JP2001184621A - Magnetic disk - Google Patents

Magnetic disk

Info

Publication number
JP2001184621A
JP2001184621A JP36571199A JP36571199A JP2001184621A JP 2001184621 A JP2001184621 A JP 2001184621A JP 36571199 A JP36571199 A JP 36571199A JP 36571199 A JP36571199 A JP 36571199A JP 2001184621 A JP2001184621 A JP 2001184621A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic layer
magnetic disk
layer
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP36571199A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Makita
義幸 蒔田
Kenji Tanaka
憲司 田中
Kazuhiko Nakiri
和彦 菜切
Teruhisa Miyata
照久 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP36571199A priority Critical patent/JP2001184621A/en
Publication of JP2001184621A publication Critical patent/JP2001184621A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-density magnetic disk, particularly a high-density magnetic disk having servo signals with high track density and high line recording density and having high resolution and S/N and excellent traveling durability. SOLUTION: The magnetic disk is produced by forming at least a base coating layer and a magnetic layer in this order on a nonmagnetic supporting body. The magnetic layer is formed to <=0.2 μm thickness, and the magnetic powder incorporated into the magnetic layer consists of ferromagnetic iron-based alloy powder containing Co and rare earth elements and having <=0.15 μm major axial length (L) satisfying the relation of L/λ<=1/3, wherein λ is the shortest recording wavelength. The particle diameter of the carbon black incorporated into the magnetic layer is larger than the thickness of the magnetic layer. The minimum and maximum values of the coefficient of thermal expansion of the magnetic recording disk having the aforementioned materials satisfy the relation of maximum/minimum<=2.0. Further, the magnetic disk contains servo signals.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高密度磁気ディス
クに関し、特に電磁変換特性および走行耐久性に優れ
た、サ−ボ信号を有する磁気ディスクに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-density magnetic disk, and more particularly to a magnetic disk having a servo signal and excellent in electromagnetic conversion characteristics and running durability.

【0002】[0002]

【従来の技術】磁気記録媒体は、オ―デイオテ―プ、ビ
デオテ―プ、コンピユ―タ―テ―プ、ディスクなど種々
の用途があるが、特にデジタル方式に代表される磁気記
録媒体では年々高密度化され、磁気ディスクにおいて
は、従来の酸化物磁性粉を用いた1MBの容量から、大
幅に容量をアツプした100MB以上の容量をもつ磁気
ディスクが提案されている。またドライブにおいても小
型化、軽量化が進み、あらゆる環境下で用いられるよう
になってきた。
2. Description of the Related Art Magnetic recording media have various uses such as audio tapes, video tapes, computer tapes, disks, and the like. As a magnetic disk having a higher density, there has been proposed a magnetic disk having a capacity of 100 MB or more, which is greatly increased from the capacity of 1 MB using the conventional oxide magnetic powder. Drives have also been reduced in size and weight, and have been used in various environments.

【0003】このような高密度磁気ディスクが用いられ
るドライブは、大容量のデ―タを短時間で記録再生する
ため、ディスク回転速度を従来の300rpmから72
0rpmの倍速にしたり、さらに3,000rpm以上
の高速回転を行う必要があり、今後はさらなる高密度、
大容量化のため、回転速度の高速化およびトラック密度
と線記録密度を高めるなどの方向で開発が進められてい
る。また、高速回転時に安定した記録再生特性および信
頼性の確保を行うため、ヘツドの媒体への最適な接触機
構の開発が進められている。
In a drive using such a high-density magnetic disk, the disk rotation speed is increased from the conventional 300 rpm to 72 in order to record and reproduce a large amount of data in a short time.
It is necessary to make the rotation speed twice as high as 0 rpm or to rotate at a high speed of 3,000 rpm or more.
In order to increase the capacity, developments are being made to increase the rotation speed and increase the track density and the linear recording density. Further, in order to ensure stable recording / reproducing characteristics and reliability during high-speed rotation, development of an optimal contact mechanism of a head with a medium has been promoted.

【0004】このような高密度化および環境の変化に対
応する磁気ディスクとしては、強磁性粉の磁気特性の改
善や、強磁性粉の均一分布などの手段、さらに媒体−ヘ
ツド間のスペ−シングロスを小さくする手段、高密度磁
気ディスクの温度変化または湿度変化によるトラック真
円度劣化の抑制(円周方向の寸法変化量の差 )、つま
り温度膨張係数または、湿度膨張係数の異方性を小さく
する手段などが必要となつてきている。
As a magnetic disk corresponding to such a high density and a change in environment, means for improving the magnetic properties of ferromagnetic powder, uniform distribution of ferromagnetic powder, and a spacing loss between a medium and a head are required. Means to reduce track circularity deterioration (difference in dimensional change in the circumferential direction) due to temperature change or humidity change of a high-density magnetic disk, that is, to reduce the anisotropy of the temperature expansion coefficient or the humidity expansion coefficient. There is a need for means to do so.

【0005】強磁性粉の磁気特性の改善としては、磁気
ディスクに残留する磁化の度合いが大きい方が、高出力
化に望ましいため、磁性粉としては従来の酸化物磁性粉
や、コバルト含有酸化鉄磁性粉に代わり、強磁性鉄系合
金粉が主流になりつつあり、保磁力1,500Oe以上
の強磁性鉄系合金粉が提案されている。たとえば、特開
平5−234064号公報、特開平6−25702号公
報、特開平6−139553号公報などに開示されてい
る。
In order to improve the magnetic characteristics of the ferromagnetic powder, it is desirable to increase the degree of magnetization remaining on the magnetic disk to increase the output. Therefore, as the magnetic powder, conventional oxide magnetic powder or cobalt-containing iron oxide is used. Instead of magnetic powder, ferromagnetic iron-based alloy powder is becoming mainstream, and ferromagnetic iron-based alloy powder having a coercive force of 1,500 Oe or more has been proposed. For example, it is disclosed in JP-A-5-234064, JP-A-6-25702, JP-A-6-139553.

【0006】また、強磁性粉の分散性を上げるための手
段としては、スルホン酸基、リン酸基またはこれらのア
ルカリ金属塩などの極性官能基を有する結合剤を用いた
り、結合剤とともに低分子量の分散剤を併用したり、ま
た磁性塗料の混練分散工程を連続的に行つたり、分散後
に潤滑剤を後添加するなどの手段が提案されている。た
とえば、特開平62−23226号公報、特開平2−1
01624号公報、特開平3−216812号公報、特
開平3−17827号公報、特開平4−47586号公
報、特開平8−235566号公報などに開示されてい
る。
As means for improving the dispersibility of the ferromagnetic powder, a binder having a polar functional group such as a sulfonic acid group, a phosphoric acid group or an alkali metal salt thereof, or a low molecular weight compound together with the binder is used. Means have been proposed, such as using the above dispersant in combination, continuously performing the kneading and dispersing step of the magnetic paint, and adding a lubricant after dispersion. For example, Japanese Patent Application Laid-Open Nos. 62-23226 and 2-1
No. 01624, JP-A-3-216812, JP-A-3-17827, JP-A-4-47586, JP-A-8-235566, and the like.

【0007】さらに、媒体−ヘツド間のスペ―シングロ
スを小さくする手段としては、上記の磁性粉の分散性を
上げる手段のほか、カレンダ―工程において高温、高圧
条件で磁性層の平滑化処理を行つたり、磁性層の下に非
磁性の下塗り層を設けて、非磁性支持体の表面性による
磁性層表面への影響を抑制するなどの手段が提案されて
いる。たとえば、特公昭64−1297号公報、特公平
7−60504号公報、特開平4−19815号公報な
どに開示されている。
Further, as means for reducing the spacing loss between the medium and the head, in addition to the above-mentioned means for increasing the dispersibility of the magnetic powder, a smoothing treatment of the magnetic layer under high temperature and high pressure conditions in the calendar step is performed. Means have been proposed in which a nonmagnetic undercoat layer is provided below the magnetic layer to suppress the influence of the surface properties of the nonmagnetic support on the surface of the magnetic layer. For example, it is disclosed in JP-B-64-1297, JP-B-7-60504, and JP-A-4-19815.

【0008】しかし、上記の手段により作製された従来
の磁気ディスクは、100MB以上の容量に対応したド
ライブでは電磁変換特性および走行耐久性を満足させる
ことができなかつた。高密度磁気ディスクでは、トラツ
ク密度と線記録密度の両方を高めるため、従来の磁性粉
の飽和磁化や保磁力程度では出力が数分の1程度しか得
られず、また極めて短い記録波長を使用するため、従来
それほど問題とならなかつた記録再生時の自己減磁損失
や磁性層の厚さに起因する厚み損失の影響が大きくな
り、十分な分解能が得られない。
However, the conventional magnetic disk manufactured by the above means cannot satisfy the electromagnetic conversion characteristics and the running durability with a drive corresponding to a capacity of 100 MB or more. In the case of a high-density magnetic disk, in order to increase both the track density and the linear recording density, an output of only about a fraction is obtained with the saturation magnetization and coercive force of conventional magnetic powder, and an extremely short recording wavelength is used. Therefore, the effects of self-demagnetization loss during recording and reproduction and the thickness loss due to the thickness of the magnetic layer, which have not been a problem in the past, become large, and sufficient resolution cannot be obtained.

【0009】これに対して、たとえば、特開平5−10
9061号公報などでは、磁性粉として保磁力1,00
0Oe以上の強磁性鉄系合金粉を使用するとともに、表
面性に起因するスペ―ス損失や厚み損失を低減するため
に、非磁性支持体と磁性層との間に非磁性層を設け、磁
性層の厚さを0.5μm以下にすることが提案されてい
る。しかし、トラツク幅が10μm以下、最短記録波長
が1.0μm以下にもなる高密度磁気ディスクでは、磁
性粉の飽和磁化および保磁力をより高めたり、上記のス
ペ―ス損失や厚み損失をさらに低減する必要がある。
On the other hand, for example, Japanese Patent Laid-Open No.
No. 9061 and the like, coercive force of 1,000
A ferromagnetic iron-based alloy powder of 0 Oe or more is used, and a non-magnetic layer is provided between the non-magnetic support and the magnetic layer to reduce space loss and thickness loss due to surface properties. It has been proposed that the thickness of the layer be less than 0.5 μm. However, in a high-density magnetic disk having a track width of 10 μm or less and a shortest recording wavelength of 1.0 μm or less, the saturation magnetization and coercive force of the magnetic powder can be further increased, and the above space loss and thickness loss can be further reduced. There is a need to.

【0010】しかも、このような高密度ディスクでは、
トラック密度が向上されることにより、トラック幅が狭
くなるため、温度変化または湿度変化による磁気ディス
クの膨張、収縮により磁気ヘッドのオフトラックによる
S/N比の低下に起因するデ−タエラ−を生じ易い。こ
れは特にデータを記録したときと再生したときの温湿度
環境が異なっている場合などに、磁気ディスクの温度膨
張係数または湿度膨張係数による寸法変化の影響でのオ
フトラックが生じ易いことから、デ−タトラックとは別
にデ−タトラック位置検出のためのサ−ボ信号を有する
サ−ボトラックを磁性層上に設ける必要がある。従っ
て、トラック密度向上のためには、サ−ボ信号によるオ
フトラックの抑制が不可欠となってきつつある。しかし
ながら、このようなサ−ボ信号を有する媒体であって
も、上記のようにデ−タトラック幅が10μm以下と極
めて狭くなった場合、デ−タエラ−が増加するという問
題が明らかとなった。すなわち、磁気ヘッドのオフトラ
ックによるデ−タトラックからのずれ量の絶対値が同一
であっても、デ−タトラック幅が狭くなるため、データ
トラック幅に対する最小オントラック幅の比が減少し、
さらに温度膨張係数または、湿度膨張係数の異方性が適
切でない場合、ヘッドがサーボ信号に追従しきれず、そ
の結果オフトラックによるS/N比の低下率が大きく、
デ−タエラ−を誘発する問題を有している。このような
オフトラックによるデ−タエラ−を装置側でエラ−訂正
を行うことも可能であり、実際そのような訂正回路も使
用されているが、媒体側としても、S/N比を向上する
ことによって、ヘッドのオフトラックが一定量生じた場
合でも、要求される最低S/N比を維持することにより
オフトラックに対するデ−タエラ−を低減する必要があ
る。
Moreover, in such a high-density disc,
Since the track width is narrowed by the improvement of the track density, expansion and contraction of the magnetic disk due to a change in temperature or humidity causes data errors due to a decrease in the S / N ratio due to off-track of the magnetic head. easy. This is because the off-track is likely to occur due to the dimensional change due to the temperature expansion coefficient or humidity expansion coefficient of the magnetic disk especially when the temperature and humidity environment when data is recorded and when the data is reproduced are different. It is necessary to provide a servo track having a servo signal for detecting a data track position on the magnetic layer separately from the data track. Therefore, suppression of off-track by a servo signal is becoming indispensable for improving track density. However, even with a medium having such a servo signal, it has become apparent that the data error increases when the data track width is extremely narrow as 10 μm or less as described above. . That is, even if the absolute value of the deviation amount from the data track due to the off-track of the magnetic head is the same, the data track width is narrowed, and the ratio of the minimum on-track width to the data track width is reduced.
Further, when the anisotropy of the temperature expansion coefficient or the humidity expansion coefficient is not appropriate, the head cannot follow the servo signal, and as a result, the S / N ratio is largely reduced by off-track,
It has the problem of inducing data errors. It is also possible to perform error correction on such an off-track data error on the device side, and such a correction circuit is actually used, but the S / N ratio is also improved on the medium side. Therefore, even when a certain amount of head off-track occurs, it is necessary to reduce the data error with respect to off-track by maintaining the required minimum S / N ratio.

【0011】一方、走行耐久性においても、高密度磁気
ディスクでは、従来の低速回転では問題とならなかった
走行耐久性が、高速回転になると極端に耐久性が劣ると
いう問題がある。最近では特に、磁気ディスクの信頼性
を向上するため、磁気ヘッドを接触させたまま数トラツ
ク間を移動させるシ―ク耐久性を満足する必要がある
が、高飽和磁化の強磁性鉄系合金粉を用いた磁性層は、
酸化物磁性粉を用いた磁性層と比較して、高速回転時に
摺動傷が入りやすく、これが出力低下やドロツプアウト
などの要因となり、ディスクの信頼性を低下させる。
On the other hand, the running durability of a high-density magnetic disk also has a problem that the running durability, which was not a problem at the conventional low-speed rotation, is extremely poor at the high-speed rotation. In recent years, in particular, in order to improve the reliability of a magnetic disk, it is necessary to satisfy seek durability in which the magnetic head is moved for several tracks while keeping the magnetic head in contact. The magnetic layer using
Compared with a magnetic layer using an oxide magnetic powder, sliding scratches are more likely to occur during high-speed rotation, which causes a reduction in output or dropout, and lowers the reliability of the disk.

【0012】さらに、パソコンの普及に伴い、ドライブ
がパソコンに内蔵されることも多くなつてきており、そ
れに伴つて様々な環境で媒体が使用されるため、低温低
湿から高温高湿までのサイクル環境下での耐久性および
信頼性試験においても、出力の劣化やドロツプアウトの
発生がないことが必要とされ、このような過酷な条件下
でのより一層の走行耐久性、信頼性が望まれている。
Furthermore, with the spread of personal computers, the number of drives built into personal computers is increasing, and media are used in various environments. Accordingly, the cycle environment from low temperature and low humidity to high temperature and high humidity is used. In the durability and reliability tests under the following conditions, it is necessary that the output does not deteriorate and the dropout does not occur, so that further running durability and reliability under such severe conditions are desired. .

【0013】本発明は、上記の事情に照らし、高密度磁
気ディスク、特に高トラツク密度および高線記録密度の
サ−ボ信号を有する高密度磁気ディスクにおいて、高い
分解能、S/N比とともに、優れた走行耐久性を提供す
ることを目的としている。
In view of the above circumstances, the present invention provides a high-density magnetic disk, particularly a high-density magnetic disk having a high track density and a high linear recording density servo signal, as well as high resolution and S / N ratio. It is intended to provide improved running durability.

【0014】[0014]

【課題を解決するための手段】本発明者らは、上記の目
的に対し、鋭意検討した結果、非磁性支持体と磁性層と
の間に下塗り層を設け、かつ磁性粉として特定組成及び
長軸長の強磁性鉄系合金粉を使用するとともに、磁性層
の厚さ、磁性層に含有するカーボンブラックの粒径を特
定し、かつこれらからなる高密度磁気ディスクの温度膨
張係数または湿度膨張係数の異方性、すなわちディスク
面内各方向の温度膨張係数または湿度膨張係数の最大値
と最小値との関係を特定したときに、高い電磁変換特性
と優れた走行耐久性が得られることを知り、本発明を完
成した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies on the above objects, and as a result, have provided an undercoat layer between a nonmagnetic support and a magnetic layer, and have a specific composition and length as a magnetic powder. Using a ferromagnetic iron-based alloy powder with an axial length, specify the thickness of the magnetic layer, the particle size of the carbon black contained in the magnetic layer, and the coefficient of thermal expansion or humidity expansion of the high-density magnetic disk composed of these. When the relationship between the maximum value and the minimum value of the anisotropy of the disk, that is, the temperature expansion coefficient or the humidity expansion coefficient in each direction in the disk surface, is specified, high electromagnetic conversion characteristics and excellent running durability can be obtained. Thus, the present invention has been completed.

【0015】すなわち、本発明は非磁性支持体上に下塗
り層と磁性層とがこの順に形成され、磁性層の厚さが
0.2μm以下、磁性層に含まれる磁性粉が長軸長
(L)0.15μm以下で、長軸長(L)と最短記録波
長(λ)の関係がL/λ≦1/3を満たすCoおよび希
土類元素を含有する強磁性鉄系合金粉からなり、磁性層
に含まれるカーボンブラックの粒径が磁性層の厚み以上
であり、これらからなる磁気記録ディスクの温度膨張係
数が、最小値と最大値の関係が最大値/最小値≦2.0
を満たすか、あるいはこれらからなる磁気記録ディスク
の湿度膨張係数が、最小値と最大値の関係が最大値/最
小値≦2.0を満たす磁気ディスクを提供するものであ
る。
That is, in the present invention, an undercoat layer and a magnetic layer are formed in this order on a non-magnetic support, the thickness of the magnetic layer is 0.2 μm or less, and the magnetic powder contained in the magnetic layer has a long axis length (L A) a magnetic layer made of a ferromagnetic iron-based alloy powder containing Co and a rare earth element having a relationship between the major axis length (L) and the shortest recording wavelength (λ) satisfying L / λ ≦ 1 /, which is 0.15 μm or less; Is larger than the thickness of the magnetic layer, and the coefficient of thermal expansion of the magnetic recording disk made of these is such that the relationship between the minimum value and the maximum value is the maximum value / minimum value ≦ 2.0.
Or a magnetic recording disk comprising the magnetic recording disk, wherein the relationship between the minimum value and the maximum value of the magnetic recording disk satisfies a maximum value / minimum value ≦ 2.0.

【0016】[0016]

【発明の実施の形態】本発明においては、高密度磁気デ
ィスク、特に高トラック密度および高線記録密度のサ−
ボ信号を有する高密度磁気ディスクとして、オフトラッ
クによる電磁変換特性の改善を目的として、温度膨張係
数の最小値と最大値の関係が最大値/最小値≦2.0を
満たすか、あるいはこれらからなる磁気記録ディスクの
湿度膨張係数の最小値と最大値の関係が最大値/最小値
≦2.0を満たすための処理を施した磁気ディスクが用
いられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a high-density magnetic disk, in particular, a high-density magnetic disk and high linear recording density
For the purpose of improving the electromagnetic conversion characteristics by off-track, the relationship between the minimum value and the maximum value of the thermal expansion coefficient satisfies the maximum value / minimum value ≦ 2.0, or A magnetic disk is used which has been subjected to processing so that the relationship between the minimum value and the maximum value of the humidity expansion coefficient of the magnetic recording disk satisfies the maximum value / minimum value ≦ 2.0.

【0017】このような条件を満たす磁気ディスクとし
ては、温度膨張係数あるいは湿度膨張係数の最小値と最
大値の関係が最大値/最小値≦2.0を満たす非磁性支
持体を用いることが好ましいが、この条件を満たさない
非磁性支持体を用いて作製した磁気ディスクを用いて
も、非磁性支持体および、下塗り層と磁性層からなる磁
気ディスクの結晶構造をある程度ランダムになるような
処理工程を施してやることにより、本発明の条件を満た
す磁気ディスクの作製が可能となる。
As a magnetic disk satisfying such conditions, it is preferable to use a non-magnetic support in which the relationship between the minimum value and the maximum value of the temperature expansion coefficient or the humidity expansion coefficient satisfies a maximum value / minimum value ≦ 2.0. However, even if a magnetic disk manufactured using a non-magnetic support that does not satisfy this condition is used, the crystal structure of the non-magnetic support and the magnetic disk composed of the undercoat layer and the magnetic layer becomes somewhat random. By performing the above, a magnetic disk satisfying the conditions of the present invention can be manufactured.

【0018】このような条件を満たす磁気ディスクは、
カレンダ処理工程および、エージング処理工程を施して
やることにより作製できる。このときのカレンダ処理工
程はより高い線圧でロール温度をより高くすることが好
ましく、エージング処理はより高い温度環境下でより長
時間磁気ディスクをテンションフリーな状態、たとえ
ば、3.5インチディスク状に打ち抜いた状態でエージ
ング処理することが好ましい。
A magnetic disk satisfying such conditions is:
It can be manufactured by performing a calendaring process and an aging process. In the calendering step at this time, it is preferable to raise the roll temperature at a higher linear pressure, and the aging processing is to keep the magnetic disk in a tension-free state for a longer time under a higher temperature environment, for example, a 3.5-inch disk. It is preferable to perform an aging treatment in a state of punching.

【0019】また、本発明において電磁変換特性と耐久
性を改善する目的に、磁性層中に含ませる磁性粉とし
て、強磁性鉄系合金磁性粉の中でも、特に長軸長(L)
0.15μm以下で、長軸長(L)と最短記録波長
(λ)の関係がL/λ≦1/3を満たすCoおよび希土
類元素を含有する強磁性鉄系合金磁性粉が用いられる。
In order to improve the electromagnetic conversion characteristics and durability in the present invention, the magnetic powder to be contained in the magnetic layer is preferably a long axis (L) among ferromagnetic iron-based alloy magnetic powders.
A ferromagnetic iron-based alloy magnetic powder containing 0.15 μm or less and containing Co and a rare earth element satisfying a relation of a long axis length (L) and a shortest recording wavelength (λ) satisfying L / λ ≦ 1 / is used.

【0020】すなわち、本発明は後述するように、高い
分解能を得るため磁性層厚みを0.2μm以下としなけ
ればならないが、この薄層化により従来の粒子径の大き
な磁性粉では磁性層中の充填量が減少するため、磁気特
性が劣化し、高い出力が得られないこととなる。このた
め、本発明は長軸長(L)が0.15μm以下、より好
ましくは0.10μm以下の超微粒子の強磁性鉄系合金
磁性粉を用いることにより、磁性層中の磁性粉の充填性
を向上し、高い残留磁化を得るとともに、磁性粉中にC
oを含有することにより、磁性粉自体の飽和磁化量、保
磁力等の磁気特性を向上し、磁性層厚みが0.2μm以
下で最短記録波長が1.0μm以下の高密度記録におい
ても高い出力を達成することができる。
That is, as described later, in the present invention, the thickness of the magnetic layer must be set to 0.2 μm or less in order to obtain a high resolution. Since the filling amount is reduced, the magnetic characteristics are degraded, and a high output cannot be obtained. For this reason, the present invention uses the ultrafine ferromagnetic iron-based alloy magnetic powder having a major axis length (L) of 0.15 μm or less, more preferably 0.10 μm or less, so that the filling property of the magnetic powder in the magnetic layer is improved. To improve remanence and obtain high remanent magnetization,
By containing o, the magnetic properties of the magnetic powder itself, such as the saturation magnetization and coercive force, are improved, and high output is obtained even in high-density recording with a magnetic layer thickness of 0.2 μm or less and a shortest recording wavelength of 1.0 μm or less. Can be achieved.

【0021】一方、前記のようにサ−ボ信号を有する磁
気ディスクでは、オントラック時には所定のS/N比が
得られても、オフトラックによるデ−タエラ−を防止す
るために媒体のS/N比を向上する必要がある。従っ
て、上記のような磁性粉を用い、単に磁性層の磁気特性
を向上して出力が高い媒体としても、ノイズも同時に高
い場合には、相対的なS/N比が減少し、オフトラック
時に十分なS/Nが得られないことが明らかとなった。
On the other hand, in the magnetic disk having a servo signal as described above, even if a predetermined S / N ratio is obtained during on-track, the S / N of the medium is prevented to prevent data error due to off-track. It is necessary to improve the N ratio. Therefore, even when a medium having a high output is obtained by simply improving the magnetic properties of the magnetic layer using the magnetic powder as described above, if the noise is also high, the relative S / N ratio decreases and the off-track It became clear that sufficient S / N could not be obtained.

【0022】本発明者等は、かかるノイズの低下につい
て検討した結果、本発明の0.15μm以下の強磁性鉄
系合金磁性粉で、その長軸長(L)と最短記録波長
(λ)の関係を、L/λ≦1/3の関係を具備し、希土
類元素を含有する磁性粉を用いることにより解決できる
ことを見出したものである。
The inventors of the present invention have studied the reduction of the noise. As a result, the ferromagnetic iron-based alloy magnetic powder of the present invention having a diameter of 0.15 μm or less has a major axis length (L) and a shortest recording wavelength (λ). It has been found that the relationship has a relationship of L / λ ≦ 1 / and can be solved by using a magnetic powder containing a rare earth element.

【0023】すなわち、媒体から発生するノイズは、磁
性粉に起因する粒子性ノイズがその1つの要因である。
この粒子性ノイズは磁性粉の粒子の大きさ、粒度の不均
一さに起因すると考えられる。従って、まず、粒子の大
きさを低減することが必要であるが、本発明者等の検討
によれば、磁性粉の長軸長(L)と最短記録波長(λ)
の関係が、L/λ≦1/3の場合に、ヘッド出力に寄与
する一定面積中の磁性粒子数を増加させ、デ−タ記録箇
所の相違による一定面積中の磁化量のバラツキを防止
し、この粒子の大きさに基づくノイズを低減できること
を見出した。また、上記のような最短記録波長に対して
1/3以下の微粒子の磁性粉を用いることにより、粒子
サイズの大きさに起因するノイズは低減できるが、粒度
の不均一さに起因する粒子性ノイズは低減できないこと
となる。言い換えれば、各磁性粉の大きさにバラツキが
あるとデ−タが未記録状態でも、ヘッド出力に寄与する
一定面積中に存在する磁性粒子から発生する磁束にバラ
ツキが生じて、へッド出力が0、すなわち上記磁束の合
計が0になりにくいこととなる。このため、デ−タ記録
箇所の相違による出力差が生じて、ノイズが増加する原
因となる。これは信号が記録された状態では出力変動に
基づくノイズも重畳されるため、さらにノイズが増加
し、相対的なS/N比を低減させることとなる。
That is, the noise generated from the medium is one of the factors due to the particulate noise caused by the magnetic powder.
It is considered that the particle noise is caused by unevenness of the size and the particle size of the magnetic powder. Therefore, first, it is necessary to reduce the size of the particles. According to the study of the present inventors, the major axis length (L) of the magnetic powder and the shortest recording wavelength (λ)
When the relationship L / λ ≦≦, the number of magnetic particles in a fixed area contributing to the head output is increased, and the variation in the amount of magnetization in the fixed area due to the difference in the data recording location is prevented. It has been found that noise based on the size of the particles can be reduced. In addition, by using magnetic powder of fine particles that are 1/3 or less of the shortest recording wavelength as described above, noise due to the size of the particle can be reduced, but the particle property due to unevenness of the particle size can be reduced. Noise cannot be reduced. In other words, if there is a variation in the size of each magnetic powder, even if the data is in an unrecorded state, the magnetic flux generated from the magnetic particles existing in a certain area contributing to the head output varies, and the head output is generated. Is zero, that is, the total of the magnetic flux is hard to be zero. For this reason, an output difference occurs due to a difference in data recording location, which causes an increase in noise. This is because the noise based on the output fluctuation is also superimposed in the state where the signal is recorded, so that the noise further increases and the relative S / N ratio is reduced.

【0024】このため、本発明は、上記粒径の強磁性鉄
系合金粉末で、Coとともに希土類元素を含有する磁性
粉を用いることにより、磁性粉の粒度分布が均一とな
り、この粒度に基づく粒子性ノイズも低減でき、S/N
比を向上できることを見出したものである。しかもこの
ような希土類元素を含有することにより、磁性粉の耐擦
傷性も向上できる点でも好ましい。
For this reason, the present invention provides a ferromagnetic iron-based alloy powder having the above-mentioned particle size, wherein a magnetic powder containing a rare earth element together with Co is used, so that the particle size distribution of the magnetic powder becomes uniform. Noise can be reduced, and S / N
It has been found that the ratio can be improved. Moreover, the inclusion of such a rare earth element is also preferable in that the scratch resistance of the magnetic powder can be improved.

【0025】本発明においてCoを含有する強磁性鉄系
合金粉は、ゲ―サイト粉末を焼成してマグネタイト粉
末とし、これをコバルトイオン含有水溶液中で2価の鉄
イオンとコバルトイオンをイオン交換して、加熱還元す
る方法、鉄塩とコバルト塩のアルカリの水系懸濁液か
ら得られるコバルト含有針状ゲ―サイト粉末を加熱還元
する方法、蓚酸水溶液中に添加した鉄塩とコバルト塩
から得た共沈物を還元する方法、表面にコバルトを被
着させた酸化鉄粉末を加熱還元する方法、鉄塩とコバ
ルト塩を含む溶液に還元剤を添加する方法、不活性ガ
ス中で金属を蒸発させ、ガス分子と衝突させて合金磁性
粉を得る方法、水素と窒素やアルゴンとの混合ガス中
で鉄やコバルトの塩化物の蒸気を流しながら、金属に還
元する方法などにより、製造できる。これらの中でも、
高いコバルト量の固溶が可能で、また耐腐食性能にすぐ
れるおよびの方法を併用するのが好ましい。
In the present invention, the Co-containing ferromagnetic iron-based alloy powder is obtained by calcining a Gasite powder into a magnetite powder, which is ion-exchanged with divalent iron ions and cobalt ions in a cobalt ion-containing aqueous solution. A method of heat-reducing, a method of heat-reducing a cobalt-containing acicular gausite powder obtained from an aqueous suspension of an alkali of an iron salt and a cobalt salt, and a method of obtaining from an iron salt and a cobalt salt added to an aqueous oxalic acid solution. A method of reducing coprecipitates, a method of heating and reducing iron oxide powder having cobalt deposited on the surface, a method of adding a reducing agent to a solution containing iron salts and cobalt salts, and evaporating metals in an inert gas. Can be produced by colliding with gas molecules to obtain alloy magnetic powder, reducing iron to cobalt in a mixed gas of hydrogen, nitrogen and argon while flowing vapor of iron or cobalt chloride. . Among these,
It is preferable to use a method capable of forming a solid solution with a high cobalt content and having excellent corrosion resistance.

【0026】Coを含有する強磁性鉄系合金粉におい
て、コバルトの量は、多いほど高飽和磁化および高保磁
力を達成できるが、あまりに多すぎると磁性鉄金属との
合金化ができず、余剰分が酸化物となるため、上記特性
を達成できない。したがつて、コバルトの量は、Co/
Feの重量比が0.1〜0.5となる範囲が好ましく、
特に0.2〜0.4となる範囲がより好ましい。
In the Co-containing ferromagnetic iron alloy powder, the higher the amount of cobalt, the higher the saturation magnetization and the higher the coercive force can be achieved. However, if the amount is too large, alloying with the magnetic iron metal cannot be performed, and the excess Is an oxide, so that the above characteristics cannot be achieved. Therefore, the amount of cobalt is Co /
A range in which the weight ratio of Fe is 0.1 to 0.5 is preferable,
In particular, the range of 0.2 to 0.4 is more preferable.

【0027】また、磁性粉の粒度分布を均一にするた
め、Coを含有する強磁性鉄系合金粉への希土類元素の
導入については、上記ゲーサイト製造時にコバルトと同
時に、希土類元素を共沈する方法、合金磁性粉の原料酸
化鉄粉を希土類化合物水溶液中へ懸濁させて得る方法な
どが挙げられる。
In order to make the particle size distribution of the magnetic powder uniform, the rare earth element is introduced into the ferromagnetic iron-based alloy powder containing Co by co-precipitating the rare earth element at the same time as the cobalt during the production of the goethite. And a method of suspending the raw material iron oxide powder of the alloy magnetic powder in a rare earth compound aqueous solution.

【0028】ここで、本発明に使用される希土類元素と
しては、Nd、Y、La、Ce、Pr,Sm、Gd、Y
b、Tbなどがあげられ、これらの中でもY、La、C
eが好ましい。
Here, the rare earth elements used in the present invention include Nd, Y, La, Ce, Pr, Sm, Gd, Y
b, Tb, etc., among which Y, La, C
e is preferred.

【0029】本発明の強磁性鉄系合金粉に含有される希
土類元素量は、多いほど磁性粉の粒度分布を均一にし、
またバインダとの密着力を増加させることができ、強固
な塗膜構造となり、高速摺動時の強磁性鉄系合金粉の脱
落を防止できるが、余りに多すぎるとCo含有量が低下
し、強磁性鉄系合金粉の飽和磁化量を低下させるため、
希土類元素/Fe重量比で0.01〜0.1の範囲が好
ましく、0.02〜0.07がより好ましい。また、上
記範囲とすることで、強磁性鉄系合金粉の粒度分布をさ
らに向上させることができ、粒子ノイズを低減し、高い
S/N比を達成できる。さらに上記範囲とすることで、
強磁性鉄系合金粉自身の耐摩耗性を上げることができ、
塗料混練分散工程での磁性粉損傷が防御できるため電磁
変換特性のみならず耐久性にも有利となる。
The larger the amount of the rare earth element contained in the ferromagnetic iron-based alloy powder of the present invention, the more uniform the particle size distribution of the magnetic powder becomes.
In addition, the adhesive strength with the binder can be increased, and a strong coating structure can be obtained, so that the ferromagnetic iron-based alloy powder can be prevented from falling off at the time of high-speed sliding. In order to reduce the saturation magnetization of the magnetic iron-based alloy powder,
The rare earth element / Fe weight ratio is preferably in the range of 0.01 to 0.1, more preferably 0.02 to 0.07. Further, by setting the content within the above range, the particle size distribution of the ferromagnetic iron-based alloy powder can be further improved, the particle noise can be reduced, and a high S / N ratio can be achieved. By further setting the above range,
The wear resistance of the ferromagnetic iron alloy powder itself can be increased,
Since magnetic powder damage during the coating kneading and dispersing step can be prevented, it is advantageous not only in electromagnetic conversion characteristics but also in durability.

【0030】このようなCoおよび希土類元素を含有す
る強磁性鉄系合金粉には、他の元素として、たとえば、
Zn、Sn、Ni、Mn、Ti、Cr、Cuなどの遷移
金属などを添加することもできる。しかし、アルカリ金
属、特にCaが強磁性合金磁性粉中に存在すると、これ
が磁性層中の脂肪酸と反応して磁性層表面に脂肪酸塩を
生成するため、磁性粉の製造時に洗浄により上記アルカ
リ金属の混入を避けるようにするのが好ましい。
In such a ferromagnetic iron-based alloy powder containing Co and a rare earth element, other elements such as
Transition metals such as Zn, Sn, Ni, Mn, Ti, Cr, and Cu can also be added. However, when an alkali metal, particularly Ca, is present in the ferromagnetic alloy magnetic powder, it reacts with a fatty acid in the magnetic layer to form a fatty acid salt on the surface of the magnetic layer. It is preferred to avoid contamination.

【0031】また、Coおよび希土類元素を含有する強
磁性鉄系合金粉は、加熱還元時の焼結防止、磁性塗料中
での分散性改善の目的で、粒子表面を無機酸化物で被覆
するのが望ましい。無機酸化物には、アルミニウム酸化
物やケイ素酸化物などがあるが、アルミニウム酸化物が
硬さにおいてすぐれており、強磁性鉄系合金粉の耐摩耗
性も向上できるので特に好ましい。上記被覆を行うに
は、原料酸化鉄粉に対しあらかじめアルミニウム、ケイ
素などのアルコ―ル溶液に水を作用させて加水分解によ
りこれらの化合物を粒子表面に被着生成させる方法が用
いられる。被覆量は、焼結防止や分散性改善のため、F
eに対する重量比で0.001以上とするのが好まし
く、またあまりに多すぎると、磁性粉の飽和磁化量が低
下するため、0.06以下が好ましい。つまり、粒子表
面をアルミニウム酸化物で被覆する場合、Al/Feの
重量比が0.001〜0.06の範囲となるようにする
のがよい。
The ferromagnetic iron-based alloy powder containing Co and the rare earth element is coated with an inorganic oxide to prevent sintering during heat reduction and to improve dispersibility in a magnetic paint. Is desirable. Examples of the inorganic oxide include aluminum oxide and silicon oxide. Aluminum oxide is particularly preferable because it has excellent hardness and can improve the wear resistance of the ferromagnetic iron-based alloy powder. In order to carry out the coating, a method is used in which water is applied to an alcohol solution of aluminum, silicon or the like in advance on the raw iron oxide powder, and these compounds are adhered and formed on the particle surface by hydrolysis. The coating amount is F to prevent sintering and improve dispersibility.
The weight ratio to e is preferably 0.001 or more, and if it is too large, the saturation magnetization of the magnetic powder is reduced. That is, when the particle surface is coated with aluminum oxide, the weight ratio of Al / Fe is preferably in the range of 0.001 to 0.06.

【0032】さらに、このようなCoおよび希土類元素
を含有する強磁性鉄系合金粉は、高い飽和磁化のため磁
気凝集を起こしやすく、粒子表面が非常に活性となるた
め、磁性塗料中に含まれる溶剤の変成や、結合剤として
使用される架橋剤中のイソシアネ―ト成分の変成などを
引き起こす触媒として作用することから、pHが10未
満、特に8未満であるのが好ましい。Coおよび希土類
元素を含有する強磁性鉄系合金粉のpH値を10未満と
することにより、磁性塗料中の変成物の生成を抑制する
ことができ、磁性層形成時に高速回転時の摺動に耐えう
る塗膜とすることができる。
Further, such a ferromagnetic iron-based alloy powder containing Co and a rare earth element is included in a magnetic paint because magnetic aggregation is likely to occur due to high saturation magnetization and the particle surface becomes very active. The pH is preferably less than 10, especially less than 8, because it acts as a catalyst that causes the denaturation of the solvent and the denaturation of the isocyanate component in the crosslinking agent used as the binder. By setting the pH value of the ferromagnetic iron-based alloy powder containing Co and the rare earth element to be less than 10, generation of denatured products in the magnetic paint can be suppressed, and sliding at the time of high-speed rotation when forming the magnetic layer can be suppressed. It can be a durable coating film.

【0033】なお、上記の平均長軸長は、走査型電子顕
微鏡(SEM)にて撮影した写真の粒子サイズを実測
し、100個の平均値により求められるものである。ま
た、上記と同様の理由から、この強磁性鉄系合金粉のB
ET比表面積は、35m2/g以上が好ましく、40m2
g以上がより好ましく、50m2/g以上が最も好まし
い。
The average major axis length is obtained by actually measuring the particle size of a photograph taken with a scanning electron microscope (SEM) and obtaining the average value of 100 particles. For the same reason as described above, the ferromagnetic iron-based alloy powder B
ET specific surface area is preferably at least 35m 2 / g, 40m 2 /
g or more, and most preferably 50 m 2 / g or more.

【0034】このようなCoおよび希土類元素を含有す
る強磁性鉄系合金粉の保磁力は、高線記録密度における
短波長記録で高出力および高分解能を得るため、1,7
00〜3,500Oe、特に2,000〜2,800O
eであるのが好ましい。飽和磁化量は、高トラツク密度
において良好な再生出力を得るため、また磁性粉の耐食
性を維持するため、120〜200emu/g、特に1
30〜160emu/gであるのが好ましい。角形比と
しては、σr/σsが0.46以上、特に0.48以
上、さらには0.49以上であるのが望ましい。
The coercive force of such a ferromagnetic iron-based alloy powder containing Co and a rare earth element is set to 1,7 in order to obtain high output and high resolution in short wavelength recording at a high linear recording density.
00-3,500 Oe, especially 2,000-2,800 Oe
e is preferred. The saturation magnetization is 120 to 200 emu / g, particularly 1 to obtain a good reproduction output at a high track density and maintain the corrosion resistance of the magnetic powder.
It is preferably from 30 to 160 emu / g. As the squareness ratio, σr / σs is preferably 0.46 or more, particularly 0.48 or more, and more preferably 0.49 or more.

【0035】本発明において、上記のCoおよび希土類
元素を含有する強磁性鉄系合金粉を使用した磁性層の磁
気特性としては、保磁力が1,700〜3,500O
e、特に2,000〜3,000Oeであるのが望まし
い。また、残留磁束密度が1,800G以上、特に2,
000〜4,000Gであるのが好ましい。なお、この
磁性層の磁気特性と、前記のCoおよび希土類元素を含
有する強磁性鉄系合金粉の磁気特性は、いずれも試料振
動形磁束計で外部磁場10kOeでの測定値をいうもの
である。
In the present invention, the magnetic properties of the magnetic layer using the ferromagnetic iron-based alloy powder containing Co and the rare earth element are as follows.
e, particularly preferably 2,000 to 3,000 Oe. Further, the residual magnetic flux density is 1,800 G or more,
It is preferably from 000 to 4,000 G. The magnetic characteristics of this magnetic layer and the magnetic characteristics of the ferromagnetic iron-based alloy powder containing Co and the rare earth element both refer to values measured with an external magnetic field of 10 kOe using a sample vibrating magnetometer. .

【0036】本発明では、上記のCoおよび希土類元素
を含有する強磁性鉄系合金粉を使用することにより、磁
性層の磁気特性を向上し、最短記録波長1.0μm以下
でも高い出力が得られるとともに、磁性粉自体から生ず
るノイズを低減し、高いS/N比を得ることができる。
一方、最短記録波長1.0μm以下の高線記録密度にお
いて磁性層の厚さが厚い場合には、長波長出力は厚さに
応じて大きくなるものの、短波長出力は厚み損失の影響
によりあまり変化しない。このため、長波長出力に比べ
て短波長出力が相対的に低くなつて分解能が著しく低下
し、高保磁力化による自己減磁損失の低減効果による改
善だけでは不十分になる。
In the present invention, the use of the ferromagnetic iron-based alloy powder containing Co and the rare earth element improves the magnetic properties of the magnetic layer, and a high output can be obtained even at the shortest recording wavelength of 1.0 μm or less. In addition, noise generated from the magnetic powder itself can be reduced, and a high S / N ratio can be obtained.
On the other hand, when the thickness of the magnetic layer is large at a high linear recording density of the shortest recording wavelength of 1.0 μm or less, the long-wavelength output increases with the thickness, but the short-wavelength output changes little due to the thickness loss. do not do. For this reason, when the short wavelength output is relatively lower than the long wavelength output, the resolution is remarkably reduced, and the improvement by the effect of reducing the self-demagnetization loss by increasing the coercive force is not sufficient.

【0037】このような分解能の問題を解決するため、
検討した結果、最短記録波長1.0μm以下の高線記録
密度においては、磁性層の厚さを従来の磁気ディスクの
5分の1以下である0.2μm以下にしたときに、高分
解能の磁気ディスクが得られることを見い出した。すな
わち、本発明では、上記のCoを含有する強磁性鉄系合
金粉を用いるとともに、磁性層の厚さを0.2μm以下
とすることにより、磁性層の高残留磁束密度化、高保磁
力を達成でき、高トラツク密度における自己減磁損失を
低減でき、かつ最短記録波長1.0μm以下の高線記録
密度においても厚み損失を低減し、良好な電磁変換特性
を達成できるものである。
In order to solve such a problem of resolution,
As a result of the study, at a high linear recording density of 1.0 μm or less in the shortest recording wavelength, when the thickness of the magnetic layer is set to 0.2 μm or less, which is 1/5 or less of the conventional magnetic disk, a high-resolution magnetic I found that I could get a disc. That is, in the present invention, a high residual magnetic flux density and a high coercive force of the magnetic layer are achieved by using the above-described ferromagnetic iron-based alloy powder containing Co and setting the thickness of the magnetic layer to 0.2 μm or less. Thus, the self-demagnetization loss at a high track density can be reduced, and the thickness loss can be reduced even at a high linear recording density of the shortest recording wavelength of 1.0 μm or less, and good electromagnetic conversion characteristics can be achieved.

【0038】本発明における磁性層の厚さは、上記の観
点から、0.2μm以下とすることが必要であるが、あ
まりに薄くなりすぎると、磁性層の形成時に塗膜厚さの
均一性を維持することが困難になり、また磁性層中に充
填しうる磁性粉が減少して、磁性層の磁気特性が低下す
る。このため、磁性層の厚さは、0.03μm以上、特
に0.1〜0.2μmであるのが望ましい。
From the above viewpoint, the thickness of the magnetic layer in the present invention needs to be 0.2 μm or less. However, if the thickness is too small, the uniformity of the coating film thickness during the formation of the magnetic layer is reduced. It becomes difficult to maintain, and the amount of magnetic powder that can be filled in the magnetic layer is reduced, and the magnetic properties of the magnetic layer are reduced. For this reason, the thickness of the magnetic layer is desirably 0.03 μm or more, particularly preferably 0.1 to 0.2 μm.

【0039】一方、高密度磁気ディスクは、大容量のデ
―タを短時間で記録再生するため、高速デ―タ転送を行
う必要があり、従来の磁気ディスクで使用されている3
00rpmの2倍以上である720rpmあるいは3,
000rpm以上の、ヘツドコンタクト型またはニアコ
ンタクト型の高速回転のドライブが利用される。しか
し、上記のCoおよび希土類元素を含有する強磁性鉄系
合金粉を用いた磁気ディスクでは、走行時の磁性粉の脱
落には改善がみられたものの、摺動時に磁性層が傷つき
やすく、ドロツプアウトや出力変動が発生しやすく、十
分な走行耐久性が得られない。
On the other hand, a high-density magnetic disk needs to perform high-speed data transfer in order to record and reproduce a large amount of data in a short time.
720 rpm which is twice or more than 00 rpm or 3,
A high-speed drive of a head contact type or a near contact type of 000 rpm or more is used. However, in the magnetic disk using the ferromagnetic iron-based alloy powder containing Co and the rare earth element described above, although the fall of the magnetic powder during running was improved, the magnetic layer was easily damaged during sliding, and the drop-out occurred. And output fluctuations are likely to occur, and sufficient running durability cannot be obtained.

【0040】これに対して、本発明では、非磁性支持体
と磁性層との間に下塗り層を設けるとともに、磁性層に
含まれるカーボンブラックの粒径を、磁性層の厚み以上
とすることにより、上記高速回転における磁気ディスク
の走行耐久性を改善できることを見い出した。すなわ
ち、本発明の磁気ディスクは高速回転するドライブで使
用されることから、磁性層の下側に下塗り層を設けるこ
とにより、摺動時における磁気ヘツドからの荷重を分散
できるとともに、磁性層の厚さが薄層化されたことによ
る潤滑剤の減少を補うことができる。
On the other hand, in the present invention, an undercoat layer is provided between the nonmagnetic support and the magnetic layer, and the particle size of the carbon black contained in the magnetic layer is set to be equal to or larger than the thickness of the magnetic layer. It has been found that the running durability of the magnetic disk at the high speed rotation can be improved. That is, since the magnetic disk of the present invention is used in a drive rotating at a high speed, by providing an undercoat layer below the magnetic layer, the load from the magnetic head during sliding can be dispersed and the thickness of the magnetic layer can be reduced. Can compensate for the decrease in lubricant due to the thinner layer.

【0041】また、本発明のような磁性層を薄層化した
場合、高速回転時にカーボンブラックの脱落に基づくド
ロップアウトの増加および走行耐久性の低下が多数確認
された。これは、磁性層中に添加されているカ−ボンブ
ラックは、磁気ヘッドとの摺接による摩擦を低減するた
め、磁性層表面に存在しているが、従来の磁性層厚みよ
り小さな小粒径のカ−ボンブラックのみでは、本発明の
高密度磁気ディスクに適用した場合、磁性層中の磁性粉
の充填率を高くするとともに厚み損失低減のため磁性層
を0.2μm以下と薄層化しなければならないため、磁
性層表面から脱落しやすくなり、しかも本発明では、活
性な強磁性鉄系合金磁性粉を用いるため、含有するカー
ボンブラックへの結合剤の吸着および被覆量が少なくな
り、磁性層と磁気ヘッドとの高速摺接時にカーボンブラ
ックが脱離していくものと思われる。さらに、本発明の
超微粒子の強磁性鉄系合金磁性粉では、磁性粉表面に吸
着するバインダ−量が増大するため、磁性層表層に存在
するフリーなバインダが少なくなり、走行時の磁性層に
かかる負荷を緩和させることができず走行耐久性をさら
に劣化させることになる。このため、粒径の大きなカ−
ボンブラック、特に磁性層厚より大きなカ−ボンブラッ
クを用いることにより、これが磁性層中強固に固定され
て磁性層表面に存在し、摺接時の脱落を防止できるとと
もに、さらに磁性層表面から突出することによって、粘
着性の磁性粉と磁気ヘッドとの摺接を抑制することによ
って、高速回転時でも磁気ヘッドとの摺接時の摩擦を低
減し、安定した走行耐久性を得ることができると考えら
れる。さらに、このような大粒径のカ−ボンブラックが
磁性層表面上に存在することによって、磁気ヘッド接触
時のヘッド支持体としての機能も充分に発揮できるた
め、起動時および走行時のの負荷を大幅に低減でき、走
行耐久性の格段の向上が可能となると考えられる。本発
明の大粒径のカーボンブラックの粒径としては、粒径が
あまりに大きいと塗膜表面平滑性が損なわれ、電磁変換
特性の低下を招くため磁性層厚みの1.0倍以上、3.
0倍以下が好ましく、1.1倍以上、2.0倍以下とす
ることがより好ましい。本発明の大粒径カ−ボンブラッ
クの具体例としては、コロンビアン・カ―ボン社製の
「SEVACARB・MTCI」、カンカ―ブ社製の
「TermaxPowder・N−991」などを挙げ
ることができ、添加量としては、Co及び希土類を含有
する強磁性鉄系合金粉100重量部に対して、通常0.
5〜5重量部、特に1〜3重量部とするのが好ましい。
In the case where the magnetic layer was made thinner as in the present invention, it was confirmed that a large number of dropouts and a decrease in running durability due to falling off of carbon black occurred at high speed rotation. This is because carbon black added to the magnetic layer is present on the surface of the magnetic layer in order to reduce friction caused by sliding contact with the magnetic head. When only the carbon black is applied to the high-density magnetic disk of the present invention, it is necessary to increase the filling ratio of the magnetic powder in the magnetic layer and to reduce the thickness of the magnetic layer to 0.2 μm or less to reduce thickness loss. Therefore, in the present invention, since the active ferromagnetic iron-based alloy magnetic powder is used, the amount of the binder adsorbed on the carbon black and the amount of coating are reduced, and the magnetic layer It is considered that carbon black is detached at the time of high-speed sliding contact with the magnetic head. Furthermore, in the ultrafine ferromagnetic iron-based alloy magnetic powder of the present invention, the amount of binder adsorbed on the surface of the magnetic powder increases, so that the amount of free binder present on the surface of the magnetic layer decreases, and Such a load cannot be reduced, and the running durability is further degraded. Therefore, a large particle size
By using carbon black, especially carbon black having a thickness greater than the thickness of the magnetic layer, the carbon black is firmly fixed in the magnetic layer and is present on the surface of the magnetic layer. By suppressing the sliding contact between the sticky magnetic powder and the magnetic head, the friction at the time of sliding contact with the magnetic head can be reduced even during high-speed rotation, and stable running durability can be obtained. Conceivable. Further, since carbon black having such a large particle size is present on the surface of the magnetic layer, the function as a head support at the time of contact with the magnetic head can be sufficiently exerted. Is greatly reduced, and it is considered that running durability can be remarkably improved. Regarding the particle size of the carbon black having a large particle size according to the present invention, if the particle size is too large, the surface smoothness of the coating film is impaired and the electromagnetic conversion characteristics are reduced.
It is preferably 0 times or less, more preferably 1.1 times or more and 2.0 times or less. Specific examples of the large particle size carbon black of the present invention include "SEVACARB MTCI" manufactured by Columbian Carbon Co., Ltd. and "Termax Powder N-991" manufactured by Kancarb Co., Ltd. The addition amount is usually 0.1 to 100 parts by weight of the ferromagnetic iron-based alloy powder containing Co and the rare earth.
It is preferably 5 to 5 parts by weight, particularly preferably 1 to 3 parts by weight.

【0042】また、本発明では、上記大粒径のカ−ボン
ブラックと共に、導電性を付与するため嵩比重の大きな
粒径0.01〜0.03μmの小粒径のカ−ボンブラッ
クを併用することが好ましい。小粒径のカ―ボンブラツ
クには、Cabot社製の「BLACK PEARLS
800」、「Mogul−L」、「VULCANXC
−72」、「Regal 660R」、コロンビアン・
カ―ボン社製の「Raven 1255」、「Cond
uctex SC」などがある。
In the present invention, carbon black having a large bulk specific gravity and a small particle size of 0.01 to 0.03 μm is used in combination with the large particle size carbon black to impart conductivity. Is preferred. For carbon black with a small particle size, "BLACK PEARLS" manufactured by Cabot
800 ”,“ Mogul-L ”,“ VULCANXC ”
-72 "," Regal 660R ", Colombian
"Raven 1255", "Cond
octex SC ".

【0043】上記のような小粒径のカーボンブラックを
併用する場合には、大粒径カ−ボンブラックに対して小
粒径カ−ボンブラックが重量比で10/90〜80/20
が好ましく、20/80〜50/50がより好ましい。前
記範囲とすることにより、磁性層中の空孔を有る程度残
すことができ、磁性層表面への潤滑剤の補給がスムーズ
に行われることで、対磁気ヘッドとの摩擦、および不織
布などのディスクジャケット構成部材との摩擦を低下さ
せることができ、走行耐久性をさらに向上させることが
できる。
When carbon black having a small particle size as described above is used in combination, the ratio of the carbon black having a small particle size to the carbon black having a large particle size is 10/90 to 80/20 by weight.
Is preferred, and 20/80 to 50/50 is more preferred. By setting the above range, it is possible to leave a certain amount of holes in the magnetic layer, and to smoothly supply the lubricant to the surface of the magnetic layer, thereby friction with the magnetic head, and a disk such as a nonwoven fabric. The friction with the jacket component can be reduced, and the running durability can be further improved.

【0044】本発明において、上記の下塗り層の厚さ
は、上記のような効果を得るために、0.5〜5μm、
特に1〜3μmであるのが好ましい。このような下塗り
層を設けることにより、カレンダ時での磁性層の表面性
も向上でき、出力向上に寄与させることができる。な
お、この下塗り層の厚さと、磁性層の厚さとは、塗膜の
断面を透過型電子顕微鏡(5万倍)で観察した断面写真
を1cm間隔で10点測定したときの5箇所の断面の平
均値から求められるものである。
In the present invention, the thickness of the undercoat layer is 0.5 to 5 μm in order to obtain the above effects.
In particular, it is preferably 1 to 3 μm. By providing such an undercoat layer, the surface properties of the magnetic layer at the time of calendaring can be improved, which can contribute to an improvement in output. In addition, the thickness of the undercoat layer and the thickness of the magnetic layer are defined as the five cross-sections obtained by measuring 10 cross-sectional photographs of the coating film with a transmission electron microscope (50,000 times) at 1 cm intervals. It is obtained from the average value.

【0045】また、磁性層および下塗り層からn−ヘキ
サンにより抽出される潤滑剤の量を30mg/cm3
上とすることにより、さらに走行耐久性の改善を図るこ
とができるため好ましい。すなわち、上記の構成によ
り、磁性層および下塗り層中に上記十分な潤滑剤が存在
することにより、磁性層表面の潤滑剤不足を助け、大粒
径のカ−ボンブラックの存在と相俟って、走行耐久性低
下の原因となる磁性層表面の摩擦を低下させ、さらにク
ツシヨン効果をもたらすことができる。また、磁性層表
面の平滑化や磁性粉の高充填化のため、カレンダ処理を
行つて磁性層中の空孔が減少した場合でも、潤滑剤の磁
性層表面への浸出が容易になり、良好な耐久性が得られ
る。
It is preferable that the amount of the lubricant extracted with n-hexane from the magnetic layer and the undercoat layer be 30 mg / cm 3 or more, because the running durability can be further improved. That is, with the above configuration, the presence of the sufficient lubricant in the magnetic layer and the undercoat layer assists the lack of lubricant on the surface of the magnetic layer, and is combined with the presence of carbon black having a large particle size. In addition, friction on the surface of the magnetic layer, which causes a decrease in running durability, can be reduced, and a cushion effect can be further obtained. In addition, even if the pores in the magnetic layer are reduced by performing a calendering process for smoothing the magnetic layer surface and increasing the filling of the magnetic powder, the lubricant easily oozes out to the magnetic layer surface, which is favorable. Durability is obtained.

【0046】なお、潤滑剤の抽出量は、多いほど高速時
の摩擦係数を低減できるが、あまりに多いと磁性粉の充
填性を低減して電磁変換特性の低下を招いたり、磁性層
の塗膜の脆弱化を招くおそれがあるため、250mg/
cm3以下であるのが好ましい。また、本発明における潤
滑剤としては、後述のとおり、炭素数10以上の脂肪酸
と融点35℃以下の脂肪酸エステルを併用するのが好ま
しいが、n−ヘキサンで抽出される潤滑剤の抽出重量比
は、上記脂肪酸と上記脂肪酸エステルとで0.3/9
9.7〜10/90、好ましくは0.5/99.5〜6
/94であるのがよい。このような範囲とすることによ
り、磁性層表面の油膜強度を維持しつつ、摩擦係数を低
減し、走行耐久性を向上することができる。
It should be noted that the more the amount of the lubricant extracted, the more the friction coefficient at high speed can be reduced. However, if the amount of the lubricant is too large, the filling property of the magnetic powder is reduced so that the electromagnetic conversion characteristics are deteriorated. 250mg / g
It is preferably not more than cm 3 . Further, as the lubricant in the present invention, as described later, it is preferable to use a fatty acid having 10 or more carbon atoms and a fatty acid ester having a melting point of 35 ° C. or less, but the extraction weight ratio of the lubricant extracted with n-hexane is as follows. 0.3 / 9 of the above fatty acid and the above fatty acid ester
9.7 to 10/90, preferably 0.5 / 99.5 to 6
/ 94 is preferable. By setting such a range, the friction coefficient can be reduced and the running durability can be improved while maintaining the oil film strength on the surface of the magnetic layer.

【0047】本発明において、n−ヘキサンにより抽出
される潤滑剤の量とは、磁気ディスク600cm2 を切
り出し、これをn−ヘキサン1リツトルに10分間浸漬
する作業を2回繰り返し、60℃で乾燥したのち、浸漬
前後の重量差から求めた値を磁性層と下塗り層の総体積
で除した値をいう。また、抽出される潤滑剤の組成比
は、ガスクロマトグラフイにより、温度150℃から2
00℃まで、昇温速度10℃/分で測定したものを検量
線法により求めた値をいう。
In the present invention, the amount of the lubricant extracted by n-hexane means that the operation of cutting out a magnetic disk of 600 cm 2 and immersing it in one liter of n-hexane for 10 minutes is repeated twice, and dried at 60 ° C. After that, it is a value obtained by dividing the value obtained from the weight difference before and after immersion by the total volume of the magnetic layer and the undercoat layer. Further, the composition ratio of the extracted lubricant is determined by gas chromatography from a temperature of 150 ° C. to 2 ° C.
A value obtained by measuring the temperature up to 00 ° C at a heating rate of 10 ° C / min by a calibration curve method.

【0048】さらに、本発明では磁気ヘツドと磁気ディ
スクが摺接する際、磁気ヘツドに対して磁性層の硬度が
あまりに弱いと磁性層削れを生じ、走行耐久性低下の原
因となる。本発明は、磁性層の厚さを0.2μm以下と
する場合に、高速回転時の走行耐久性を改善するための
自己研磨能を検討した結果、磁性層の鋼球摩耗体積を特
定範囲に規定したときに、シ―ク耐久性においてもすぐ
れた走行耐久性が得られた。
Further, in the present invention, when the magnetic head and the magnetic disk are in sliding contact with each other, if the hardness of the magnetic layer is too weak with respect to the magnetic head, the magnetic layer is scraped, which causes a decrease in running durability. The present invention, when the thickness of the magnetic layer is 0.2μm or less, as a result of studying the self-polishing ability to improve running durability at high speed rotation, the steel ball wear volume of the magnetic layer to a specific range When specified, excellent running durability was obtained in terms of seek durability.

【0049】すなわち、高密度磁気ディスクでは、磁性
層の鋼球摩耗体積が0.5×10-4mm3未満となつた場
合、従来の300rpm程度の低速回転では問題となら
なかつた磁性層の損傷が、高速回転では顕著となり、回
転後ただちに出力低下やドロツプアウトの増大を生じる
こともある。このため、磁性層の鋼球摩耗体積を0.5
×10-4 mm3以上、好ましくは1.0×10-4mm3以上
とすることにより、高速回転時においても磁気ヘツドと
の摺接による磁性層削れを少なくできる。また、鋼球摩
耗体積が5.0×10-4mm3より大きくなると、磁性層
の自己研磨能が高くなりすぎて、磁気ヘツドを傷つけ、
出力の低下を招くこととなる。このため、鋼球摩耗体積
を5.0×10-4mm3以下、好ましくは3.0×10-4m
m3以下とすることにより、長時間走行後においても磁気
ヘツド摩耗とヘツド目詰まりを低減することができる。
That is, in a high-density magnetic disk, if the steel ball wear volume of the magnetic layer is less than 0.5 × 10 −4 mm 3 , the conventional low-speed rotation of about 300 rpm does not cause a problem. Damage is significant at high speeds, which can result in reduced output and increased dropout immediately after rotation. Therefore, the steel ball wear volume of the magnetic layer is set to 0.5
By setting the thickness to at least × 10 −4 mm 3 , preferably at least 1.0 × 10 −4 mm 3 , it is possible to reduce abrasion of the magnetic layer due to sliding contact with the magnetic head even during high-speed rotation. On the other hand, if the steel ball wear volume is larger than 5.0 × 10 −4 mm 3 , the self-polishing ability of the magnetic layer becomes too high, damaging the magnetic head,
The output will be reduced. For this reason, the steel ball wear volume is 5.0 × 10 −4 mm 3 or less, preferably 3.0 × 10 −4 m 3.
By setting it to m 3 or less, magnetic head wear and head clogging can be reduced even after running for a long time.

【0050】本発明における鋼球摩耗体積は、以下に述
べるように、摺動面の位置を移動させながら、回転摺動
試験により測定されるものであつて、従来の同一部分を
往復摺動させて測定されるものとは異なり、磁気ディス
ク全体の自己研磨能を反映したものである。すなわち、
磁性層の鋼球摩耗体積の測定は、図1に示すように、ド
ライブ1の上キヤリツジを取り外し、上ヘツドに代えて
先端に鋼球3〔高炭素クロム軸受鋼製、直径6.35mm
(JISB−1501)〕を固定した天秤4を取り付
け、下キヤリツジ2のヘツド表面に厚さ0.2mm程度の
SUS製の金属板5を貼り付けて鋼球の受け面とし、2
0℃,50%RHの環境下で、カ―トリツジに組み込ん
だ試料ディスクをセツトし、鋼球に10gの荷重をかか
るように天秤に分銅をのせ、この状態で半径30mmの位
置で、10秒間、ディスクを720rpmで回転させ
る。
The wear volume of the steel ball in the present invention is measured by a rotary sliding test while moving the position of the sliding surface as described below. This is different from the value measured by the method and reflects the self-polishing ability of the entire magnetic disk. That is,
As shown in FIG. 1, the wear volume of the steel ball of the magnetic layer was measured by removing the upper carriage of the drive 1 and replacing the upper head with a steel ball 3 [made of high carbon chromium bearing steel, having a diameter of 6.35 mm.
(JISB-1501)] is fixed, and a SUS metal plate 5 having a thickness of about 0.2 mm is attached to the head surface of the lower carriage 2 to form a receiving surface for steel balls.
In an environment of 0 ° C. and 50% RH, set the sample disk incorporated in the cartridge, place a weight on the balance so that a load of 10 g is applied to the steel ball, and in this state, at a position of a radius of 30 mm for 10 seconds. The disk is rotated at 720 rpm.

【0051】次に、荷重をかけたまま鋼球を1mm外周部
まで移動して10秒間回転させ、さらに1mm外周部に鋼
球を移動して10秒間回転させるという、移動・回転の
動作を順次繰り返し、合計で60秒間回転させて、ディ
スクを止める。この後、鋼球を取り外して、光学顕微鏡
(100倍)で観察し、摺動によつて生じた円形の摩耗
面の半径(r)と鋼球の半径(R)とから、下記の式に
したがい、磁性層の鋼球摩耗体積(V)を算出する。図
1中、6はドライブ基板、7はドライブコントロ―ラ、
8はスピンドル、9はステ―タである。
Next, the steel ball is moved to the outer peripheral portion of 1 mm while applying a load and rotated for 10 seconds, and the steel ball is further moved to the outer peripheral portion of 1 mm and rotated for 10 seconds. Repeat and spin for a total of 60 seconds to stop the disc. Thereafter, the steel ball is removed and observed with an optical microscope (100 times). From the radius (r) of the circular wear surface generated by sliding and the radius (R) of the steel ball, the following equation is obtained. Accordingly, the steel ball wear volume (V) of the magnetic layer is calculated. In FIG. 1, 6 is a drive board, 7 is a drive controller,
8 is a spindle and 9 is a statuser.

【0052】[0052]

【数1】 (Equation 1)

【0053】本発明の磁気ディスクの構成について、以
下、磁性層、下塗り層および非磁性支持体の順に説明す
る。まず、磁性層の構成成分には、前記のCo、希土類
元素を含有する強磁性鉄系合金粉、カ−ボンブラック、
潤滑剤のほかに、この合金粉の結合剤、研磨剤などがあ
り、その他、上記合金粉の分散性を高めるために、アル
コ―ル、脂肪酸、脂肪族アミン、界面活性剤などの分散
剤が用いられる。
The structure of the magnetic disk of the present invention will be described below in the order of a magnetic layer, an undercoat layer and a non-magnetic support. First, the constituent components of the magnetic layer include the above-described ferromagnetic iron-based alloy powder containing Co and a rare earth element, carbon black,
In addition to lubricants, there are binders and abrasives for this alloy powder, and other dispersants such as alcohols, fatty acids, aliphatic amines, and surfactants to enhance the dispersibility of the alloy powder. Used.

【0054】磁性層に使用する結合剤には、塩化ビニル
樹脂、塩化ビニル−酢酸ビニル共重合樹脂、塩化ビニル
−ビニルアルコ―ル共重合樹脂、塩化ビニル−酢酸ビニ
ル−無水マレイン酸共重合樹脂、ニトロセルロ―スなど
の中から選ばれる少なくとも1種とポリウレタン樹脂と
の組み合わせがある。中でも、塩化ビニル−酢酸ビニル
−ビニルアルコ―ル共重合樹脂とポリウレタン樹脂を併
用するのが好ましい。ポリウレタン樹脂には、ポリエス
テルポリウレタン、ポリエ―テルポリウレタン、ポリエ
―テルポリエステルポリウレタン、ポリカ―ボネ―トポ
リウレタン、ポリエステルポリカ―ボネ―トポリウレタ
ンなどがある。
The binder used in the magnetic layer includes vinyl chloride resin, vinyl chloride-vinyl acetate copolymer resin, vinyl chloride-vinyl alcohol copolymer resin, vinyl chloride-vinyl acetate-maleic anhydride copolymer resin, nitrocellulose. -There is a combination of at least one kind selected from polyurethane and a polyurethane resin. Among them, it is preferable to use a vinyl chloride-vinyl acetate-vinyl alcohol copolymer resin and a polyurethane resin in combination. Polyurethane resins include polyester polyurethane, polyether polyurethane, polyether polyester polyurethane, polycarbonate polyurethane, polyester polycarbonate polyurethane, and the like.

【0055】これらの結合剤は、Co、希土類元素を含
有する強磁性鉄系合金粉の分散性を向上し、充填性を上
げるために、官能基を有するものが好ましい。官能基と
しては、COOM,SO3M、OSO3M、P=O(O
M)3、O−P=O(OM)2、(Mは水素原子、または
アルカリ金属塩基)、OH、NR2、N+3(Rは炭化
水素基)、エポキシ基などがある。2種以上の樹脂を併
用する場合には、官能基を一致させるのが好ましく、中
でも−SO3M基が好ましい。
These binders preferably have a functional group in order to improve the dispersibility of the ferromagnetic iron-based alloy powder containing Co and the rare earth element and to enhance the filling property. As the functional group, COOM, SO 3 M, OSO 3 M, P = O (O
M) 3, O-P = O (OM) 2, (M is a hydrogen atom or an alkali metal salt,), OH, NR 2, N + R 3 (R is like a hydrocarbon group), epoxy group. When two or more resins are used in combination, it is preferable that the functional groups are the same, and among them, a —SO 3 M group is preferable.

【0056】これらの結合剤は、Co、希土類元素を含
有する強磁性鉄系合金粉100重量部に対して、5〜5
0重量部、好ましくは10〜35重量部の範囲で用いら
れる。特に、結合剤として塩化ビニル系樹脂を用いる場
合は5〜30重量部、ポリウレタン樹脂を用いる場合は
2〜20重量部の範囲とし、これらの両樹脂を上記の使
用割合で組み合わせて用いるのが最も好ましい。
These binders are used in an amount of 5 to 5 parts by weight based on 100 parts by weight of a ferromagnetic iron alloy powder containing Co and a rare earth element.
0 parts by weight, preferably 10 to 35 parts by weight. In particular, when using a vinyl chloride resin as a binder, the range is from 5 to 30 parts by weight, and when using a polyurethane resin, the range is from 2 to 20 parts by weight. preferable.

【0057】これらの結合剤とともに、結合剤中に含ま
れる官能基などと結合させて架橋する熱硬化性の架橋剤
を併用するのが望ましい。この架橋剤としては、トリレ
ンジイソシアネ―ト、ヘキサメチレンジイソシアネ―
ト、メチレンジイソシアネ―トなどや、これらのイソシ
アネ―ト類とトリメチロ―ルプロパンなどの水酸基を複
数個有するものとの反応生成物、上記イソシアネ―ト類
の縮合生成物などの各種のポリイソシアネ―トが好まし
い。これらの架橋剤は、結合剤100重量部に対して、
通常15〜70重量部の割合で用いられる。
It is desirable to use together with these binders a thermosetting crosslinking agent that bonds to a functional group or the like contained in the binder to form a crosslink. Examples of the crosslinking agent include tolylene diisocyanate, hexamethylene diisocyanate
, Methylene diisocyanate, etc., the reaction products of these isocyanates with those having a plurality of hydroxyl groups such as trimethylolpropane, and various polyisocyanates such as condensation products of the above isocyanates. Is preferred. These crosslinking agents are based on 100 parts by weight of the binder.
Usually, it is used in a proportion of 15 to 70 parts by weight.

【0058】磁性層に使用する潤滑剤には、従来公知の
脂肪酸、脂肪酸エステル、炭化水素などが単独でまたは
2種以上混合して用いられる。中でも、炭素数10以
上、好ましくは12〜30の脂肪酸と、融点35℃以
下、好ましくは10℃以下の脂肪酸エステルとを併用す
るのが好ましい。これらの潤滑剤は、一部が強磁性鉄系
合金粉に吸着して磁性粉の分散性を助け、また初期摩耗
において媒体−ヘツド間の接触を和らげ、摩耗係数を低
下させてヘツド汚れの低減に寄与する。
As the lubricant used in the magnetic layer, conventionally known fatty acids, fatty acid esters, hydrocarbons and the like are used alone or in combination of two or more. Among them, it is preferable to use a fatty acid having 10 or more carbon atoms, preferably 12 to 30 carbon atoms, and a fatty acid ester having a melting point of 35 ° C. or less, preferably 10 ° C. or less. Some of these lubricants adsorb to ferromagnetic iron alloy powder to help disperse the magnetic powder, and also reduce the contact between the medium and the head during initial wear, reduce the wear coefficient and reduce head contamination. To contribute.

【0059】炭素数10以上の脂肪酸としては、直鎖、
分岐、シス・トランスなどの異性体のいずれでもよい
が、潤滑性能にすぐれる直鎖型が好ましい。このような
脂肪酸としては、たとえば、ラウリン酸、ミリスチン
酸、ステアリン酸、パルミチン酸、ベヘン酸、オレイン
酸、リノ―ル酸などが挙げられる。これらの中でも、ミ
リスチン酸、ステアリン酸、パルミチン酸などが好まし
い。
The fatty acids having 10 or more carbon atoms include straight-chain,
Any of isomers such as branched and cis-trans may be used, but a linear type having excellent lubricating performance is preferred. Examples of such fatty acids include lauric acid, myristic acid, stearic acid, palmitic acid, behenic acid, oleic acid, linoleic acid and the like. Among these, myristic acid, stearic acid, palmitic acid and the like are preferable.

