983-10-17 Kanegafuchi Chem Ind Co Ltd Flexible thin film photovoltaic apparatus
JPS63168056A (en) * 1986-12-29 1988-07-12 Taiyo Yuden Co Ltd Amorphous semiconductor solar battery
JPH0334472A (en) * 1989-06-30 1991-02-14 Taiyo Yuden Co Ltd Amorphous semiconductor photovoltaic element
JPH11121773A (en) * 1997-10-08 1999-04-30 Nisshin Steel Co Ltd Insulating substrate for solar cells and manufacture thereof
JPH11238891A (en) * 1998-02-20 1999-08-31 Nisshin Steel Co Ltd Insulating substrate for solar cell
JPH11261090A (en) * 1998-03-09 1999-09-24 Nisshin Steel Co Ltd Solar battery substrate and its manufacture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7530757B2 (en) 2001-08-27 2009-05-12 Mitsubishi Heavy Industries, Ltd. Rotor coupling having insulated structure
JP2007502536A (en) * 2003-08-12 2007-02-08 サンドビック インテレクチュアル プロパティー アクティエボラーグ New metal strip
JP2007088044A (en) * 2005-09-20 2007-04-05 Nippon Steel Materials Co Ltd Coated stainless steel foil and thin film solar cell
JP2011108883A (en) * 2009-11-18 2011-06-02 Mitsubishi Chemicals Corp Solar cell
JP2014216514A (en) * 2013-04-26 2014-11-17 大同特殊鋼株式会社 Rare-earth magnet and production method therefor

Also Published As

Publication number Publication date
JP4865119B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
JP5307795B2 (en) SEALING MATERIAL, DEVICE USING SUCH MATERIAL, AND METHOD FOR PRODUCING SUCH DEVICE
Herz et al. Dielectric barriers for flexible CIGS solar modules
TW201124494A (en) Aluminum pastes and use thereof in the production of passivated emitter and rear contact silicon solar cells
WO2013099479A1 (en) Laminate, and organic el element, window and solar cell module, each using same
JP2001185747A (en) Insulation board superior in heat resistance for solar cells and its manufacturing method
TW201500313A (en) Solar cell and paste composition for forming aluminum electrode for solar cell
JP6517103B2 (en) Heat dissipation substrate, device and method of manufacturing heat dissipation substrate
JP2013093150A (en) Solid oxide fuel cell member
WO2023011228A1 (en) Thermal print head substrate having composite lead-free protective layer and method for manufacturing same
JP2002141536A (en) Thin film polycrystalline silicon solar cell substrate superior in heat resistance and manufacturing method thereof
JP4526197B2 (en) Method for manufacturing insulating substrate for thin film polycrystalline silicon solar cell
WO2017098854A1 (en) Sealer, sealer coating solution, corrosion resistant film, high temperature member, and method for manufacturing high temperature member
JP2002097365A (en) Insulating substrate for thin-film polycrystal silicon solar battery, and method for producing the same
JPH11238891A (en) Insulating substrate for solar cell
JP2023517767A (en) dielectric coating
JP2017052672A (en) Sealing agent, sealing agent coating solution, corrosion-resistant coating film, high-temperature member, and method for producing high-temperature member
JPH0768065B2 (en) Glass-coated aluminum nitride sintered body and method for producing the same
WO2017043423A1 (en) Sealing agent, sealing agent coating solution, corrosion-resistant coating film, high-temperature member, and method for producing high-temperature member
JP2018193606A (en) Sealer, sealer application liquid, corrosion-resistant film, high-temperature member, and methods for producing the same
JP2003303979A (en) Insulating substrate for thin-film polycrystalline silicon solar battery, and method for manufacturing the same
JP2984654B1 (en) Method for producing ceramic laminate having sprayed ceramic layer
JP2001158954A (en) Method of forming sprayed deposit free from penetrating pore, and member with the sprayed deposit
JPS62134980A (en) Mother plate for solar battery substrate and manufacture thereof
WO2018159195A1 (en) Sealer, sealer application liquid, corrosion-resistant film, high-temperature member, and methods for producing same
JP2017190263A (en) Sealer, sealer coating liquid, anticorrosive coat, high temperature member and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060808

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070409

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees