JP2001184334A - Method and device for finding solution of linear scheduling question - Google Patents

Method and device for finding solution of linear scheduling question

Info

Publication number
JP2001184334A
JP2001184334A JP36702799A JP36702799A JP2001184334A JP 2001184334 A JP2001184334 A JP 2001184334A JP 36702799 A JP36702799 A JP 36702799A JP 36702799 A JP36702799 A JP 36702799A JP 2001184334 A JP2001184334 A JP 2001184334A
Authority
JP
Japan
Prior art keywords
variable
solution
point method
interior point
constraints
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36702799A
Other languages
Japanese (ja)
Inventor
Tatsunobu Kokubo
達信 小久保
Kenichi Takada
健一 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
NEC Informatec Systems Ltd
Original Assignee
NEC Corp
NEC Informatec Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, NEC Informatec Systems Ltd filed Critical NEC Corp
Priority to JP36702799A priority Critical patent/JP2001184334A/en
Publication of JP2001184334A publication Critical patent/JP2001184334A/en
Pending legal-status Critical Current

Links

Landscapes

  • Complex Calculations (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for finding solution of linear scheduling question, with which an inner point method can be applied to a linear scheduling question having upper and lower limits without increasing limit conditions by inverting the upper and lower limits by suitably executing a variable conversion in a process for searching a solution. SOLUTION: When a variable having upper and lower limits gets close to the upper limit in the middle of calculating the solution on the basis of the inner point method, because of a limit in the inner point method, the solution can not be continuously calculated as it is. Then, by replacing the variable with a difference between an upper limit value in the definition region of the variable and the variable, the upper and lower limits are inverted and the calculation of the solution is continued while avoiding the limit of the inner point method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、線形計画問題にお
ける変数の上限下限制約技術に関し、特に上限下限制約
を持つ線形計画問題の内点法による求解方法および線形
計画問題求解装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for constraining upper and lower limits of variables in a linear programming problem, and more particularly to a method for solving a linear programming problem having upper and lower bound constraints by an interior point method and a device for solving a linear programming problem.

【0002】[0002]

【従来の技術】従来、変数が下限のみを持つ線形計画問
題の求解方法として、大別して、シンプレックス法と内
点法のいずれかが用いられている。特に問題の規模が大
きく、制約条件の係数の大部分が0(ゼロ)である場合
は、内点法の性能がシンプレックス法より優れていると
されている。また、変数が上限と下限の両方を持つ、上
限下限制約を持つ場合にはシンプレックス法が用いられ
ている。
2. Description of the Related Art Conventionally, either a simplex method or an interior point method has been used as a method for solving a linear programming problem in which a variable has only a lower limit. In particular, when the scale of the problem is large and most of the coefficients of the constraint condition are 0 (zero), the performance of the interior point method is considered to be superior to the simplex method. When a variable has both upper and lower limits and has upper and lower constraints, the simplex method is used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来技
術には以下に掲げる問題点があった。第1の問題点は、
有界な定義域を持つ変数を含む線形計画問題に内点法を
適用すると、計算時間と必要な記憶領域が増大してしま
う点である。その理由は、内点法は定義域として下限の
みを持つことを仮定する計算方式であり、上限を採り入
れるには、制約条件として上限自体を条件に追加しなけ
ればならず、有界な定義域を持つ変数の個数だけ制約条
件が増えてしまうからである。さらに、不等式の制約条
件であるため、それを等号制約条件に変換するため、同
じ個数のスラック変数を導入しなければならず、変数の
個数が増えてしまう点である。この2点のため、計算時
間と記憶領域が増大してしまう。
However, the prior art has the following problems. The first problem is
When the interior point method is applied to a linear programming problem including a variable having a bounded domain, a calculation time and a necessary storage area increase. The reason is that the interior point method is a calculation method that assumes that only the lower bound is defined as a domain.In order to adopt the upper bound, the upper bound itself must be added as a constraint to the bounded domain. This is because the number of constraints increases by the number of variables having. Furthermore, since it is an inequality constraint, the same number of slack variables must be introduced to convert it into an equality constraint, and the number of variables increases. These two points increase the calculation time and storage area.

【0004】第2の問題点は、問題規模や線形制約の性
質から内点法がシンプレックス法よりも有効な場合に
も、上限下限制約の存在により、内点法の有効性を発揮
できない点である。その理由は、第1の問題点の理由で
述べたように、上限下限制約の存在により、内点法がシ
ンプレックス法よりも計算時間と記憶領域が増大してし
まうからである。
[0004] The second problem is that even if the interior point method is more effective than the simplex method due to the problem scale and the nature of the linear constraint, the validity of the interior point method cannot be demonstrated due to the existence of upper and lower limit constraints. is there. The reason is that, as described for the reason of the first problem, the interior point method requires more calculation time and storage area than the simplex method due to the existence of the upper and lower limit constraints.

【0005】本発明は斯かる問題点を鑑みてなされたも
のであり、その目的とするところは、上限下限制約を持
つ線形計画問題に、解の探索の過程で適宜変数変換を実
行し、上限と下限を逆転することで、制約条件を増加さ
せることなく内点法を適用できる線形計画問題の求解方
法および線形計画問題求解装置を提供する点にある。
The present invention has been made in view of such a problem, and an object of the present invention is to appropriately perform variable conversion in a process of searching for a solution to a linear programming problem having upper and lower limit constraints, and It is an object of the present invention to provide a method for solving a linear programming problem and a device for solving a linear programming problem to which the interior point method can be applied without increasing the constraint conditions by reversing the lower limit.

【0006】[0006]

【課題を解決するための手段】請求項1に記載の発明の
要旨は、上限下限制約を持つ変数、当該変数の定義域の
上限値に対して、内点法により解の計算途中で前記変数
が上限に近づいたとき、当該変数の定義域の上限値と当
該変数との差に当該変数を置き換えて当該変数の上限と
下限とを逆転させ、内点法の限界を回避して解の計算を
続行することを特徴とする線形計画問題の求解方法に存
する。また、請求項2に記載の発明の要旨は、線形な制
約条件および上限下限制約条件の下で変数の線形関数で
与えられる目的関数を最小化してそのときの目的関数の
値を内点法により求めることを特徴とする線形計画問題
の求解方法に存する。また、請求項3に記載の発明の要
旨は、解の探索の過程で適宜変数変換を実行するととも
に、上限と下限を逆転することで、制約条件を増加させ
ることなく内点法を適用することを特徴とする線形計画
問題の求解方法に存する。また、請求項4に記載の発明
の要旨は、上限下限制約を持つ変数、当該変数の定義域
の上限値に対して、内点法により解の計算途中で前記変
数が上限に近づいたとき、当該変数の定義域の上限値と
当該変数との差に当該変数を置き換えて当該変数の上限
と下限とを逆転させ、内点法の限界を回避して解の計算
を続行する手段を有することを特徴とする線形計画問題
求解装置に存する。また、請求項5に記載の発明の要旨
は、線形な制約条件および上限下限制約条件の下で変数
の線形関数で与えられる目的関数を最小化してそのとき
の目的関数の値を内点法により求める手段を有すること
を特徴とする線形計画問題求解装置に存する。また、請
求項6に記載の発明の要旨は、解の探索の過程で適宜変
数変換を実行するとともに、上限と下限を逆転すること
で、制約条件を増加させることなく内点法を適用する手
段を有することを特徴とする線形計画問題求解装置に存
する。
The gist of the present invention is that a variable having upper and lower limit constraints and an upper limit value of a domain of the variable are calculated by the interior point method during solution calculation. When approaches the upper limit, the variable is replaced with the difference between the upper limit of the domain of the variable and the variable, the upper and lower limits of the variable are reversed, and the solution is calculated avoiding the limit of the interior point method. To solve a linear programming problem. The gist of the invention described in claim 2 is to minimize an objective function given by a linear function of a variable under linear constraints and upper and lower constraints, and to obtain a value of the objective function at that time by an interior point method. It is a method of solving a linear programming problem characterized by finding. In addition, the gist of the invention described in claim 3 is to apply the interior point method without increasing the constraint conditions by appropriately performing variable conversion in the process of searching for a solution and by inverting the upper and lower limits. It is a method of solving a linear programming problem characterized by the following. Further, the gist of the invention according to claim 4 is that when the variable approaches the upper limit in the middle of the calculation of the solution by the interior point method with respect to the variable having the upper and lower limit constraints and the upper limit of the domain of the variable. Have a means to replace the variable with the difference between the upper limit of the domain of the variable and the variable and to reverse the upper and lower limits of the variable, avoid the limit of the interior point method, and continue the solution calculation A linear programming problem solver characterized by the following. The gist of the invention described in claim 5 is that an objective function given by a linear function of a variable under linear constraints and upper and lower limits is minimized, and the value of the objective function at that time is determined by the interior point method. A linear programming problem solving device characterized by having means for obtaining the linear programming problem. The gist of the invention described in claim 6 is that a variable conversion is appropriately performed in the process of searching for a solution, and the interior point method is applied without increasing the constraints by inverting the upper and lower limits. A linear programming problem solving apparatus characterized by having:

【0007】[0007]

【発明の実施の形態】本発明では、上限下限制約を持つ
変数xj、当該変数xjの定義域の上限値ujに対し
て、内点法により解の計算途中で前記変数xjが上限に
近づいたとき、当該変数xjの定義域の上限値ujと当
該変数xjとの差uj−xjに当該変数xjを置き換え
て当該変数xjの上限と下限とを逆転させ、内点法の限
界を回避して解の計算を続行する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, for a variable xj having upper and lower limit constraints and an upper limit value uj of the domain of the variable xj, the variable xj approaches the upper limit during the calculation of the solution by the interior point method. Then, the variable xj is replaced with the difference uj−xj between the upper limit value uj of the domain of the variable xj and the variable xj, and the upper and lower limits of the variable xj are reversed to avoid the limit of the interior point method. Continue calculating the solution.

【0008】(内点法で扱う問題の形式)内点法では下
記のようにxの下限値が0になるように定式化された問
題を扱う。
(Problem Format Treated by Interior Point Method) In the interior point method, a problem formulated so that the lower limit of x becomes 0 as described below is handled.

【0009】[0009]

【数1】 (Equation 1)

【0010】ただし、Aはn次元ベクトルx=(x1,
x2,…,xn)Tに対するm個の制約条件を与えるm
×n行列である。改訂シンプレックス法で扱った
一般の線形計画問題はxの空間での平行移動とスラック
変数の導入により、式(3.6.1)の形にすることが
できる。なお、内点法に分類されるアルゴリズムには多
くの種類があるが、本発明ではアフィン変換を用いた方
法を利用する。
Where A is an n-dimensional vector x = (x1,
x2,..., xn) m that gives m constraints on T
× n matrix. The general linear programming problem dealt with by the revised simplex method can be transformed into the form of Equation (3.6.1) by translating in the space of x and introducing slack variables. Although there are many types of algorithms classified as the interior point method, the present invention uses a method using affine transformation.

【0011】(内点法における最適解の探索)シンプレ
ックス法が実行可能領域Sの頂点に当たる、実行可能基
底解の中から最適解を探索するのに対し、内点法では実
行可能領域の内部から出発して、目的関数を減少させる
方向に解を変化させながら最適解を探索する。
(Search for the Optimal Solution in the Inner Point Method) The simplex method searches for an optimal solution from among the feasible base solutions that correspond to the vertices of the feasible region S. As a starting point, an optimal solution is searched for while changing the solution in a direction to reduce the objective function.

【0012】いまx(k)が実行可能解であるとき、x
(k+1)=x(k)+td(k)が実行可能、かつc
Tx(k+1)<cTx(k)を満たすベクトルd
(k)のうちで、目的関数の減少率がもっとも大きくな
るベクトルd(k)の方向を検索する。ここでtをステ
ップサイズと呼ぶ。もし、制約条件を考慮しなければ、
目的関数の値c・xをもっとも減少させる方向は−cの
方向であるである。実際は、制約条件Ax(k+1)=
A(x(k)+td(k))=bを満たす必要があるか
ら、d(k)の方向としては−cをSの部分空間{x|
Ax=0}に射影したものを取れば良い。
When x (k) is a feasible solution, x
(K + 1) = x (k) + td (k) is executable and c
Vector d satisfying Tx (k + 1) <cTx (k)
Among (k), the direction of the vector d (k) at which the reduction rate of the objective function is the largest is searched. Here, t is called a step size. If you do not consider the constraints,
The direction in which the value c · x of the objective function is reduced most is the direction of −c. Actually, the constraint condition Ax (k + 1) =
Since it is necessary to satisfy A (x (k) + td (k)) = b, as the direction of d (k), −c is set to the subspace of S × x |
What is necessary is just to take what is projected to Ax = 0 °.

【0013】(ビッグM法)内点法により最適解を探索
するためには、探索の出発点として実行可能領域の内点
すなわち、実行可能領域の内部にあって、境界上にない
初期解が必要である。しかしながら、このような初期解
x(0)を求めるのは自明なことではない。そこで、本
発明では、ビッグM法と呼ばれる方法を用いて実行可能
解の計算と最適解の計算を同時に行うようにしている。
まず人為変数
(Big M Method) In order to search for an optimal solution by the interior point method, an initial point within the executable region, ie, inside the executable region but not on the boundary, is used as a starting point of the search. is necessary. However, finding such an initial solution x (0) is not obvious. Therefore, in the present invention, the calculation of the feasible solution and the calculation of the optimal solution are performed simultaneously using a method called the Big M method.
First, artificial variables

【0014】[0014]

【数2】 (Equation 2)

【0015】を導入して、以下のような変数n+mの線
形計画問題を定式化する。
Is introduced to formulate a linear programming problem of the following variable n + m.

【0016】[0016]

【数3】 (Equation 3)

【0017】[0017]

【数4】 (Equation 4)

【0018】で定義しておけば、[0018]

【0019】[0019]

【数5】 (Equation 5)

【0020】は、明らかに式(3.6.2)の実行可能
解である。パラメータMを十分大きな正数に取っておけ
ば、人為変数x’=(x’1,x’2,…,x’m)T
(式(3.6.2)参照)の目的関数を内点法の手続き
によって減少させて行くとき、まず、人為変数の項M
x’が速やかに0に近づく。このことは、各人為変数が
急速に0に近づくことを意味する。各人為変数が十分に
0に近ければ、式(3.6.2)の実行可能解の人為変
数を除いた部分は式(3.6.1)の実行可能解とみな
せる。さらに目的関数を減少させて行くと、今度はcT
xの項が減少して行くので、最終的に式(3.6.2)
の最適解の人為変数を除いた部分は、式(3.6.1)
の実行可能な最適解になる。なお、式(3.6.2)の
最適解において人為変数が十分に0に近づいていないと
き、すなわち与えられた小さな正数ε Aに対して
Is clearly feasible for equation (3.6.2)
It is a solution. Set the parameter M to a sufficiently large positive number
For example, the artificial variable x '= (x'1, x'2, ..., x'm) T
(See Equation (3.6.2))
, First, the artificial variable term M
x 'quickly approaches 0. This means that each artificial variable
It means that it approaches 0 rapidly. Each artificial variable is enough
If it is close to 0, the feasible solution of equation (3.6.2)
The part excluding the number is regarded as a feasible solution of equation (3.6.1).
Let When the objective function is further reduced, cT
Since the term of x decreases, finally the equation (3.6.2)
The part of the optimal solution of excluding the artificial variables is given by Equation (3.6.1)
Is a feasible optimal solution of It should be noted that the equation (3.6.2)
If the artificial variable is not close enough to 0 in the optimal solution
I.e., given a small positive number ε AAgainst

【0021】[0021]

【数6】 (Equation 6)

【0022】であるとき問題、式(3.6.1)は実行
不可能であったと判定する。以下の説明では、式(3.
6.1)にはすでに人為変数を組み入れてあるものとす
る。
If so, it is determined that equation (3.6.1) was not executable. In the following description, the expression (3.
It is assumed that 6.1) already incorporates artificial variables.

【0023】(アフィン変換による探索方向の決定)上
記の最適解の探索方向の決定方法では、x(k)がSの
中央付近にある場合はステップサイズtを十分大きく取
れるため、目的関数の値を大きく減少させることができ
るが、x(k)がSの境界付近にある場合、ステップサ
イズを大きく取ることができないため、目的関数を十分
に減少させられない。そこで変数xに対する変換を行っ
て現在の解x(k)が変換先の空間における実行可能領
域の境界から十分離れるようにしてから、目的関数を大
きく減少させるように解を更新し、そうして得られた変
換先の空間での新しい解に対して逆変換を行ってx(k
+1)とする。この目的のために、現在の解x(k)に
対して定義される対角行列
(Determination of Search Direction by Affine Transformation) In the above-described method for determining the search direction of the optimal solution, when x (k) is near the center of S, the step size t can be made sufficiently large. Can be greatly reduced, but when x (k) is near the boundary of S, the objective function cannot be sufficiently reduced because the step size cannot be large. Then, the transformation is performed on the variable x so that the current solution x (k) is sufficiently separated from the boundary of the executable region in the transformation destination space, and then the solution is updated so as to greatly reduce the objective function. Inverse transformation is performed on the obtained new solution in the transformation destination space to obtain x (k
+1). For this purpose, a diagonal matrix defined for the current solution x (k)

【0024】[0024]

【数7】 (Equation 7)

【0025】によりアフィン変換Affine transformation

【0026】[0026]

【数8】 (Equation 8)

【0027】を行う。変換先の空間においてx(k)が
つねに(1,1,…,1)Tに移されることは明らかで
ある。yの空間においてもとの線形計画問題は次のよう
に表される。
Is performed. Obviously, x (k) is always moved to (1,1, ..., 1) T in the destination space. The original linear programming problem in the space of y is expressed as follows.

【0028】[0028]

【数9】 (Equation 9)

【0029】[0029]

【数10】 (Equation 10)

【0030】で与えられるので、探索方向はThe search direction is given by

【0031】[0031]

【数11】 [Equation 11]

【0032】となるが、これはもとの変数での探索方向
d(k)とは、
Where the search direction d (k) in the original variable is

【0033】[0033]

【数12】 (Equation 12)

【0034】という関係を持っているので、結局、もと
の空間における探索方向は
In the end, the search direction in the original space is

【0035】[0035]

【数13】 (Equation 13)

【0036】で与えられる。この式には逆行列の計算が
含まれているが、実際の計算では、まず連立1次方程式
Is given by This formula includes the calculation of the inverse matrix, but in the actual calculation, first, the simultaneous linear equations

【0037】[0037]

【数14】 [Equation 14]

【0038】を解いて、w(k)を求めTo solve for w (k)

【0039】[0039]

【数15】 (Equation 15)

【0040】として探索方向d(k)を定めることがで
きる。
The search direction d (k) can be determined as

【0041】(ステップサイズの決定)上記のように定
められた探索方向d(k)により与えられる直線x
(k)+td(k)(t≧0)上の点は線形制約条件
(Determination of Step Size) A straight line x given by the search direction d (k) determined as described above
Points on (k) + td (k) (t ≧ 0) are linear constraints

【0042】[0042]

【数16】 (Equation 16)

【0043】を満たし、かつ目的関数はステップサイズ
の増加に対して単調に減少する。しかし、変数の定義域
0≦t≦uの外に出ることは許されないので、ステップ
サイズtの取りうる最大値は
And the objective function decreases monotonically with increasing step size. However, since it is not allowed to go outside the domain of variables 0 ≦ t ≦ u, the maximum value that the step size t can take is

【0044】[0044]

【数17】 [Equation 17]

【0045】となる。実際には、実行可能領域の境界に
達してしまうと、これ以上探索を続けることができない
ので、0<α<1を満たすパラメータαを用いて、
Is as follows. Actually, when the boundary of the executable area is reached, the search cannot be continued any more. Therefore, using the parameter α satisfying 0 <α <1,

【0046】[0046]

【数18】 (Equation 18)

【0047】がx(k)に対するステップサイズとな
り、新しい解は、
Is the step size for x (k), and the new solution is

【0048】[0048]

【数19】 で与えられる。[Equation 19] Given by

【0049】(変数の上限と下限の入れ替え)内点法に
おいて最適解の探索の途中で、いずれかの変数が下限に
近づいた場合に前述のアフィン変換は有効であるが、変
数が上限に近づいた場合は同じ方法は用いることができ
ない。そこで、本発明では変数xjがその上限ujに近
づくと以下のような変換を行って変数の上限と下限を入
れ替える。
(Replacement of upper limit and lower limit of variables) In the interior point method, if any of the variables approaches the lower limit during the search for the optimal solution, the affine transformation is effective, but the variable approaches the upper limit. In such a case, the same method cannot be used. Therefore, in the present invention, when the variable xj approaches its upper limit uj, the following conversion is performed to exchange the upper and lower limits of the variable.

【0050】[0050]

【数20】 (Equation 20)

【0051】(制約条件に対する残差のチェック)最適
解の探索のための反復計算を繰り返すうちに、計算誤差
のため制約条件に対する残差‖Ax−b‖が大きくなっ
てしまうことがある。いったん残差が大きくなってしま
うと、それ以降の計算は意味をなさない。これを防ぐた
め、反復回数のl回ごとに与えられた正数εrに対して
(Check of Residual for Constraint Condition) As the iterative calculation for searching for an optimal solution is repeated, the residual {Ax-b} for the constraint condition may increase due to a calculation error. Once the residuals are large, subsequent calculations are useless. To prevent this, for a positive number εr given every l iterations,

【0052】[0052]

【数21】 (Equation 21)

【0053】が満たされているかどうかをチェックし、
満たされていなければ
Check whether or not
If not

【0054】[0054]

【数22】 (Equation 22)

【0055】を初期解として問題、式(3.6.2)のWith the initial solution as the problem, the problem (3.6.2)

【0056】[0056]

【数23】 (Equation 23)

【0057】を再計算して最適解の探索を始めからやり
直す。
Is recalculated, and the search for the optimum solution is restarted from the beginning.

【0058】(収束の判定)(Convergence determination)

【0059】[0059]

【数24】 (Equation 24)

【0060】を満たした時、x(k)は最適解に収束し
たものとみなす。εcは収束判定のためのパラメータで
ある。
When the condition is satisfied, x (k) is regarded as having converged to the optimal solution. εc is a parameter for determining convergence.

【0061】次に、本発明の実施の形態について図面を
参照して詳細に説明する。図1は本発明の一実施の形態
に係る線形計画問題求解装置の構成および動作を説明す
るための機能ブロック図である。
Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a functional block diagram for explaining the configuration and operation of a linear programming problem solving device according to an embodiment of the present invention.

【0062】図1を参照すると、本実施の形態では、線
形計画問題入力部A1において、解こうとする線形計画
問題の変数の個数n、制約条件の個数m、目的関数の係
数c、制約条件の係数Aと定数b、変数の定義域の上限
値u、ビッグ−M法のパラメータM、収束判定のパラメ
ータεc、実行可能性判定のパラメータεA、ステップ
サイズの決定用パラメータα、最大反復回数nevを入
力して、記憶手段B1に格納する。
Referring to FIG. 1, in this embodiment, in the linear programming problem input unit A1, the number n of variables of the linear programming problem to be solved, the number m of constraints, the coefficient c of the objective function, the constraint c A and constant b, the upper limit value u of the domain of the variable, the parameter M of the Big-M method, the parameter εc of the convergence determination, the parameter εA of the feasibility determination, the parameter α for determining the step size, the maximum number of iterations nev Is input and stored in the storage means B1.

【0063】初期値決定部A2において変数x=(x
1,x2,…,xn)の初期値として、上限値の0.5
倍の値を設定して記憶手段B2に格納する。また、変数
x1,x2,…,xnに対応する作業用情報p1,p2,
…,pnの値をすべて1に設定して、記憶手段B2に格
納する。反復回数kの値を1に設定して、記憶手段B1
に格納する。
In the initial value determining unit A2, the variable x = (x
1, x2, ..., xn), the upper limit of 0.5
The double value is set and stored in the storage means B2. Also, work information p1, p2, corresponding to variables x1, x2,.
, Pn are all set to 1 and stored in the storage means B2. The value of the number of repetitions k is set to 1 and the storage means B1
To be stored.

【0064】人為変数導入部A3において、記憶手段B
1より、変数の個数n、制約条件の個数mを、記憶手段
B2から変数x=(x1,x2,…,xn)を取り出
し、人為変数xn+i(i=1,2,…,n)の値をす
べて1に設定して記憶手段B2に格納し、人為変数xn
+i(i=1,2,…,n)に対応して、制約条件の係
数A=(aij)にm個の列を追加して、記憶手段C1
に格納する。このとき追加した部分の値は
In the artificial variable introducing unit A3, the storage means B
1, the number n of variables and the number m of constraints are extracted from the storage means B2, and the variable x = (x1, x2,..., Xn) is extracted from the storage means B2, and the value of the artificial variable xn + i (i = 1, 2,. Are set to 1 and stored in the storage means B2, and the artificial variable xn
+ I (i = 1, 2,..., N), adding m columns to the constraint condition coefficient A = (aij),
To be stored. The value of the part added at this time is

【0065】[0065]

【数25】 (Equation 25)

【0066】となる。また目的関数の係数cの人為変数
に対応する部分cn+1,cn+2,…,cn+mの値
をMに設定して記憶手段B1に格納する。
Is obtained. The value of the part cn + 1, cn + 2,..., Cn + m corresponding to the artificial variable of the coefficient c of the objective function is set to M and stored in the storage means B1.

【0067】作業ベクトル計算部A4において、記憶手
段B1より、変数の個数n、制約条件の個数m、制約条
件の係数A、目的関数の係数cおよび変数x=(x1,
x2,…,xn,xn+1,…,xn+m)を取り出し
て、n+m次の連立1次方程式
In the work vector calculation section A4, the number of variables n, the number of constraints m, the coefficient A of the constraint, the coefficient c of the objective function, and the variable x = (x1,
x2,..., xn, xn + 1,..., xn + m)

【0068】[0068]

【数26】 (Equation 26)

【0069】の解である作業ベクトルwを計算して、記
憶手段B1に格納する。ここで、Dは第i行の対角成分
が変数xiの値になっているn+m次の対角行列であ
る。
The work vector w, which is the solution of the above, is calculated and stored in the storage means B1. Here, D is an (n + m) th-order diagonal matrix in which the diagonal components of the i-th row are the values of the variables xi.

【0070】探索方向決定部A5において、記憶手段B
1より、変数の個数n、制約条件の個数m、制約条件の
係数Aと定数b、目的関数の係数c、作業ベクトルwを
取り出して、探索方向を計算式
In search direction determining section A5, storage means B
The number of variables n, the number m of constraints, the coefficient A and the constant b of the constraints, the coefficient c of the objective function, and the work vector w are extracted from Equation 1, and the search direction is calculated.

【0071】[0071]

【数27】 [Equation 27]

【0072】により計算して、記憶手段B1に格納す
る。
Is calculated and stored in the storage means B1.

【0073】最大ステップサイズ決定部A6において、
記憶手段B1より変数の個数n、制約条件の個数m、変
数x1,x2,…,xn,xn+1,xn+m、変数の
上限u=(u1,u2,…,un)、探索方向d=(d
1,d2,…,dn)を取り出し、最大ステップサイズ
tmaxを
In the maximum step size determining unit A6,
The number n of variables, the number m of constraints, the variables x1, x2,..., Xn, xn + 1, xn + m, the upper limit u of variables (u1, u2,..., Un) and the search direction d = (d
1, d2,..., Dn) and extract the maximum step size tmax

【0074】[0074]

【数28】 [Equation 28]

【0075】により決定して、記憶手段B1に格納す
る。
Then, it is stored in the storage means B1.

【0076】解更新部A7において、記憶手段B1より
変数の個数n、制約条件の個数m、探索方向d=(d
1,d2,…,dn+m)、最大ステップサイズtma
x、ステップサイズの決定用パラメータαを取り出し、
記憶手段B2に格納された変数x=(x1,x2,…,
xn,xn+1,xn+m)の値を
In the solution updating unit A7, the number of variables n, the number of constraints, and the search direction d = (d
1, d2, ..., dn + m), maximum step size tma
x, the parameter α for determining the step size is taken out,
The variable x = (x1, x2,..., Stored in the storage means B2.
xn, xn + 1, xn + m)

【0077】[0077]

【数29】 (Equation 29)

【0078】により更新し、更新した変数x’を記憶手
段B3に格納する。
The updated variable x 'is stored in the storage means B3.

【0079】収束判定部A8において、記憶手段B1よ
り変数の個数n、制約条件の個数m、収束判定のパラメ
ータεcを、記憶手段B2より更新前の変数xを、記憶
手段B3より更新後の変数x’を取り出し、条件
In the convergence judging unit A8, the number n of variables, the number m of constraints, and the parameter εc of convergence judgment are stored in the storage unit B1, the variable x before the update from the storage unit B2, and the variable x after the update in the storage unit B3. Take out x 'and condition

【0080】[0080]

【数30】 [Equation 30]

【0081】を満たせば解修正部A11において処理を
続け、条件を満たさない場合は記憶手段B2に格納され
た変数xの値を記憶手段B3に格納された更新後の変数
x’の値で置き換え、上限下限反転処理部A9において
処理を続ける。
If the condition is satisfied, the processing is continued in the solution correcting unit A11. If the condition is not satisfied, the value of the variable x stored in the storage means B2 is replaced with the value of the updated variable x 'stored in the storage means B3. The processing is continued in the upper and lower limit inversion processing section A9.

【0082】上限下限反転処理部A9において、記憶手
段B1より変数の個数n、制約条件の個数m、制約条件
の係数Aと定数b、上下限反転のパラメータgを、記憶
手段B2より変数x1,x2,…,xnを取り出し、
In the upper / lower limit inversion processor A9, the number n of variables, the number m of constraints, the coefficient A and the constant b of the constraint, and the parameter g of upper / lower inversion are stored in the storage unit B2 as variables x1, x2, ..., xn

【0083】[0083]

【数31】 (Equation 31)

【0084】を満たす変数xjが存在しなければ、反復
回数判定部A10で処理を続ける。そのような変数xj
が存在する場合には記憶手段B1に格納された制約条件
の係数aijと定数bjおよび反復回数kを
If there is no variable xj that satisfies the condition, the process is continued by the repetition number determination unit A10. Such a variable xj
Exists, the coefficient aij, the constant bj, and the number of iterations k of the constraint condition stored in the storage means B1 are

【0085】[0085]

【数32】 (Equation 32)

【0086】のように、記憶手段B2に格納された変数
xj、作業用情報pjを
As described above, the variable xj and the work information pj stored in the storage means B2 are

【0087】[0087]

【数33】 [Equation 33]

【0088】のように置き換え、人為変数導入部A3に
おいて処理を続ける。
The processing is continued in the artificial variable introducing unit A3 as described above.

【0089】反復回数判定部A10において記憶手段B
1から反復回数kと最大反復回数nevを取り出し、反
復回数kの値が最大反復回数nevの値に等しければ、
最適解が得られる前に反復回数が最大反復回数nevの
値に達したことを出力手段B4に表示して、処理を中止
する。そうでない場合は記憶手段B1に格納された反復
回数kの値を
The storage means B in the repetition number determination section A10
The number of repetitions k and the maximum number of repetitions nov are extracted from 1 and if the value of the number of repetitions k is equal to the value of the maximum number of repetitions nev,
Before the optimal solution is obtained, the fact that the number of iterations has reached the value of the maximum number of iterations nev is displayed on the output means B4, and the processing is stopped. Otherwise, the value of the number of repetitions k stored in the storage means B1 is

【0090】[0090]

【数34】 (Equation 34)

【0091】のように更新して作業ベクトル計算部A4
において処理を続ける。
The work vector calculation unit A4
The processing is continued in.

【0092】解修正部A11において記憶手段B1から
変数の個数n、制約条件の個数m、目的関数の係数c
1,c2,…,cn、上限をu1,u2,…,un、記
憶手段B2から変数x1,x2,…,xn、作業用情報
p1,p2,…,pnを取り出し、pj=−1である変
数xjについて記憶手段B2に格納された変数xjの値
In the solution correcting unit A11, the number of variables n, the number of constraints m, the coefficient of the objective function c
, Cn, the upper limit is u1, u2,..., Un, the variables x1, x2,..., Xn and the work information p1, p2,. For the variable xj, the value of the variable xj stored in the storage means B2 is

【0093】[0093]

【数35】 (Equation 35)

【0094】のように置き換える。この置き換えが終わ
った時点での記憶手段B2に格納されている変数x1,
x2,…,xnを出力手段B4に表示する。また対応す
る目的関数cTxの値を出力手段B4に表示する。
Is replaced as follows. At the time when this replacement is completed, the variables x1,
.., xn are displayed on the output means B4. The corresponding value of the objective function cTx is displayed on the output means B4.

【0095】次に、本実施の形態について図面を参照し
て詳細に説明する。図2は本発明の一実施の形態に係る
線形計画問題の求解方法を説明するための問題例であ
る。
Next, this embodiment will be described in detail with reference to the drawings. FIG. 2 is a problem example for explaining a method of solving a linear programming problem according to one embodiment of the present invention.

【0096】図2を参照すると、問題(a)は制約条件
(1)および上限下限制約条件(2)のもとで目的関数
(3)を最小にするx=(x1,x2,…,xn)の値
x*を求める問題である。従来の内点法では問題(b)
の(4)のように変数の上限値を制約条件(1)に組み
込む形でしか扱うことができないため、制約条件(1)
の個数が増える。さらに、不等式制約条件(2)や
(5)を等式制約条件(3)や(6)に変換するため
に、スラック変数x6,x7,x8,x9,x10を導
入することになり、変数の個数も増やすことになる。
Referring to FIG. 2, the problem (a) is that x = (x1, x2,..., Xn) that minimizes the objective function (3) under the constraint (1) and the upper and lower limit constraints (2). ) Is a problem to obtain the value x *. Problem (b) with the conventional interior point method
Since the upper limit value of the variable can only be handled by incorporating it into the constraint condition (1) as in (4), the constraint condition (1)
Increases. Furthermore, slack variables x6, x7, x8, x9 and x10 are introduced to convert the inequality constraints (2) and (5) into the equality constraints (3) and (6). The number will also increase.

【0097】次に本実施の形態の動作について、図2、
図3および図4を参照して詳細に説明する。図3は図2
の線形計画問題の求解方法における動作1を示し、図4
は図2の線形計画問題の求解方法における動作2を示し
ている。
Next, the operation of this embodiment will be described with reference to FIG.
This will be described in detail with reference to FIGS. FIG. 3 is FIG.
4 shows the operation 1 in the method for solving the linear programming problem of FIG.
Shows operation 2 in the method for solving the linear programming problem in FIG.

【0098】問題(a)は制約条件(1)および上限下
限制約条件(2)のもとで目的関数(3)を最小にする
問題である。また問題(b)は問題(a)を内点法で扱
えるように書き換えたものである。まず変数の定義域
(2)として下限のみ設定できるので、上限の方は制約
条件(1)に付け加える必要がある。しかも、上限を与
える制約条件(1)は不等式であるが、内点法で扱える
制約条件(1)は等式でなければならないので、この不
等式を等価な等式に置き換えるために、スラック変数を
導入する必要がある。
The problem (a) is a problem for minimizing the objective function (3) under the constraint condition (1) and the upper and lower limit constraint conditions (2). The problem (b) is obtained by rewriting the problem (a) so that it can be handled by the interior point method. First, since only the lower limit can be set as the domain (2) of the variable, the upper limit needs to be added to the constraint (1). In addition, the constraint (1) that gives the upper limit is an inequality, but the constraint (1) that can be handled by the interior point method must be an equation, so that in order to replace this inequality with an equivalent equation, Need to be introduced.

【0099】本実施の形態の問題(a)を実施の形態に
したがって解く際、実施の形態の上限下限反転処理部A
9の処理を省略すると、図3に示すように5回目の解の
更新の後、変数が上限値1に近づいたため、最適解に到
達する前に解が更新されなくなってしまう。それに対し
て、図4では実施の形態の図1の上限下限反転処理部A
9の処理を行った場合の計算の経過を示しているが、2
回目の解の更新の後、x1の上限下限を反転し、4回目
の解の更新の後、x4およびx5の上限下限を反転して
20回目の更新で最適解に到達している。なお、ここで
x6,x7,x8は必ずしも制約条件(1)を満たさな
い初期解から出発して、制約条件(1)を満たす最適解
に到達するためのビッグ−M法の計算のために導入した
人為変数である。
When solving the problem (a) of the present embodiment according to the embodiment, the upper and lower limit inversion processing unit A of the embodiment is used.
If the process of step 9 is omitted, as shown in FIG. 3, after the fifth update of the solution, the variable approaches the upper limit value 1, so that the solution is not updated before reaching the optimal solution. On the other hand, in FIG. 4, the upper and lower limit inversion processing unit A of FIG.
9 shows the progress of the calculation in the case where the processing of No. 9 is performed.
After updating the solution for the fourth time, the upper and lower limits of x1 are inverted, and after updating the solution for the fourth time, the upper and lower limits of x4 and x5 are inverted to reach the optimal solution by the twentieth update. Here, x6, x7, and x8 are introduced from the initial solution that does not always satisfy the constraint condition (1) for the calculation of the Big-M method for reaching the optimal solution that satisfies the constraint condition (1). This is an artificial variable.

【0100】以上説明したように本実施の形態によれ
ば、内点法により解の計算途中で、上限下限制約を持つ
変数xjが当該変数xjの定義域の上限値ujに近づい
たとき、内点法の限界で、そのままでは、解の計算が続
けられなくなるという問題点を解決するために、当該変
数xjの定義域の上限値ujと当該変数xjとの差uj
−xjに当該変数xjを置き換えることにより、上限と
下限を逆転させ、内点法の限界を回避して解の計算を続
行する。すなわち、上限下限制約を持つ線形計画問題の
内点法による求解方法において、解の探索の過程で適宜
変数変換を実行し、上限と下限を逆転することで、制約
条件を増加させることなく、内点法を適用することがで
きるようになる。その結果、内点法の限界を回避して計
算を続けることができるようになるといった効果を奏す
る。
As described above, according to the present embodiment, when the variable xj having the upper and lower limit constraints approaches the upper limit value uj of the domain of the variable xj during the calculation of the solution by the interior point method, In order to solve the problem that the calculation of the solution cannot be continued as it is at the limit of the point method, the difference uj between the upper limit value uj of the domain of the variable xj and the variable xj is determined.
By replacing the variable xj with −xj, the upper and lower limits are reversed, and the calculation of the solution is continued while avoiding the limit of the interior point method. In other words, in a method for solving a linear programming problem having upper and lower bound constraints by the interior point method, variable transformation is appropriately performed in the process of searching for a solution, and the upper and lower limits are reversed, thereby increasing the inner constraints without increasing the constraints. The point method can be applied. As a result, there is an effect that the calculation can be continued while avoiding the limit of the interior point method.

【0101】なお、本発明が上記実施の形態に限定され
ず、本発明の技術思想の範囲内において、上記実施の形
態は適宜変更され得ることは明らかである。また上記構
成部材の数、位置、形状等は上記実施の形態に限定され
ず、本発明を実施する上で好適な数、位置、形状等にす
ることができる。また、各図において、同一構成要素に
は同一符号を付している。
It should be noted that the present invention is not limited to the above embodiment, and it is apparent that the above embodiment can be appropriately modified within the scope of the technical idea of the present invention. Further, the number, position, shape, and the like of the constituent members are not limited to the above-described embodiment, and can be set to numbers, positions, shapes, and the like suitable for carrying out the present invention. In each drawing, the same components are denoted by the same reference numerals.

【0102】[0102]

【発明の効果】本発明は以上のように構成されているの
で、変数が上限と下限を持ち、制約条件の係数を与える
行列すなわち係数行列が大規模、かつ疎行列である線形
計画問題について、内点法を用いて効果的に最適解を計
算できるようになるといった効果を奏する。その理由
は、係数行列が大規模かつ疎行列である場合には内点法
がシンプレックス法に比べて効果的であり、さらに本発
明により、変数の上限を制約条件を増やすことなく導入
できるからである。
Since the present invention is constructed as described above, for a linear programming problem in which variables have upper and lower limits and the coefficients which provide the coefficients of the constraints, that is, the coefficient matrix is a large-scale and sparse matrix, The advantage is that the optimal solution can be calculated effectively using the interior point method. The reason is that the interior point method is more effective than the simplex method when the coefficient matrix is large and sparse, and furthermore, the present invention allows the upper limit of variables to be introduced without increasing constraints. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態に係る線形計画問題求解
装置の構成および動作を説明するための機能ブロック図
である。
FIG. 1 is a functional block diagram for explaining the configuration and operation of a linear programming problem solving device according to an embodiment of the present invention.

【図2】本発明の一実施の形態に係る線形計画問題の求
解方法を説明するための問題例である。
FIG. 2 is an example of a problem for explaining a method for solving a linear programming problem according to an embodiment of the present invention.

【図3】図2の線形計画問題の求解方法における動作1
を示している。
3 is an operation 1 in the method for solving a linear programming problem in FIG. 2;
Is shown.

【図4】図2の線形計画問題の求解方法における動作2
を示している。
4 is an operation 2 in the method for solving the linear programming problem in FIG. 2;
Is shown.

【符号の説明】[Explanation of symbols]

A1…線形計画問題入力部 A2…初期値決定部 A3…人為変数導入部 A4…作業ベクトル計算部 A5…探索方向決定部 A6…最大ステップサイズ決定部 A7…解更新部 A8…収束判定部 A9…上限下限反転処理部 A10…反復回数判定部 A11…解修正部 B1,B2,B3,C1…記憶手段 B4…出力手段 A1: Linear programming problem input unit A2: Initial value determination unit A3: Artificial variable introduction unit A4: Work vector calculation unit A5: Search direction determination unit A6: Maximum step size determination unit A7: Solution update unit A8: Convergence determination unit A9 ... Upper / lower limit inversion processing unit A10: Iterative number determination unit A11: Solution correction unit B1, B2, B3, C1 ... Storage means B4 ... Output means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高田 健一 神奈川県川崎市高津区坂戸3−2−1 株 式会社エヌイーシー情報システムズ内 Fターム(参考) 5B056 AA00 BB37 BB92 HH00  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kenichi Takada 3-2-1 Sakado, Takatsu-ku, Kawasaki-shi, Kanagawa F-term in NEC Information Systems Co., Ltd. 5B056 AA00 BB37 BB92 HH00

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 上限下限制約を持つ変数、当該変数の定
義域の上限値に対して、内点法により解の計算途中で前
記変数が上限に近づいたとき、当該変数の定義域の上限
値と当該変数との差に当該変数を置き換えて当該変数の
上限と下限とを逆転させ、内点法の限界を回避して解の
計算を続行することを特徴とする線形計画問題の求解方
法。
1. A variable having upper and lower limits, and an upper limit of a domain of the variable when the variable approaches an upper limit during calculation of a solution by an interior point method with respect to an upper limit of a domain of the variable. A method for solving a linear programming problem, characterized in that the variable is replaced by the difference between the variable and the variable, the upper and lower limits of the variable are reversed, and the calculation of the solution is continued while avoiding the limit of the interior point method.
【請求項2】 線形な制約条件および上限下限制約条件
の下で変数の線形関数で与えられる目的関数を最小化し
てそのときの目的関数の値を内点法により求めることを
特徴とする線形計画問題の求解方法。
2. A linear program characterized by minimizing an objective function given by a linear function of a variable under a linear constraint condition and upper and lower limit constraints and obtaining a value of the objective function at that time by an interior point method. How to solve the problem.
【請求項3】 解の探索の過程で適宜変数変換を実行す
るとともに、上限と下限を逆転することで、制約条件を
増加させることなく内点法を適用することを特徴とする
線形計画問題の求解方法。
3. A linear programming problem characterized by applying an interior point method without increasing constraints by performing variable transformations as appropriate in the process of searching for a solution and inverting upper and lower limits. Solution method.
【請求項4】 上限下限制約を持つ変数、当該変数の定
義域の上限値に対して、内点法により解の計算途中で前
記変数が上限に近づいたとき、当該変数の定義域の上限
値と当該変数との差に当該変数を置き換えて当該変数の
上限と下限とを逆転させ、内点法の限界を回避して解の
計算を続行する手段を有することを特徴とする線形計画
問題求解装置。
4. An upper limit value of a variable having an upper / lower limit and an upper limit value of a domain of the variable when the variable approaches an upper limit during calculation of a solution by an interior point method with respect to an upper limit value of a domain of the variable. Solving the linear programming problem by replacing the variable with the difference between the variable and the variable, inverting the upper and lower limits of the variable, and avoiding the limit of the interior point method and continuing the calculation of the solution. apparatus.
【請求項5】 線形な制約条件および上限下限制約条件
の下で変数の線形関数で与えられる目的関数を最小化し
てそのときの目的関数の値を内点法により求める手段を
有することを特徴とする線形計画問題求解装置。
5. A method for minimizing an objective function given by a linear function of a variable under linear constraints and upper and lower limits, and obtaining a value of the objective function at that time by an interior point method. To solve linear programming problems.
【請求項6】 解の探索の過程で適宜変数変換を実行す
るとともに、上限と下限を逆転することで、制約条件を
増加させることなく内点法を適用する手段を有すること
を特徴とする線形計画問題求解装置。
6. The method according to claim 1, further comprising the step of executing variable conversion as needed in the process of searching for a solution and inverting the upper and lower limits to apply the interior point method without increasing constraints. Planning problem solver.
JP36702799A 1999-12-24 1999-12-24 Method and device for finding solution of linear scheduling question Pending JP2001184334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36702799A JP2001184334A (en) 1999-12-24 1999-12-24 Method and device for finding solution of linear scheduling question

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36702799A JP2001184334A (en) 1999-12-24 1999-12-24 Method and device for finding solution of linear scheduling question

Publications (1)

Publication Number Publication Date
JP2001184334A true JP2001184334A (en) 2001-07-06

Family

ID=18488286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36702799A Pending JP2001184334A (en) 1999-12-24 1999-12-24 Method and device for finding solution of linear scheduling question

Country Status (1)

Country Link
JP (1) JP2001184334A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7689528B2 (en) 2004-07-09 2010-03-30 Fair Isaac Corporation Method and apparatus for a scalable algorithm for decision optimization
WO2019224954A1 (en) 2018-05-23 2019-11-28 三菱電機株式会社 Linear programming problem solving system, solution candidate calculation device, optimal solution calculation device, thruster control device for spacecraft, flying object control device, and linear programming problem solving method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05128093A (en) * 1991-11-06 1993-05-25 Hitachi Ltd Method and device for optimizing combination
JPH11259450A (en) * 1998-03-09 1999-09-24 Hitachi Ltd Optimal output deciding method and device therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05128093A (en) * 1991-11-06 1993-05-25 Hitachi Ltd Method and device for optimizing combination
JPH11259450A (en) * 1998-03-09 1999-09-24 Hitachi Ltd Optimal output deciding method and device therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7689528B2 (en) 2004-07-09 2010-03-30 Fair Isaac Corporation Method and apparatus for a scalable algorithm for decision optimization
WO2019224954A1 (en) 2018-05-23 2019-11-28 三菱電機株式会社 Linear programming problem solving system, solution candidate calculation device, optimal solution calculation device, thruster control device for spacecraft, flying object control device, and linear programming problem solving method
EP3798869A4 (en) * 2018-05-23 2021-06-23 Mitsubishi Electric Corporation Linear programming problem solving system, solution candidate calculation device, optimal solution calculation device, thruster control device for spacecraft, flying object control device, and linear programming problem solving method
US11958635B2 (en) 2018-05-23 2024-04-16 Mitsubishi Electric Corporation Linear programming problem solving system, solution candidate calculation device, optimal solution calculation device, thruster control device for spacecraft, flying object control device, and linear programming problem solving method

Similar Documents

Publication Publication Date Title
Heyfron et al. An efficient quantum compiler that reduces T count
US11531889B2 (en) Weight data storage method and neural network processor based on the method
US11010682B2 (en) Efficient synthesis of probabilistic quantum circuits with fallback
JP2009140503A (en) Method and apparatus for translating speech
CN112639810A (en) Face key point positioning system and method
Zeng et al. Adaptive learning tracking for uncertain systems with partial structure information and varying trial lengths
França et al. An explicit rate bound for over-relaxed ADMM
Ni Optimality conditions for trust-region subproblems involving a conic model
JP2001184334A (en) Method and device for finding solution of linear scheduling question
WO2019142241A1 (en) Data processing system and data processing method
Hayashi et al. Assembly sequence optimization of spatial trusses using graph embedding and reinforcement learning
Leok et al. A discrete theory of connections on principal bundles
Qian et al. Deep learning for a low-data drug design system
Prokopenya Hamiltonian normalization in the restricted many-body problem by computer algebra methods
Oda et al. Fast multi-objective optimization of magnetic shield shape by combining auto-encoder and level-set method
JP7297286B2 (en) Optimization method, optimization program, reasoning method, and reasoning program
Polyak Exterior distance function
Sun et al. A customized ADMM for rank-constrained optimization problems with approximate formulations
Mouton et al. Graphical residual flows
JP2022020464A (en) Neural network processing apparatus, neural network processing method, and computer program
Mozelli et al. SOFC for TS fuzzy systems: Less conservative and local stabilization conditions
Tan et al. Stochastic diagonal approximate greatest descent in convolutional neural networks
Hazra et al. Genetic algorithm in the structural design of Cooke triplet lenses
Vivier Application of the corrected response surface methodology for the optimization of a permanent magnet synchronous machine
Glumov et al. A method of constructing the mathematical model of a discretely developing large space structure

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050308