【0060】融点35℃以下の脂肪酸エステルには、オ
レイン酸n−ブチル、オレイン酸ヘキシル、オレイン酸
n−オクチル、オレイン酸2−エチルヘキシル、オレイ
ン酸オレイル、ラウリン酸n−ブチル、ラウリン酸ヘプ
チル、ミリスチン酸n−ブチル、オレイン酸n−ブトキ
シエチル、トリメチロ―ルプロパントリオレ―ト、ステ
アリン酸n−ブチル、ステアリン酸s−ブチル、ステア
リン酸イソアミル、ステアリン酸ブチルセロソルブなど
がある。これら脂肪酸エステルは、分子量や構造の違
い、融点の違いにより、油膜強度や油出量を制御できる
ので、組み合わせによる最適化を行つてもよい。上記融
点を有することにより、低温低湿下にさらされても、磁
性層と磁気ヘツドとの高速摺接時に磁性層表面に容易に
滲出移行し、そのすぐれた潤滑作用を効果的に発揮させ
ることができる。
Fatty acid esters having a melting point of 35 ° C. or lower include n-butyl oleate, hexyl oleate, n-octyl oleate, 2-ethylhexyl oleate, oleyl oleate, n-butyl laurate, heptyl laurate, myristine N-butyl acid, n-butoxyethyl oleate, trimethylolpropane trioleate, n-butyl stearate, s-butyl stearate, isoamyl stearate, butyl cellosolve stearate and the like. These fatty acid esters can control the oil film strength and the amount of oil output depending on the difference in molecular weight, structure, and melting point, and may be optimized by combination. By having the above melting point, even when exposed to low temperature and low humidity, the magnetic layer easily oozes and migrates to the surface of the magnetic layer at the time of high-speed sliding contact between the magnetic layer and the magnetic head, and effectively exerts its excellent lubricating action. it can.

【0061】これらの潤滑剤を磁性層中に含ませるに
は、磁性粉と結合剤を混合する際に、上記両成分と一緒
に添加するか、上記混合の前または後に添加するか、あ
るいはあらかじめ形成された磁性層の表面に潤滑剤溶液
などを塗布または噴霧すればよい。その際、潤滑剤の使
用量は、Coを含有する強磁性鉄系合金粉100重量部
に対して、1〜15重量部、好ましくは2〜12重量
部、さらに好ましくは4〜10重量部とするのがよい。
炭素数10以上の脂肪酸と融点35℃以下の脂肪酸エス
テルを併用する場合、両者の添加比率は、重量比で10
/90〜80/20、好ましくは20/80〜60/4
0とするのがよい。
In order to incorporate these lubricants into the magnetic layer, when mixing the magnetic powder and the binder, they are added together with the two components, before or after the mixing, or A lubricant solution or the like may be applied or sprayed on the surface of the formed magnetic layer. At that time, the amount of the lubricant used is 1 to 15 parts by weight, preferably 2 to 12 parts by weight, more preferably 4 to 10 parts by weight, based on 100 parts by weight of the ferromagnetic iron alloy powder containing Co. Good to do.
When a fatty acid having 10 or more carbon atoms and a fatty acid ester having a melting point of 35 ° C. or less are used in combination, the addition ratio of both is 10% by weight.
/ 90-80 / 20, preferably 20 / 80-60 / 4
It is better to set to 0.

【0062】磁性層に使用する研磨剤は、磁性層の鋼球
摩耗体積を調整するために、好ましく用いられる。研磨
剤には、粒状、角状、針状のα化率90%以上のα−ア
ルミナ(Al23)、β−アルミナ、γ−アルミナ、ク
ロム、α−酸化鉄、炭化ケイ素、酸化チタン、酸化セリ
ウム、二酸化ケイ素、ダイヤモンドなどがある。中で
も、硬度が高く、磁性層の表面に存在して摩耗係数低減
の効果が大きいα−アルミナが特に好ましい。研磨剤の
粒径は、媒体−ヘツド間のスペ―シングを小さくし、鋼
球摩耗体積を本発明の範囲内とするためにも、0.3μ
m以下、特に0.2μm以下であるのが好ましい。しか
し、あまりに小さいと、磁気ヘツドとの摩耗係数が増大
し、走行耐久性が低下するため、0.02μm以上、特
に0.1μm以上であるのが好ましい。
The abrasive used for the magnetic layer is preferably used for adjusting the wear volume of the steel ball of the magnetic layer. Examples of the abrasive include granular, angular, and needle-like α-alumina (Al 2 O 3 ) having an α conversion of 90% or more, β-alumina, γ-alumina, chromium, α-iron oxide, silicon carbide, and titanium oxide. , Cerium oxide, silicon dioxide, diamond and the like. Among them, α-alumina, which has a high hardness and exists on the surface of the magnetic layer and has a large effect of reducing the wear coefficient, is particularly preferable. The particle size of the abrasive is 0.3 μm in order to reduce the spacing between the medium and the head and to keep the steel ball wear volume within the range of the present invention.
m or less, particularly preferably 0.2 μm or less. However, if it is too small, the coefficient of wear with the magnetic head increases, and the running durability decreases. Therefore, it is preferably at least 0.02 μm, particularly preferably at least 0.1 μm.

【0063】研磨剤を磁性層中に含ませるには、磁性粉
と結合剤をニ―ダなどで混練する工程または予備攪拌工
程で添加するか、あるいはあらかじめ研磨剤分散液をつ
くつておき、これを磁性塗料中に添加すればよい。生産
性の点からいえば、別工程を設ける必要のない前者の方
が、より好ましい。研磨剤の添加量は、電磁変換特性お
よびヘツド汚れの観点から、Co及び希土類元素を含有
する強磁性鉄系合金粉100重量部に対し、5〜25重
量部、好ましくは10〜20重量部とするのがよい。
In order to include the abrasive in the magnetic layer, the magnetic powder and the binder are added in a step of kneading with a kneader or the like or in a preliminary stirring step, or an abrasive dispersion is prepared in advance, and May be added to the magnetic paint. In terms of productivity, the former, which does not require a separate step, is more preferable. The amount of the abrasive added is 5 to 25 parts by weight, preferably 10 to 20 parts by weight, based on 100 parts by weight of the ferromagnetic iron alloy powder containing Co and the rare earth element, from the viewpoints of electromagnetic conversion characteristics and head contamination. Good to do.

【0064】磁性層の形成にあたり、磁性塗料や潤滑剤
溶液などの調製に用いる溶剤としては、従来から使用さ
れている溶剤をいずれも使用できる。たとえば、ベンゼ
ン、トルエン、キシレンなどの芳香族系溶剤、アセト
ン、シクロヘキサノン、メチルエチルケトンなどのケト
ン系溶剤、酢酸エチル、酢酸ブチルなどのエステル系溶
剤、エタノ―ル、イソプロパノ―ルなどのアルコ―ル系
溶剤のほか、ヘキサン、テトラヒドロフラン、ジメチル
ホルムアミドなどが挙げられる。
In the formation of the magnetic layer, any of the conventionally used solvents can be used as a solvent for preparing a magnetic paint, a lubricant solution and the like. For example, aromatic solvents such as benzene, toluene and xylene; ketone solvents such as acetone, cyclohexanone and methyl ethyl ketone; ester solvents such as ethyl acetate and butyl acetate; alcohol solvents such as ethanol and isopropanol. And hexane, tetrahydrofuran, dimethylformamide and the like.

【0065】下塗り層の構成成分には、無機粉末、結合
剤、潤滑剤、カ―ボンブラツクなどがある。無機粉末に
は、非磁性粉、磁性粉のいずれも使用できる。非磁性粉
としては、α−化率90%以上のα−アルミナ、β−ア
ルミナ、γ−アルミナ、α−酸化鉄、TiO2(ルチ
ル、アナタ―ゼ)、TiOX、酸化セリウム、酸化ス
ズ、酸化タングステン、ZnO、ZrO2、SiO2、C
23、ゲ―タイト、コランダム、窒化珪素、チタンカ
―バイト、酸化マグネシウム、窒化硼素、二硫化モリブ
デン、酸化銅、MgCO3、CaCO3、BaCO3、S
rCO3、BaSO4、炭化珪素、炭化チタンなどが単独
でまたは組み合わせて使用される。磁性粉としては、γ
−Fe23、Co−γ−Fe23、Baフエライトなど
の保磁力300Oe以下の低保磁力の磁性粉が用いられ
る。
The constituent components of the undercoat layer include inorganic powder, binder, lubricant, carbon black and the like. Both non-magnetic powder and magnetic powder can be used as the inorganic powder. Examples of the nonmagnetic powder include α-alumina, β-alumina, γ-alumina, α-iron oxide, TiO 2 (rutile, anatase), TiO X , cerium oxide, tin oxide having an α-conversion ratio of 90% or more. Tungsten oxide, ZnO, ZrO 2 , SiO 2 , C
r 2 O 3 , gateite, corundum, silicon nitride, titanium carbide, magnesium oxide, boron nitride, molybdenum disulfide, copper oxide, MgCO 3 , CaCO 3 , BaCO 3 , S
rCO 3 , BaSO 4 , silicon carbide, titanium carbide and the like are used alone or in combination. As magnetic powder, γ
-Fe 2 O 3, Co-γ -Fe 2 O 3, magnetic powder coercive force 300Oe following low coercivity such as Ba ferrite is used.

【0066】これらの無機粉末は、球状、針状、板状の
いずれの形状であつてもよい。無機粉末の粒径は、あま
りに大きすぎると、下塗り層の表面性が低下し、磁性層
表面に影響を与えるため、0.5μm以下であるのが好
ましい。また、あまりに小さすぎると、下塗り層の無機
粉末の充填性が上がり、潤滑剤を保持できる空孔が減少
するとともに、クツシヨン効果も低下するため、0.0
5μm以上であるのが好ましい。無機粉末の使用量は、
上記粒径と同様の理由から、下塗り層全体の60〜90
重量%、特に70〜80重量%であるのが好ましい。
These inorganic powders may be in any of spherical, needle-like, and plate-like shapes. If the particle size of the inorganic powder is too large, the surface property of the undercoat layer is reduced, which affects the surface of the magnetic layer. Therefore, the particle size is preferably 0.5 μm or less. On the other hand, if it is too small, the filling property of the undercoat layer with the inorganic powder increases, the number of pores capable of holding the lubricant decreases, and the cushioning effect decreases.
It is preferably at least 5 μm. The amount of inorganic powder used is
For the same reason as the above particle size, 60 to 90 of the entire undercoat layer
It is preferred that the amount be from 70% to 80% by weight.

【0067】下塗り層に使用する結合剤には、磁性層を
構成する前記の結合剤と同様の樹脂が用いられ、好まし
くは磁性層の結合剤と同種の樹脂を用いるのがよい。特
に塩化ビニル系樹脂とポリウレタン樹脂との併用系で一
致させると、下塗り層と磁性層との弾性が近くなり、磁
気ヘツドからの荷重を良好に分散させることができる。
また、下塗り層の結合剤は、磁性層の結合剤と同種の官
能基を有しているのが望ましい。特に塩化ビニル系樹脂
とポリウレタン樹脂との併用系において、下塗り層と磁
性層で官能基を一致させると、両層の接着性が向上する
とともに、下塗り層から磁性層への潤滑剤の浸出が円滑
となるため、好ましい。
As the binder used for the undercoat layer, the same resin as the above-mentioned binder constituting the magnetic layer is used, and preferably, the same resin as the binder of the magnetic layer is used. In particular, when they are matched with each other in the combination system of the vinyl chloride resin and the polyurethane resin, the elasticity of the undercoat layer and the magnetic layer becomes close, and the load from the magnetic head can be dispersed well.
The binder of the undercoat layer preferably has the same type of functional group as the binder of the magnetic layer. In particular, when the functional groups of the undercoat layer and the magnetic layer are matched to each other in a combined system of a vinyl chloride resin and a polyurethane resin, the adhesion between the two layers is improved, and the leaching of the lubricant from the undercoat layer to the magnetic layer is smooth. Is preferable.

【0068】下塗り層の結合剤の使用量は、無機粉末1
00重量部に対して、20〜45重量部、特に25〜4
0重量部であるのが好ましい。なお、下塗り層の強度を
上げるために、磁性層の場合と同様に、上記の結合剤と
ともに、結合剤中に含まれる官能基などと結合させて架
橋する熱硬化性の架橋剤を併用するのも望ましい。架橋
剤の使用量としては、上記の結合剤100重量部に対し
て、15〜70重量部とするのが好ましい。
The amount of the binder used in the undercoat layer is determined based on the amount of the inorganic powder 1
20 to 45 parts by weight, especially 25 to 4 parts by weight, per 100 parts by weight
It is preferably 0 parts by weight. In addition, in order to increase the strength of the undercoat layer, in the same manner as in the case of the magnetic layer, together with the binder, a thermosetting crosslinking agent that is combined with the functional group contained in the binder and crosslinked is used. Is also desirable. The amount of the crosslinking agent used is preferably 15 to 70 parts by weight based on 100 parts by weight of the binder.

【0069】下塗り層に使用する潤滑剤としては、磁性
層と同様の潤滑剤を使用できるが、脂肪酸は脂肪酸エス
テルよりも上層への浸出性に劣るため、脂肪酸エステル
を単独でまたは脂肪酸エステルの添加比率を大きくして
使用するのが望ましい。下塗り層の潤滑剤の添加量は、
無機粉末100重量部に対し、通常4〜18重量部、好
ましくは5〜16重量部、より好ましくは6〜14重量
部とするのがよい。下塗り層への脂肪酸と脂肪酸エステ
ルの添加比率は、重量比で0/100〜40/60、特
に0/100〜30/70であるのが好ましい。潤滑剤
を下塗り層に含ませるには、下塗り層用塗料のニ―ダな
どによる混合の際に一緒に添加するか、上記混合の前ま
たは後に添加するか、あるいはあらかじめ形成された下
塗り層の表面に潤滑剤溶液などを塗布または噴霧すれば
よい。
As the lubricant used for the undercoat layer, the same lubricant as that for the magnetic layer can be used. However, since fatty acids are less leaching to the upper layer than fatty acid esters, fatty acid esters are used alone or when fatty acid esters are added. It is desirable to use a larger ratio. The amount of lubricant added to the undercoat layer is
The amount is usually 4 to 18 parts by weight, preferably 5 to 16 parts by weight, more preferably 6 to 14 parts by weight based on 100 parts by weight of the inorganic powder. The weight ratio of the fatty acid and the fatty acid ester to the undercoat layer is preferably 0/100 to 40/60, particularly preferably 0/100 to 30/70. The lubricant may be contained in the undercoat layer by adding it at the time of kneading the undercoat layer paint with a kneader or the like, before or after the above-mentioned mixing, or by adding the surface of the previously formed undercoat layer. , A lubricant solution or the like may be applied or sprayed.

【0070】下塗り層に使用するカ―ボンブラツクとし
ては、粒径0.01〜0.03μmのカ―ボンブラツク
と、粒径0.05〜0.3μmのカ―ボンブラツクとを
併用するのが好ましい。前者のカ―ボンブラツクは、磁
性層の場合と同様に、潤滑剤を保持する空孔を確保する
ためのものであり、また後者のカ―ボンブラツクは、下
塗り層の塗膜強度の向上とクツシヨン効果の両立をはか
るためのものである。下塗り層へのカ―ボンブラツクの
添加量は、両者のカ―ボンブラツクを併せて、無機粉末
100重量部に対して、5〜70重量部、特に15〜4
0重量部とするが好ましい。なお、粒径0.01〜0.
03μmのカ―ボンブラツクには、Cabot社製の
「BLACK PEARLS 800」、「Mogul
−L」、「VULCAN XC−72」、「Regal
660R」、コロンビアン・カ―ボン社製の「Rav
en 1255」、「Conductex SC」など
がある。粒径0.05〜0.3μmのカ―ボンブラツク
には、Cabot社製の「BLACK PEARLS
130」、「Monarch 120」、コロンビアン
・カ―ボン社製の「Raven 450」、「Rave
n 410」、カンカ―ブ社製の「TermaxPow
der・N−991」などがある。
As the carbon black used in the undercoat layer, it is preferable to use a carbon black having a particle size of 0.01 to 0.03 μm and a carbon black having a particle size of 0.05 to 0.3 μm. The former carbon black is used to secure pores for holding the lubricant, as in the case of the magnetic layer. The latter carbon black improves the coating strength of the undercoat layer and improves the cushioning effect. It is to balance the two. The amount of carbon black added to the undercoat layer is 5 to 70 parts by weight, especially 15 to 4 parts by weight, based on 100 parts by weight of the inorganic powder, inclusive of both carbon blacks.
It is preferably 0 parts by weight. In addition, particle diameter 0.01-0.
For the carbon black of 03 μm, “BLACK PEARLS 800” and “Mogul” manufactured by Cabot
-L "," VULCAN XC-72 "," Regal
660R "and" Rav "manufactured by Columbian Carbon Co., Ltd.
en 1255 "and" Conductex SC ". For carbon black having a particle size of 0.05 to 0.3 μm, “BLACK PEARLS” manufactured by Cabot Corporation is used.
130 "," Monarch 120 "," Raven 450 "," Rave "manufactured by Columbian Carbon Co., Ltd.
n 410 "and" TermaxPow "manufactured by Kancarb Corporation
der. N-991 ".

【0071】下塗り層の形成にあたり、下塗り層用塗料
や潤滑剤溶液の調製用溶剤として、磁性層の場合と同様
の芳香族系溶剤、ケトン系溶剤、エステル系溶剤、アル
コ―ル系溶剤や、ヘキサン、テトラヒドロフランなどの
溶剤が用いられる。
In forming the undercoat layer, the same aromatic solvent, ketone-based solvent, ester-based solvent, alcohol-based solvent, etc. as in the case of the magnetic layer may be used as a solvent for preparing the undercoat-layer paint or the lubricant solution. Solvents such as hexane and tetrahydrofuran are used.

【0072】非磁性支持体としては、従来から使用され
ている磁気記録媒体用の非磁性支持体をいずれも使用で
きる。具体的には、ポリエチレンテレフタレ―ト、ポリ
エチレンナフタレ―トなどのポリエステル類、ポリオレ
フイン類、セルロ―ストリアセテ―ト、ポリカ―ボネ―
ト、ポリアミド、ポリイミド、ポリアミドイミド、ポリ
スルフオン、アラミド、芳香族ポリアミドなどからな
る、厚さが通常30〜100μmのフイルムが用いられ
る。
As the non-magnetic support, any conventional non-magnetic support for magnetic recording media can be used. Specifically, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins, cellulose triacetate, polycarbonate
A film having a thickness of usually 30 to 100 [mu] m is used, which is made of, for example, polyamide, polyimide, polyamideimide, polysulfone, aramid, aromatic polyamide and the like.

【0073】高密度磁気ディスクで高トラツク密度を達
成するために使われるトラツキングサ―ボ機構は、使用
環境特に高温環境下の試験において発生する非磁性支持
体の収縮の異方性が大きいと追従性が低下し、トラツキ
ングエラ―が生じやすい。このため、非磁性支持体とし
ては、105℃,30分の熱収縮率、つまり105℃で
30分間熱処理し放冷したのちの熱収縮が、縦方向で
1.5%以下、横方向で1.0%以下であるのが好まし
い。上記の熱収縮率は、非磁性支持体の幅10mm、長さ
300mmの試験片6本をMD/TDより各々採取し、1
05℃の熱風中で30分熱処理し冷却したのちの長さを
測定し、〔(元の長さ−収縮後の長さ)/元の長さ〕×
100(%)の平均値として、求められる。
The tracking servo mechanism used to achieve a high track density on a high-density magnetic disk is designed to follow the use environment, especially when the anisotropy of shrinkage of the non-magnetic support which occurs in a test in a high temperature environment is large. And tracking errors easily occur. For this reason, the nonmagnetic support has a heat shrinkage of 105 ° C. for 30 minutes, that is, a heat shrinkage of 1.5% or less in the vertical direction and 1% in the horizontal direction after heat treatment at 105 ° C. for 30 minutes and cooling. It is preferably at most 0.0%. The above thermal shrinkage rate was determined by taking six test pieces of 10 mm in width and 300 mm in length of the non-magnetic support from MD / TD, respectively.
After heat treatment for 30 minutes in hot air of 05 ° C. and cooling, the length is measured and [(original length−length after shrinkage) / original length] ×
It is obtained as an average value of 100 (%).

【0074】本発明のサ−ボ信号を有する磁気ディスク
とは、磁気ディスク中の一定領域にサ−ボトラックが設
けられた媒体であり、このサ−ボ信号としては従来から
用いられている磁気サ−ボ信号の他、光サ−ボ信号を利
用する形態が挙げられる。本発明の磁気ディスクは、こ
のようなサ−ボ信号の占める面積が、媒体の磁性層全面
積に対して7%以下のシステムに特に最適である。前記
範囲外ではトラッキング精度は向上するものの、有効記
録面に占めるデータ領域の割合が少なくなり、記録容量
の確保が困難となる。磁気サーボ信号で一般的なセクタ
ーサーボ信号の設け方としては、磁気ヘッドを高精度で
トラック送りできるよう改造したサーボライト専用のド
ライブを用いて、各セクターの先頭に半トラック分だけ
位置をずらしてサーボ信号Aを、さらにサーボ信号Aに
続けて逆方向に半トラック分だけ位置をずらしてサーボ
信号Bを記録する。サーボ信号Aとサーボ信号Bはサー
ボ信号処理回路で弁別が容易となるよう異なる周波数を
用いる。また、各サーボ信号のビット数は記録面に占め
るサーボ信号領域の割合、ヘッドと媒体の相対速度、サ
ーボ回路の構成などに合わせて決められる。さらに、複
数トラックに及ぶオフトラックが想定されるシステムに
おいては、例えば互いに異なる周波数のサーボ信号A、
サーボ信号B、サーボ信号C、サーボ信号Dの4つのサ
ーボ信号を用いることにより、正しいトラック位置を検
出しやすくする手法がとられている。一方、光サーボ信
号の設け方としては、例えばトラック間にデューティー
比50:50の破線状の溝を形成し、光学センサーでこ
の溝の位置を検出してヘッドの位置決めをする方法がと
られる。この時の溝の幅は記録面に占めるサーボ信号領
域の割合、要求されるサーボ信号のS/N比などに合わ
せて決められる。このような溝の形成方法としては、ス
タンプ方式で刻印する方法や、レーザー光線を用いて磁
性層表面の一部を焼き切る方法などがあるが、ディスク
状媒体の場合は形成された溝の真円度が高い後者の方
が、より高いトラッキング精度が得られる。
The magnetic disk having a servo signal according to the present invention is a medium in which servo tracks are provided in a fixed area on the magnetic disk. A form using an optical servo signal in addition to the negative servo signal may be used. The magnetic disk of the present invention is particularly suitable for a system in which the area occupied by such servo signals is 7% or less of the total area of the magnetic layer of the medium. Outside the range, although the tracking accuracy is improved, the ratio of the data area to the effective recording surface is reduced, and it is difficult to secure the recording capacity. As a general method of providing sector servo signals in magnetic servo signals, use a dedicated drive for servo write that has been modified so that the magnetic head can be tracked with high accuracy, and shift the position by half a track to the beginning of each sector The servo signal A is further shifted from the servo signal A by a half track in the reverse direction following the servo signal A, and the servo signal B is recorded. The servo signal A and the servo signal B use different frequencies so that discrimination is easy in the servo signal processing circuit. The number of bits of each servo signal is determined according to the ratio of the servo signal area to the recording surface, the relative speed between the head and the medium, the configuration of the servo circuit, and the like. Further, in a system in which an off-track extending over a plurality of tracks is assumed, for example, servo signals A,
A technique has been adopted that makes it easier to detect a correct track position by using four servo signals, a servo signal B, a servo signal C, and a servo signal D. On the other hand, as a method of providing the optical servo signal, for example, a method of forming a broken line groove with a duty ratio of 50:50 between tracks and detecting the position of this groove with an optical sensor to position the head is adopted. The width of the groove at this time is determined according to the ratio of the servo signal area to the recording surface, the required S / N ratio of the servo signal, and the like. As a method of forming such a groove, there are a method of stamping with a stamp method, a method of burning off a part of the surface of the magnetic layer using a laser beam, and the like. The latter has higher tracking accuracy.

【0075】本発明の磁気ディスクの製造において、磁
性層と下塗り層の形成に際しては、従来から公知の塗料
製造工程を使用でき、特にニ―ダなどによる混練工程や
一次分散工程を併用するのが好ましい。一次分散工程で
は、サンドミルを使用することにより、磁性粉の分散性
の改善とともに、塗膜強度を調整でき、それにより磁性
層の鋼球摩耗体積を設定できるので、好ましい。
In the production of the magnetic disk of the present invention, a conventionally known coating production process can be used for forming the magnetic layer and the undercoat layer. Particularly, a kneading process using a kneader or the like and a primary dispersion process are preferably used together. preferable. In the primary dispersion step, the use of a sand mill is preferable because the dispersibility of the magnetic powder can be improved and the strength of the coating film can be adjusted, whereby the wear volume of the steel ball of the magnetic layer can be set.

【0076】また、塗布工程では、グラビア塗布、ロ―
ル塗布、ブレ―ド塗布、エクストル―ジヨン塗布などの
従来から公知の塗布方法を使用できる。その際、下塗り
層および磁性層の塗布方法は、非磁性支持体上に下塗り
層を塗布乾燥したのちに磁性層を塗布する、逐次重層塗
布方法か、下塗り層と磁性層とを同時に塗布する、同時
重層塗布方法のいずれの方法を採用してもよい。
In the coating step, gravure coating and ro
Conventional coating methods such as metal coating, blade coating, and extrusion coating can be used. At that time, the method of applying the undercoat layer and the magnetic layer is to apply the magnetic layer after coating and drying the undercoat layer on the non-magnetic support, or to sequentially coat the undercoat layer and the magnetic layer, Any of the simultaneous multilayer coating methods may be employed.

【0077】本発明の磁気ディスクの製造においては、
塗布乾燥後、プラスチツクロ―ルや金属ロ―ルを用いた
カレンダによる表面処理を行うのが望ましい。カレンダ
処理を行うことにより、磁性層の表面を平滑化できると
ともに、強磁性鉄系合金粉の充填度を向上でき、残留磁
束密度を向上させ、さらには温度膨張係数または湿度膨
張係数の異方性を改善することができる。
In manufacturing the magnetic disk of the present invention,
After coating and drying, it is desirable to perform a surface treatment with a calendar using a plastic roll or a metal roll. By performing the calendering process, the surface of the magnetic layer can be smoothed, the filling degree of the ferromagnetic iron-based alloy powder can be improved, the residual magnetic flux density can be improved, and the anisotropy of the thermal expansion coefficient or the humidity expansion coefficient can be improved. Can be improved.

【0078】鋼球摩耗体積は、磁性層の表面粗度によつ
ても変化するため、一次分散工程での磁性塗料の分散性
とカレンダ処理、塗膜表面研磨処理で適宜調整できる。
磁性層の表面粗度は、光干渉計三次元表面粗さにおける
平均表面粗さ(Ra)が1〜8.5nm、好ましくは3
〜7nmとなるように、カレンダ工程でロ―ルの圧力や
温度を調節して鏡面加工処理、最終的な塗膜表面研磨処
理を行うのがよい。なお、塗膜表面の研磨処理は、平均
表面粗さが0.4μm以下のアルミナ、酸化クロムなど
の、研磨ホイ−ルあるいは研磨テ―プにより研磨するの
が好ましい。上記Raが1nm未満では、磁性層が平滑
化しすぎ、摩擦係数が高くなるとともに、磁気ヘツドと
の貼り付きが生じ、また磁気ヘツドとの真実接触面積の
増大から温度サイクル耐久性の低下が顕著となる。Ra
が8.5nmより大きくなると、磁性層表面の凹凸が顕
著となるため、同様に磁性層の削れによる粉落ちが発生
し、シ―ク耐久性が劣化しやすくなるとともに、C/N
も劣化する。
Since the wear volume of the steel ball varies depending on the surface roughness of the magnetic layer, it can be appropriately adjusted by the dispersibility of the magnetic paint in the primary dispersion step, the calendering treatment, and the coating film surface polishing treatment.
The surface roughness of the magnetic layer is such that the average surface roughness (Ra) in the three-dimensional surface roughness of the optical interferometer is 1 to 8.5 nm, preferably 3 to 8.5 nm.
It is preferable to perform a mirror finishing treatment and a final coating film surface polishing treatment by adjusting the pressure and temperature of the roll in the calendaring step so that the thickness becomes about 7 nm. It is preferable that the surface of the coating film is polished with a polishing wheel or a tape such as alumina or chromium oxide having an average surface roughness of 0.4 μm or less. If the Ra is less than 1 nm, the magnetic layer becomes too smooth, the friction coefficient becomes high, and sticking to the magnetic head occurs, and the decrease in temperature cycle durability is remarkable due to an increase in the real contact area with the magnetic head. Become. Ra
Is larger than 8.5 nm, the unevenness on the surface of the magnetic layer becomes conspicuous, so that the magnetic layer is similarly abraded to powder, resulting in a decrease in seek durability and a decrease in C / N ratio.
Also deteriorates.

【0079】[0079]

【実施例】以下、実施例を記載して、本発明をさらに具
体的に説明する。各例において、部とあるのは重量部を
意味するものとする。
The present invention will now be described more specifically with reference to examples. In each example, “parts” means “parts by weight”.

【0080】 (実施例1) <下塗り層用塗料成分> α−酸化鉄(長軸長:0.14μm、針状比:7) 65部 粒状α−アルミナ(粒径:0.4μm) 10部 カ―ボンブラツク(粒径:0.024μm) 18部 カ―ボンブラツク(粒径:0.075μm) 7部 塩化ビニル−酢酸ビニル−ビニルアルコ―ル共重合樹脂 16部 (含有−SO3Na基:0.7×10- 4当量/g) ポリウレタン樹脂(含有−SO3Na基:1×10- 4当量/g) 7部 オレイン酸オレイル 6部 ステアリン酸n−ブチル(融点:28℃) 2部 シクロヘキサノン 200部 メチルエチルケトン 200部 <磁性塗料成分> Co、希土類元素を含有する強磁性鉄系合金粉 100部 (Co/Fe:0.2、Y/Fe:0.03 Al/Fe:0.02、pH :7、 長軸長:0.12μm、Hc:2,000Oe、 BET比表面積:50m2 /g、σs:140emu/g) カ―ボンブラツク(粒径:0.02μm) 1部 カ―ボンブラツク(粒径:0.35μm) 2.5部 粒状α−アルミナ(粒径:0.3μm) 15部 塩化ビニル−酢酸ビニル−ビニルアルコ―ル共重合樹脂 13部 (含有−SO Na基:0.7×10-4当量/g) ポリウレタン樹脂(含有−SO3Na基:1×10- 4当量/g) 4部 ミリスチン酸(炭素数:15) 1部 オレイン酸オレイル(融点:0℃以下) 5部 シクロヘキサノン 250部 メチルエチルケトン 250部 上記の下塗り層用塗料成分をニ―ダで混練したのち、サ
ンドミルで10時間分散させ、これにポリイソシアネ―
ト6部を加えて、下塗り層用塗料を調製した。これとは
別に、上記の磁性塗料成分をニ―ダで混練したのち、サ
ンドミルで10時間分散させ、これにポリイソシアネ―
ト7部を加えて、磁性塗料を調製した。上記の下塗り層
用塗料を、ポリエチレンテレフタレ―トフイルムからな
る支持体(105℃,30分の熱収縮率が縦方向で0.
8%、横方向で0.6%)に、乾燥後の厚さが片面で1
μmとなるように、両面に塗布し、乾燥した。
(Example 1) <Coating composition for undercoat layer> 65 parts of α-iron oxide (major axis length: 0.14 μm, needle ratio: 7) 10 parts of granular α-alumina (particle diameter: 0.4 μm) Carbon black (particle size: 0.024 μm) 18 parts Carbon black (particle size: 0.075 μm) 7 parts Vinyl chloride-vinyl acetate-vinyl alcohol copolymer resin 16 parts (contains -SO 3 Na group: 0.1 part) 7 × 10 - 4 equivalents / g) polyurethane resin (containing -SO 3 Na group: 1 × 10 - 4 equivalents / g) 7 parts n- butyl oleyl oleate 6 parts of stearic acid (melting point: 28 ° C.) 2 parts cyclohexanone 200 Part: Methyl ethyl ketone: 200 parts <Magnetic paint component> Ferromagnetic alloy powder containing Co and rare earth elements: 100 parts (Co / Fe: 0.2, Y / Fe: 0.03 Al / Fe: 0.02, pH: 7. Long axis : 0.12μm, Hc: 2,000Oe, BET specific surface area: 50m 2 / g, σs: 140emu / g) Ca - Bonburatsuku (particle diameter: 0.02 [mu] m) 1 part Ca - Bonburatsuku (particle size: 0.35 .mu.m) 2.5 parts Granular α-alumina (particle size: 0.3 μm) 15 parts Vinyl chloride-vinyl acetate-vinyl alcohol copolymer resin 13 parts (contained -SO Na group: 0.7 × 10 -4 equivalent / g) polyurethane resin (containing -SO 3 Na group: 1 × 10 - 4 equivalents / g) 4 parts myristic acid (carbon number: 15), 1 part oleyl oleate (mp: 0 ° C. or less) 5 parts cyclohexanone 250 parts Methyl ethyl ketone 250 parts the above After kneading the undercoat layer coating components with a kneader, the mixture is dispersed in a sand mill for 10 hours.
6 parts were added to prepare a paint for an undercoat layer. Separately, after kneading the above magnetic paint components with a kneader, the mixture is dispersed in a sand mill for 10 hours.
Then, 7 parts were added to prepare a magnetic paint. The above-mentioned undercoat layer paint was coated on a support made of polyethylene terephthalate film (105 ° C., 30 min.
8%, 0.6% in the horizontal direction) and the thickness after drying is 1
It was applied on both sides to a thickness of μm and dried.

【0081】このようにして支持体の両面に下塗り層を
形成したのち、この下塗り層上に、さらに上記の磁性塗
料をカレンダ―処理後の磁性層の厚さが片面で0.2μ
mとなるように、両面に塗布し、乾燥した。ついで、こ
の磁気シ―トを5段カレンダ(温度80℃,線圧150
Kg/cm)で鏡面化処理し、60℃で24時間エ―ジング
したのち、3.5インチサイズに打ち抜いた。その後、
アルミナ研磨テ―プ(WA−6000:アルミナ平均粒
径2μm、表面粗さ0.4μm)による表面研磨処理
(エア―圧0.25MPa、研磨時間1秒、ディスク回
転数2,000rpm)を施し、さらに70℃で24時
間エ―ジング処理して、磁気ディスクを作製した。得ら
れた磁気ディスクを3.5インチフロッピー用ハブに貼
り付け後、ディスクのSide0面にレーザーカット方
式でグルーブ幅2.2μm、1周あたりのグルーブ数1
500、デューティー50:50、サーボトラックピッ
チ20.4μmで、トラック半径23mmから39.5
mmの範囲に磁性層面関に対して5.4%で光サーボ用
グルーブを設け、さらに3.5インチフロッピー用カー
トリッジに格納して最終的な磁気ディスクを得た。
After the undercoat layers were formed on both sides of the support in this manner, the magnetic coating was calendered on the undercoat layer to a thickness of 0.2 μm on one side.
m and applied to both sides and dried. Then, the magnetic sheet was placed in a five-stage calendar (temperature 80 ° C., linear pressure 150
(Kg / cm), and aged at 60 ° C. for 24 hours. afterwards,
A surface polishing treatment (air pressure: 0.25 MPa, polishing time: 1 second, disk rotation speed: 2,000 rpm) by an alumina polishing tape (WA-6000: alumina average particle diameter: 2 μm, surface roughness: 0.4 μm) Further, aging treatment was performed at 70 ° C. for 24 hours to produce a magnetic disk. After sticking the obtained magnetic disk to a 3.5-inch floppy hub, a groove width of 2.2 μm was formed on the Side 0 surface of the disk by a laser cut method, and the number of grooves per circumference was 1
500, duty 50:50, servo track pitch 20.4 μm, track radius 23 mm to 39.5
A groove for optical servo was provided at 5.4% of the surface of the magnetic layer in the range of mm, and further stored in a 3.5-inch floppy cartridge to obtain a final magnetic disk.

【0082】(実施例2)磁性塗料成分中、磁性粉を、
Co、Yを含有する強磁性鉄系合金粉(Co/Fe:
0.2、Y/Fe:0.03、Al/Fe:0.03、
pH:7、長軸長:0.07μm、Hc:2,000O
e、BET比表面積:50m2/g、σs:135em
u/g)100部に変更し粒状α−アルミナ(粒径:
0.3μm)15部を粒状α−アルミナ(粒径:0.1
5μm)15部に変更し、かつカレンダ処理後の磁性層
の厚さを片面で0.14μmに変更し、さらに表面研磨
処理をアルミナ研磨テ―プ(WA−6000)に代えて
アルミナ研磨テ―プ(WA−8000:アルミナ平均粒
径1.2μm、表面粗さ0.07μm)で行うようにし
た以外は、実施例1と同様にして、磁気ディスクを作製
した。
(Example 2) In the magnetic paint component, the magnetic powder was
Ferromagnetic iron-based alloy powder containing Co and Y (Co / Fe:
0.2, Y / Fe: 0.03, Al / Fe: 0.03,
pH: 7, major axis length: 0.07 μm, Hc: 2,000 O
e, BET specific surface area: 50 m 2 / g, σs: 135 em
u / g) was changed to 100 parts and granular α-alumina (particle size:
0.3 μm) 15 parts of granular α-alumina (particle size: 0.1
5 μm) to 15 parts, and the thickness of the magnetic layer after the calendering treatment was changed to 0.14 μm on one side, and the surface polishing treatment was changed to an alumina polishing tape (WA-6000) instead of an alumina polishing tape. A magnetic disk was produced in the same manner as in Example 1 except that the magnetic recording was performed using a wafer (WA-8000: alumina average particle diameter 1.2 μm, surface roughness 0.07 μm).

【0083】(実施例3)磁性塗料成分中、粒径0.3
5μmのカ―ボンブラツク2.5部に代えて粒径0.2
7μmのカ―ボンブラツク2.5部を使用し、下塗り層
用塗料成分中、オレイン酸オレイルの添加量を6部から
13部に変更し、かつ下塗り層用塗料成分のサンドミル
による分散条件を10時間から8時間に変更した以外
は、実施例1と同様にして、磁気ディスクを作製した。
(Example 3) Particle size of 0.3 in the magnetic paint component
Particle size 0.2 instead of 2.5 parts of 5 μm carbon black
Using 2.5 parts of 7 μm carbon black, changing the amount of oleyl oleate in the undercoat layer coating composition from 6 parts to 13 parts, and dispersing the undercoat layer coating composition by a sand mill for 10 hours. A magnetic disk was manufactured in the same manner as in Example 1 except that the time was changed to 8 hours.

【0084】(実施例4)磁性塗料成分中、磁性粉を、
Co、Ceを含有する強磁性鉄系合金粉(Co/Fe:
0.2、Ce/Fe:0.04、Al/Fe:0.0
3、pH:7、長軸長:0.14μm、Hc:1,95
0Oe、BET比表面積:50m2/g、σs:130
emu/g)100部に変更し、下塗り層用塗料成分お
よび磁性塗料成分のサンドミルによる分散条件を、それ
ぞれ10時間から6時間に変更するとともに、5段カレ
ンダによる鏡面化処理を温度70℃,線圧120Kg/cm
で行うようにした以外は、実施例1と同様にして、磁気
ディスクを作製した。
(Example 4) A magnetic powder in a magnetic paint component was
Ferromagnetic iron-based alloy powder containing Co and Ce (Co / Fe:
0.2, Ce / Fe: 0.04, Al / Fe: 0.0
3, pH: 7, major axis length: 0.14 μm, Hc: 1,95
0 Oe, BET specific surface area: 50 m 2 / g, σs: 130
emu / g) was changed to 100 parts, the conditions for dispersing the undercoat layer coating component and the magnetic coating component by a sand mill were changed from 10 hours to 6 hours, and the mirror finishing treatment was performed at 70 ° C. 120kg / cm
A magnetic disk was manufactured in the same manner as in Example 1 except that the above procedure was performed.

【0085】(実施例5)磁性塗料成分中、磁性粉を、
Co、Laを含有する強磁性鉄系合金粉(Co/Fe:
0.3、La/Fe :0.03、Al/Fe:0.0
2、pH:9、長軸長:0.12μm、Hc:2,20
0Oe、BET比表面積:55m2/g、σs:150
emu/g)100部に変更し、、さらに下塗り層用塗
料成分および磁性塗料成分のサンドミルによる分散条件
を、それぞれ10時間から15時間に変更し、かつ5段
カレンダによる鏡面化処理を温度90℃,線圧250Kg
/cmで行うようにした以外は、実施例1と同様にして、
磁気ディスクを作製した。
(Example 5) In a magnetic paint component, a magnetic powder was
Ferromagnetic iron alloy powder containing Co and La (Co / Fe:
0.3, La / Fe: 0.03, Al / Fe: 0.0
2, pH: 9, major axis length: 0.12 μm, Hc: 2, 20
0 Oe, BET specific surface area: 55 m 2 / g, σs: 150
emu / g) was changed to 100 parts, the conditions for dispersing the undercoat layer coating component and the magnetic coating component by a sand mill were changed from 10 hours to 15 hours, respectively, and the mirror finishing treatment was performed at a temperature of 90 ° C. using a five-stage calendar. , Linear pressure 250Kg
/ Cm in the same manner as in Example 1,
A magnetic disk was manufactured.

【0086】(実施例6)磁性塗料成分中、磁性粉を、
Co、Ndを含有する強磁性鉄系合金粉(Co/Fe:
0.4、Nd/Fe :0.03、Al/Fe:0.0
5、pH:7、長軸長:0.1μm、Hc:2,200
Oe、BET比表面積:55m2/g、σs:145e
mu/g)100部に変更し下塗り層用塗料成分中、オ
レイン酸オレイルの添加量を6部から3部に変更すると
ともに、磁性塗料成分中、ミリスチン酸1部をステアリ
ン酸(炭素数:18)1部に、オレイン酸オレイル5部
をオレイン酸2−エチルヘキシル(融点:0℃以下)8
部に、それぞれ変更するようにした以外は、実施例1と
同様にして、磁気ディスクを作製した。
(Example 6) In the magnetic paint component, the magnetic powder was
Ferromagnetic iron-based alloy powder containing Co and Nd (Co / Fe:
0.4, Nd / Fe: 0.03, Al / Fe: 0.0
5, pH: 7, major axis length: 0.1 μm, Hc: 2,200
Oe, BET specific surface area: 55 m 2 / g, σs: 145 e
mu / g) was changed to 100 parts, the amount of oleyl oleate in the undercoat layer coating composition was changed from 6 parts to 3 parts, and 1 part of myristic acid was replaced with stearic acid (carbon number: 18) in the magnetic coating composition. 1) 5 parts of oleyl oleate and 2 parts of 2-ethylhexyl oleate (melting point: 0 ° C. or lower)
A magnetic disk was manufactured in the same manner as in Example 1 except that the respective parts were changed.

【0087】(実施例7)磁性塗料成分中、磁性粉を、
Co、Tbを含有する強磁性鉄系合金粉(Co/Fe:
0.3、Tb/Fe :0.05、Al/Fe:0.0
3、pH:7、長軸長:0.10μm、Hc:2,10
0Oe、BET比表面積:55m2/g、σs:150
emu/g)100部に変更し下塗り層用塗料成分中、
α−酸化鉄65部に代えて、γ−Fe23磁性粉(粒子
径:0.12μm Hc:300Oe,σs:75em
u/g、BET比表面積25m2/g)65部を使用す
るとともに、非磁性支持体として、105℃,30分の
熱収縮率が縦方向で0.3%、横方向で0.1%である
ポリエチレンテレフタレ―トフイルムを使用するように
した以外は、実施例1と同様にして、磁気ディスクを作
製した。
(Example 7) In the magnetic paint component, the magnetic powder was
Ferromagnetic iron-based alloy powder containing Co and Tb (Co / Fe:
0.3, Tb / Fe: 0.05, Al / Fe: 0.0
3, pH: 7, major axis length: 0.10 μm, Hc: 2, 10
0 Oe, BET specific surface area: 55 m 2 / g, σs: 150
emu / g) changed to 100 parts, and
Instead of 65 parts of α-iron oxide, γ-Fe 2 O 3 magnetic powder (particle size: 0.12 μm Hc: 300 Oe, σs: 75 em)
u / g, BET specific surface area 25 m 2 / g) 65 parts, and as a non-magnetic support, the heat shrinkage at 105 ° C. for 30 minutes is 0.3% in the vertical direction and 0.1% in the horizontal direction. A magnetic disk was manufactured in the same manner as in Example 1, except that the polyethylene terephthalate film was used.

【0088】(比較例1)下塗り層を設けなかつた以外
は、実施例1と同様にして、磁気ディスクを作製した。
Comparative Example 1 A magnetic disk was produced in the same manner as in Example 1 except that no undercoat layer was provided.

【0089】(比較例2)磁性塗料成分中に粒径0.3
5μmのカ―ボンブラツク2.5部に代えて粒径0.2
7μmのカ―ボンブラツク2.5部に変更し、磁性層の
厚さを0.3μmとし、非磁性支持体として、105
℃,30分の熱収縮率が縦方向で2.0%、横方向で
1.2%のポリエチレンテレフタレ―トフイルムを用い
た以外は、実施例1と同様にして、磁気ディスクを作製
した。
(Comparative Example 2) A particle diameter of 0.3 in the magnetic paint component
Particle size 0.2 instead of 2.5 parts of 5 μm carbon black
The carbon black was changed to 2.5 parts of 7 μm, the thickness of the magnetic layer was set to 0.3 μm, and 105 μm was used as the nonmagnetic support.
A magnetic disk was produced in the same manner as in Example 1 except that a polyethylene terephthalate film having a heat shrinkage of 2.0% in the vertical direction and 1.2% in the horizontal direction at 30 ° C. for 30 minutes was used.

【0090】(比較例3)磁性塗料成分中、磁性粉を、
Co、Yを含有する強磁性鉄系合金粉(Co/Fe:
0.2、Y/Fe:0.01、Al/Fe:0.02、
pH:7、長軸長:0.35μm、Hc:1650O
e、BET比表面積:45m2/g、σs:125emu
/g)100部に変更し、下塗り層用塗料成分中、塩化
ビニル−ビニルアルコ―ル共重合樹脂およびポリウレタ
ン樹脂をそれぞれ官能基として−SO3Na基を有する
ものから−OH基のみを有するものに変更するととも
に、磁性塗料成分中、粒径0.35μmのカ―ボンブラ
ツク2.5部に代えて粒径0.075μmのカ―ボンブ
ラツク3.0部を使用し、さらに下塗り層用塗料成分お
よび磁性塗料成分のサンドミルによる分散条件をそれぞ
れ10時間から5時間に変更し、かつ5段カレンダによ
る鏡面化処理を温度70℃、線圧120kg/cmで行うよ
うにした以外は、実施例1と同様にして、磁気ディスク
を作製した。
(Comparative Example 3) In the magnetic paint component, the magnetic powder was
Ferromagnetic iron-based alloy powder containing Co and Y (Co / Fe:
0.2, Y / Fe: 0.01, Al / Fe: 0.02,
pH: 7, major axis length: 0.35 μm, Hc: 1650O
e, BET specific surface area: 45 m 2 / g, σs: 125 emu
/ G) Changed to 100 parts, and in the coating component for the undercoat layer, the vinyl chloride-vinyl alcohol copolymer resin and the polyurethane resin were changed from those having -SO 3 Na groups as functional groups to those having only -OH groups. In addition, 3.0 parts of a carbon black having a particle size of 0.075 μm were used instead of 2.5 parts of a carbon black having a particle size of 0.35 μm in the magnetic coating component. The same procedure as in Example 1 was carried out except that the dispersion conditions of the paint components by a sand mill were changed from 10 hours to 5 hours, respectively, and the mirror finishing treatment by a 5-stage calendar was performed at a temperature of 70 ° C. and a linear pressure of 120 kg / cm. Thus, a magnetic disk was manufactured.

【0091】(比較例4)下塗り層用塗料成分中、オレ
イン酸オレイル6部をステアリン酸セチル(融点40
℃)18部に変更するとともに、磁性塗料成分中、粒径
0.35μmのカーボンブラックを使用せず、粒径0.
02μmのカーボンブラックの添加量を1.0部から
5.0部に変更し、粒状α−アルミナの添加量を15部
から30部に変更し、かつオレイン酸オレイル5部をオ
レイン酸メチル(融点20℃)8部に変更するようにし
た以外は、実施例1と同様にして、磁気ディスクを作製
した。実施例1と同様にして、磁気ディスクを作製し
た。
Comparative Example 4 6 parts of oleyl oleate in the undercoat layer coating composition was replaced with cetyl stearate (melting point: 40
° C) was changed to 18 parts, and carbon black having a particle size of 0.35 µm was not used in the magnetic paint component.
The addition amount of carbon black of 02 μm was changed from 1.0 part to 5.0 parts, the addition amount of granular α-alumina was changed from 15 parts to 30 parts, and 5 parts of oleyl oleate was changed to methyl oleate (melting point A magnetic disk was manufactured in the same manner as in Example 1, except that the temperature was changed to 8 parts at 20 ° C.). A magnetic disk was manufactured in the same manner as in Example 1.

【0092】(比較例5)下塗り層用塗料成分中、オレ
イン酸オレイルの添加量を6部から0.5部に、ステア
リン酸n−ブチルの添加量を2部から1部に、それぞれ
変更するとともに、磁性塗料成分中、磁性粉を、強磁性
Fe−Ni合金粉(pH:11、長軸長:0.25μ
m、Hc:1550Oe、BET比表面積:55m2
g、σs:120emu/g)100部に変更するとと
もに、オレイン酸オレイルの添加量を5部から0.5部
に変更し、さらにミリスチン酸を添加しなかつた以外
は、実施例1と同様にして、磁気ディスクを作製した。
Comparative Example 5 The amount of oleyl oleate was changed from 6 parts to 0.5 part and the amount of n-butyl stearate was changed from 2 parts to 1 part in the undercoat layer coating composition. At the same time, the magnetic powder in the magnetic paint component was replaced with a ferromagnetic Fe—Ni alloy powder (pH: 11, major axis length: 0.25 μm).
m, Hc: 1550 Oe, BET specific surface area: 55 m 2 /
g, σs: 120 emu / g) In the same manner as in Example 1 except that the amount of oleyl oleate was changed from 5 parts to 0.5 part and myristic acid was not added, while changing to 100 parts. Thus, a magnetic disk was manufactured.

【0093】以上の実施例1〜7および比較例1〜5の
各磁気ディスクについて、磁性層の鋼球摩耗体積を、本
文記載の方法で測定した。鋼球摩耗体積の測定にあた
り、ドライブとして、松下寿電子工業(株)製ドライブ
(LKM−F434−1)(カ―トリツジは3.5イン
チカ―トリツジ)を使用した。これらの結果は、表1に
示されるとおりであつた。
For each of the magnetic disks of Examples 1 to 7 and Comparative Examples 1 to 5, the wear volume of the steel ball of the magnetic layer was measured by the method described in the text. In measuring the steel ball wear volume, a drive (LKM-F434-1) manufactured by Matsushita Hisashi Electronics Co., Ltd. (a 3.5 inch cartridge was used) was used as a drive. These results were as shown in Table 1.

【0094】[0094]

【表1】 [Table 1]

【0095】つぎに、上記の実施例1〜7および比較例
1〜5の各磁気ディスクについて、再生出力、S/N
比、分解能、温度サイクル耐久性およびシ―ク耐久性
を、下記の方法により測定した。これらの結果は、表2
に示されるとおりであつた。
Next, for each of the magnetic disks of Examples 1 to 7 and Comparative Examples 1 to 5, the reproduction output, S / N
The ratio, resolution, temperature cycle durability and seek durability were measured by the following methods. These results are shown in Table 2.
The results were as shown in FIG.

【0096】<再生出力>ディスク回転用NTN社製ス
ピンドルモ―タSPU−MUX158GV3とヘツド位
置調整用中央精機製精密ステ―ジMM−40X・Y、M
M−40Z、MM−40GUおよびMM−40GLより
なる電磁変換特性評価装置に、トラツク幅8μm、ギヤ
ツプ長0.3μmのMIGタイプヘツドを取り付け、回
転数1,000rpm、記録周波数7,215kHzで
半径35mmの位置において記録したのち(記録波長1μ
m)、再生アンプ出力のpeak to peak値を
ヒユ―レツトパツカ―ド社製オシロスコ―プ54504
Aで測定した。測定値は、比較例2の磁気ディスクを1
00%として、相対値で示した。 <分解能>上記再生出力の測定絶対値をHF出力とし、
記録周波数を1,804kHzにしたときの測定絶対値
をLF出力とする。上記のHF出力とLF出力の比(H
F出力/LF出力)を分解能とした。測定値は、比較例
2の磁気ディスクを100%として、相対値で示した。 <S/N比>上記HF出力信号をヒューレットパッカード
社製スペクトラムアナライザー3588Aに入力し、周
波数スパン0〜7MHz、RBW4.6kHz、アベレ
ージング回数64回でスペクトラム表示した。この時の
3608kHzのピークレベル値(dBm)を信号レベルS
とし、2.5MHz付近のノイズフロアレベルと4.5
MHz付近のノイズフロアレベルの平均値(dBm)をノイ
ズレベルNとして測定し、S/N比(dB)=S(dBm)−
N(dBm)で計算した。測定値は、比較例2の磁気ディス
クを0dBとして、相対値で示した。 <温度サイクル耐久性>上記の再生出力測定用の装置を
用い、5℃,20%RHと50℃,80%RHの温度サ
イクル環境下で、半径35mmの位置において連続走行さ
せ、出力電圧が初期値の85%に低下するまでの累計走
行時間を調べた。 <シ―ク耐久性>上記の再生出力測定用の装置を用い、
20℃,65%の環境下で、r=30〜40mmの範囲を
速度10往復/分でシ―ク動作させ、r=35mmの位置
の出力電圧が初期の85%に低下するまでの累計走行時
間を調べた。
<Reproduction Output> Spindle motor SPU-MUX158GV3 manufactured by NTN Corporation for disk rotation and precision stage MM-40XY, M manufactured by Chuo Seiki for head position adjustment
A MIG type head having a track width of 8 μm and a gap length of 0.3 μm was attached to an electromagnetic conversion characteristic evaluation device composed of M-40Z, MM-40GU and MM-40GL, a rotation speed of 1,000 rpm, a recording frequency of 7,215 kHz and a radius of 35 mm. After recording at the position (recording wavelength 1μ
m), the peak-to-peak value of the output of the reproduction amplifier is changed to an oscilloscope 54504 manufactured by Hewlett-Packard Co., Ltd.
A. The measured value was 1 for the magnetic disk of Comparative Example 2.
The relative values are shown as 00%. <Resolution> The measured absolute value of the reproduction output is set to the HF output,
The measured absolute value when the recording frequency is set to 1,804 kHz is defined as the LF output. The ratio of the HF output to the LF output (H
F output / LF output) was taken as the resolution. The measured values are shown as relative values with the magnetic disk of Comparative Example 2 taken as 100%. <S / N ratio> The above HF output signal was input to a spectrum analyzer 3588A manufactured by Hewlett-Packard Company, and a spectrum was displayed with a frequency span of 0 to 7 MHz, RBW of 4.6 kHz, and averaging 64 times. At this time, the peak level value (dBm) of 3608 kHz is converted to the signal level S.
And the noise floor level around 2.5 MHz and 4.5
The average value (dBm) of the noise floor level near MHz is measured as the noise level N, and the S / N ratio (dB) = S (dBm) −
Calculated as N (dBm). The measured values are shown as relative values with the magnetic disk of Comparative Example 2 set to 0 dB. <Temperature cycling durability> Using the above-described apparatus for measuring the regenerative output, the battery was continuously run at a radius of 35 mm in a temperature cycle environment of 5 ° C., 20% RH and 50 ° C., 80% RH. The total running time until the value dropped to 85% of the value was examined. <Seek durability> Using the apparatus for measuring the reproduction output described above,
Under an environment of 20 ° C. and 65%, a seek operation is performed in a range of r = 30 to 40 mm at a speed of 10 reciprocations / minute until the output voltage at a position of r = 35 mm drops to 85% of the initial value. I checked the time.

【0097】[0097]

【表2】 [Table 2]

【0098】<温度膨張係数>セイコー電子工業製熱応
力歪測定装置を使用して、磁気ディスクを5°おきに3
60°サンプリングし、幅4mm×長さ20mm(チャ
ックつかみ部除く)に加工した後、荷重4.0g、測定
温度環境を25℃から60℃に変化させて測定した。ま
た、その測定結果から温度膨張係数の最大値と最小値の
比率を最大値/最小値で計算した。
<Temperature Expansion Coefficient> Using a thermal stress strain measuring device manufactured by Seiko Denshi Kogyo, the magnetic disk
After sampling at 60 ° and processing into a width of 4 mm x a length of 20 mm (excluding the chuck grip portion), the load was measured at 4.0 g and the measurement temperature environment was changed from 25 ° C to 60 ° C. Further, the ratio between the maximum value and the minimum value of the thermal expansion coefficient was calculated from the measurement result as a maximum value / minimum value.

【0099】<湿度膨張係数>上記の測定装置を使用し
て、磁気ディスクを5°おきに360°サンプリング
し、幅4mm×長さ20mm(チャックつかみ部除く)に
加工した後、荷重4.0g、測定湿度環境を25%RH
から60%RHに変化させて測定した。また、その測定
結果から湿度膨張係数の最大値と最小値の比率を最大値
/最小値で計算した。結果を表3に示す。
<Humidity Expansion Coefficient> Using the above-described measuring apparatus, a magnetic disk was sampled at 360 ° every 5 °, processed into a width of 4 mm × a length of 20 mm (excluding the chuck grip portion), and then loaded with a load of 4.0 g. , Measurement humidity environment 25% RH
From 60% to 60% RH. From the measurement results, the ratio of the maximum value and the minimum value of the humidity expansion coefficient was calculated as the maximum value / minimum value. Table 3 shows the results.

【0100】[0100]

【表3】 [Table 3]

【0101】上記の表2、表3から明らかなように、本
発明の実施例1〜7の各磁気ディスクは、再生出力、分
解能及びS/N比が高く、かつ温度サイクル耐久性とシ
―ク耐久性も満足するものであり、温度膨張係数または
湿度膨張係数の異方性による最大値と最小値との比率を
満足するとともに、高い電磁変換特性とすぐれた走行耐
久性が得られていることがわかる。これに対して、比較
例1〜7の各磁気ディスクでは、温度膨張係数と湿度膨
張係数の異方性による最大値と最小値との比率を満足せ
ず、電磁変換特性か、走行耐久性かのいずれかの特性に
明らかに劣つている。
As is clear from Tables 2 and 3, each of the magnetic disks of Examples 1 to 7 of the present invention has a high reproduction output, a high resolution and a high signal-to-noise ratio, and has a high temperature cycle durability and a high shear rate. It also satisfies the ratio of the maximum value to the minimum value due to the anisotropy of the coefficient of thermal expansion or the coefficient of humidity expansion, as well as high electromagnetic conversion characteristics and excellent running durability. You can see that. On the other hand, in each of the magnetic disks of Comparative Examples 1 to 7, the ratio between the maximum value and the minimum value due to the anisotropy of the temperature expansion coefficient and the humidity expansion coefficient was not satisfied, and the electromagnetic conversion characteristics or the running durability were not satisfied. Is clearly inferior to any of the properties.

【0102】[0102]

【発明の効果】以上のように、本発明においては、非磁
性支持体と磁性層との間に下塗り層を設け、かつ磁性粉
として特定の強磁性鉄系合金粉を使用するとともに、磁
性層の厚さ、磁性層に含まれるカーボンブラックの粒径
および磁性層の鋼球摩耗体積を特定し、このようにして
作製された磁気ディスクの温度膨張係数または、湿度膨
張係数の最小値と最大値の比率を特定したことにより、
高い電磁変換特性とすぐれた走行耐久性、特に満足でき
るシ―ク耐久性および温度サイクル耐久性が得られる高
密度磁気ディスク、特に高トラツク密度および高線記録
密度の高密度磁気ディスクを提供することができる。
As described above, in the present invention, the undercoat layer is provided between the nonmagnetic support and the magnetic layer, and a specific ferromagnetic iron-based alloy powder is used as the magnetic powder. The thickness of the magnetic layer, the particle size of the carbon black contained in the magnetic layer, and the wear volume of the steel ball of the magnetic layer are specified, and the minimum and maximum values of the thermal expansion coefficient or the humidity expansion coefficient of the magnetic disk manufactured in this manner are determined. By specifying the ratio of
To provide a high-density magnetic disk having high electromagnetic conversion characteristics and excellent running durability, particularly satisfactory seek durability and temperature cycle durability, particularly a high-density magnetic disk having a high track density and a high linear recording density. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】磁性層の鋼球摩耗体積を測定する装置を示す説
明図である。
FIG. 1 is an explanatory diagram showing an apparatus for measuring a steel ball wear volume of a magnetic layer.

【符号の説明】[Explanation of symbols]

1 ドライブ 2 下キヤリツジ 3 鋼球 4 天秤 5 金属板 1 Drive 2 Lower Carriage 3 Steel Ball 4 Balance 5 Metal Plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菜切 和彦 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 (72)発明者 宮田 照久 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 Fターム(参考) 5D006 BA05 BA08 BA09 BA10 BA11 BA19 CA01 CB07 DA02 FA02 FA09  ──────────────────────────────────────────────────の Continued on the front page (72) Kazuhiko Nagiri, 1-88 Ushitora, Ibaraki City, Osaka Prefecture Inside Hitachi Maxell Co., Ltd. (72) Teruhisa Miyata 1-188 Ushitora, Ibaraki City, Osaka Prefecture F-term in Hitachi Maxell, Ltd. (reference) 5D006 BA05 BA08 BA09 BA10 BA11 BA19 CA01 CB07 DA02 FA02 FA09

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】 非磁性支持体上に少なくとも下塗り層と
磁性層とがこの順に形成され、磁性層の厚さが0.2μ
m以下、磁性層に含まれる磁性粉が長軸長(L)0.1
5μm以下で、長軸長(L)と最短記録波長(λ)の関
係がL/λ≦1/3を満たすCoおよび希土類元素を含
有する強磁性鉄系合金粉からなり、磁性層に含まれるカ
ーボンブラックの粒径が磁性層の厚み以上であり、これ
らからなる磁気記録ディスクの温度膨張係数の最小値と
最大値の関係が最大値/最小値≦2.0を満たし、さら
にサーボ信号を有することを特徴とする磁気ディスク。
At least an undercoat layer and a magnetic layer are formed in this order on a nonmagnetic support, and the thickness of the magnetic layer is 0.2 μm.
m or less, the magnetic powder contained in the magnetic layer has a major axis length (L) of 0.1
5 μm or less, made of a ferromagnetic iron-based alloy powder containing Co and a rare earth element that satisfies L / λ ≦ 1 /, the relationship between the long axis length (L) and the shortest recording wavelength (λ), and is included in the magnetic layer. The particle size of the carbon black is equal to or larger than the thickness of the magnetic layer, and the relationship between the minimum value and the maximum value of the coefficient of thermal expansion of the magnetic recording disk comprising them satisfies the maximum value / minimum value ≦ 2.0 and further has a servo signal. A magnetic disk characterized by the above-mentioned.
【請求項2】 Co、希土類元素を含有する強磁性鉄系
合金粉は、Co/Feの重量比が0.1〜0.5、希土
類元素/Fe重量比が 0.01〜0.1である請求項1
記載の磁気ディスク。
2. The ferromagnetic iron-based alloy powder containing Co and a rare earth element has a Co / Fe weight ratio of 0.1 to 0.5 and a rare earth element / Fe weight ratio of 0.01 to 0.1. Certain claim 1
The magnetic disk as described.
【請求項3】 Co、希土類元素を含有する強磁性鉄系
合金粉は、他の含有物としてアルミニウム酸化物がAl
/Feの重量比で0.001〜0.06含まれる請求項
1記載の磁気ディスク。
3. A ferromagnetic iron-based alloy powder containing Co and a rare earth element contains aluminum oxide as another material.
2. The magnetic disk according to claim 1, wherein the weight ratio of Fe / Fe is 0.001 to 0.06.
【請求項4】 Co、希土類元素を含有する強磁性鉄系
合金粉は、pHが10未満である請求項1記載の磁気デ
ィスク。
4. The magnetic disk according to claim 1, wherein the ferromagnetic iron-based alloy powder containing Co and the rare earth element has a pH of less than 10.
【請求項5】 磁性層と下塗り層とからn−ヘキサンに
より抽出される潤滑剤量が30mg/cm3以上である
請求項1記載の磁気ディスク。
5. The magnetic disk according to claim 1, wherein the amount of the lubricant extracted from the magnetic layer and the undercoat layer with n-hexane is 30 mg / cm 3 or more.
【請求項6】 磁性層と下塗り層とからn−ヘキサンに
より抽出される潤滑剤は、炭素数10以上の脂肪酸と融
点35℃以下の脂肪酸エステルとを含有し、両成分の抽
出重量比が0.3/99.7〜10/90である請求項
1記載の磁気ディスク。
6. The lubricant extracted from the magnetic layer and the undercoat layer with n-hexane contains a fatty acid having 10 or more carbon atoms and a fatty acid ester having a melting point of 35 ° C. or less, and the extraction weight ratio of both components is 0%. 2. The magnetic disk according to claim 1, wherein the ratio is from 3 / 99.7 to 10/90.
【請求項7】 下塗り層に含まれる結合剤と磁性層に含
まれる結合剤とが、同種の樹脂からなる請求項1記載の
磁気ディスク。
7. The magnetic disk according to claim 1, wherein the binder contained in the undercoat layer and the binder contained in the magnetic layer are made of the same resin.
【請求項8】 下塗り層に含まれる結合剤と磁性層に含
まれる結合剤とが、同種の官能基を有する請求項1記載
の磁気ディスク。
8. The magnetic disk according to claim 1, wherein the binder contained in the undercoat layer and the binder contained in the magnetic layer have the same kind of functional groups.
【請求項9】 磁性層の鋼球摩耗体積が0.5×10-4
〜5.0×10-4mm3である請求項1記載の磁気ディス
ク。
9. The steel ball wear volume of the magnetic layer is 0.5 × 10 −4.
2. The magnetic disk according to claim 1, wherein the thickness is from 5.0 * 10 < -4 > mm < 3 >.
【請求項10】 非磁性支持体は、105℃で30分間
熱処理し放冷した後の熱収縮率が、縦方向で1.5%以
下、横方向で1.0%以下である請求項1記載の磁気デ
ィスク。
10. The non-magnetic support has a heat shrinkage of 1.5% or less in the vertical direction and 1.0% or less in the horizontal direction after being heat-treated at 105 ° C. for 30 minutes and allowed to cool. The magnetic disk as described.
【請求項11】 非磁性支持体上に少なくとも下塗り層
と磁性層とがこの順に形成され、磁性層の厚さが0.2
μm以下、磁性層に含まれる磁性粉が長軸長(L)0.
15μm以下で、長軸長(L)と最短記録波長(λ)の
関係がL/λ≦1/3を満たすCoおよび希土類元素を
含有する強磁性鉄系合金粉からなり、磁性層に含まれる
カーボンブラックの粒径が磁性層の厚み以上であり、こ
れらからなる磁気記録ディスクの湿度膨張係数の最小値
と最大値の関係が最大値/最小値≦2.0を満たし、さ
らにサ−ボ信号を有することを特徴とする磁気ディス
ク。
11. At least an undercoat layer and a magnetic layer are formed in this order on a nonmagnetic support, and the thickness of the magnetic layer is 0.2
μm or less, the magnetic powder contained in the magnetic layer has a long axis length (L) of 0.
It is composed of a ferromagnetic iron-based alloy powder containing Co and a rare earth element having a relationship between the long axis length (L) and the shortest recording wavelength (λ) that satisfies L / λ ≦ 1 /, and is contained in the magnetic layer. The particle size of the carbon black is equal to or greater than the thickness of the magnetic layer, the relationship between the minimum value and the maximum value of the humidity expansion coefficient of the magnetic recording disk made of these satisfies the maximum value / minimum value ≦ 2.0, and the servo signal A magnetic disk comprising:
【請求項12】 Co、希土類元素を含有する強磁性鉄
系合金粉は、Co/Feの重量比が0.1〜0.5、希
土類元素/Fe重量比が 0.01〜0.1である請求項
11記載の磁気ディスク。
12. The ferromagnetic iron-based alloy powder containing Co and a rare earth element has a Co / Fe weight ratio of 0.1 to 0.5 and a rare earth element / Fe weight ratio of 0.01 to 0.1. The magnetic disk according to claim 11.
【請求項13】 Co、希土類元素を含有する強磁性鉄
系合金粉は、他の含有物としてアルミニウム酸化物がA
l/Feの重量比で0.001〜0.06含まれる請求
項11記載の磁気ディスク。
13. A ferromagnetic iron-based alloy powder containing Co and a rare earth element contains aluminum oxide as an additional component.
12. The magnetic disk according to claim 11, wherein the weight ratio of 1 / Fe is 0.001 to 0.06.
【請求項14】 Co、希土類元素を含有する強磁性鉄
系合金粉は、pHが10未満である請求項11記載の磁
気ディスク。
14. The magnetic disk according to claim 11, wherein the ferromagnetic iron-based alloy powder containing Co and the rare earth element has a pH of less than 10.
【請求項15】 磁性層と下塗り層とからn−ヘキサン
により抽出される潤滑剤量が30mg/cm3以上であ
る請求項11記載の磁気ディスク。
15. The magnetic disk according to claim 11, wherein the amount of the lubricant extracted with n-hexane from the magnetic layer and the undercoat layer is 30 mg / cm 3 or more.
【請求項16】 磁性層と下塗り層とからn−ヘキサン
により抽出される潤滑剤は、炭素数10以上の脂肪酸と
融点35℃以下の脂肪酸エステルとを含有し、両成分の
抽出重量比が0.3/99.7〜10/90である請求
項11記載の磁気ディスク。
16. The lubricant extracted from the magnetic layer and the undercoat layer with n-hexane contains a fatty acid having 10 or more carbon atoms and a fatty acid ester having a melting point of 35 ° C. or less, and the extraction weight ratio of both components is 0%. The magnetic disk according to claim 11, wherein the ratio is from 3 / 99.7 to 10/90.
【請求項17】 下塗り層に含まれる結合剤と磁性層に
含まれる結合剤とが、同種の樹脂からなる請求項11記
載の磁気ディスク。
17. The magnetic disk according to claim 11, wherein the binder contained in the undercoat layer and the binder contained in the magnetic layer are made of the same resin.
【請求項18】 下塗り層に含まれる結合剤と磁性層に
含まれる結合剤とが、同種の官能基を有する請求項11
記載の磁気ディスク。
18. The binder according to claim 11, wherein the binder contained in the undercoat layer and the binder contained in the magnetic layer have the same kind of functional group.
The magnetic disk as described.
【請求項19】 磁性層の鋼球摩耗体積が0.5×10
-4 〜5.0×10- 4mm3である請求項11記載の磁気デ
ィスク。
19. The steel ball wear volume of the magnetic layer is 0.5 × 10
-4 to 5.0 × 10 - magnetic disk according to claim 11, wherein a 4 mm 3.
【請求項20】 非磁性支持体は、105℃で30分間
熱処理し放冷したのちの熱収縮率が、縦方向で1.5%
以下、横方向で1.0%以下である請求項11記載の磁
気ディスク。
20. The nonmagnetic support has a heat shrinkage of 1.5% in the longitudinal direction after being heat-treated at 105 ° C. for 30 minutes and allowed to cool.
The magnetic disk according to claim 11, wherein the magnetic disk content is 1.0% or less in the horizontal direction.
JP36571199A 1999-12-24 1999-12-24 Magnetic disk Withdrawn JP2001184621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36571199A JP2001184621A (en) 1999-12-24 1999-12-24 Magnetic disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36571199A JP2001184621A (en) 1999-12-24 1999-12-24 Magnetic disk

Publications (1)

Publication Number Publication Date
JP2001184621A true JP2001184621A (en) 2001-07-06

Family

ID=18484927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36571199A Withdrawn JP2001184621A (en) 1999-12-24 1999-12-24 Magnetic disk

Country Status (1)

Country Link
JP (1) JP2001184621A (en)

Similar Documents

Publication Publication Date Title
JP7180639B2 (en) magnetic recording medium
JP6909619B2 (en) Magnetic recording medium for high recording density and its recording / playback mechanism
JP2005228377A (en) Magnetic tape
JP2006054000A (en) Magnetic recording medium
JP2007265547A (en) Magnetic recording medium
JP2001184627A (en) Magnetic recording medium
JP3864339B2 (en) Magnetic tape
JP4383336B2 (en) Magnetic tape
JP2001184621A (en) Magnetic disk
JP6005500B2 (en) Method for measuring magnetic recording medium and method for manufacturing magnetic recording medium
JP2000011355A (en) Magnetic recording medium
JP4383316B2 (en) Magnetic recording medium and magnetic tape cartridge
JP3828534B2 (en) Method for manufacturing magnetic paint and magnetic recording medium
JP2000200412A (en) Magnetic recording medium
JP4335093B2 (en) Magnetic recording medium
JP2004103217A (en) Magnetic recording medium
JP2001266528A (en) Magnetic disk cartridge
JP2000231712A (en) Magnetic recording medium
KR100322819B1 (en) Magnetic recording medium
JP2001243622A (en) Flexible magnetic disk
JP3963327B2 (en) Magnetic recording medium
JP2001184625A (en) Magnetic disk
JPH11353634A (en) Magnetic recording medium
JP2007133939A (en) Magnetic recording medium
JP2005310219A (en) Magnetic tape

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040428

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070306