JP2001183712A - Wavelength converting device - Google Patents

Wavelength converting device

Info

Publication number
JP2001183712A
JP2001183712A JP36722799A JP36722799A JP2001183712A JP 2001183712 A JP2001183712 A JP 2001183712A JP 36722799 A JP36722799 A JP 36722799A JP 36722799 A JP36722799 A JP 36722799A JP 2001183712 A JP2001183712 A JP 2001183712A
Authority
JP
Japan
Prior art keywords
crystal
pressure
clbo
wavelength
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36722799A
Other languages
Japanese (ja)
Inventor
Kyoichi Deki
恭一 出来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Sogo Gijutsu Kenkyusho KK
Original Assignee
Ushio Sogo Gijutsu Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Sogo Gijutsu Kenkyusho KK filed Critical Ushio Sogo Gijutsu Kenkyusho KK
Priority to JP36722799A priority Critical patent/JP2001183712A/en
Publication of JP2001183712A publication Critical patent/JP2001183712A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • G02F1/3546Active phase matching, e.g. by electro- or thermo-optic tuning

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a wavelength converting device which uses TYPE1 CLBO crystal in which a shift from phase matching conditions is suppressed, decrease in the wavelength conversion efficiency is suppressed and high average UV rays can be emitted. SOLUTION: In the wavelength converting device which uses a TYPE1 CLBO crystal 1, one point in the front half of the crystal in the incident side of light (almost center in the horizontal direction) is pressurized. By this method, distribution of phase mismatching caused in the crystal can be suppressed. Even when the crystal generates heat itself, decrease in the wavelength conversion efficiency can be suppressed and high average UV rays can be emitted. The pressurizing point is preferably 0 to 1/3 length in the front half of the CLBO crystal in the incident side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】プリント基板のビアホールの
孔あけ、フィルム・金属の切断等の加工に加工用レーザ
装置が使用される。本発明は、上記加工用レーザ装置等
に使用される波長変換装置に関し、さらに詳細には、高
平均紫外光を出力できるCLBO(CsLiB6 10
結晶のTYPE1を使った波長変換装置に関するもので
ある。
BACKGROUND OF THE INVENTION A processing laser device is used for processing such as drilling a via hole in a printed circuit board and cutting a film or metal. The present invention relates to a wavelength converter used for the above-mentioned processing laser device and the like, and more particularly, to CLBO (CsLiB 6 O 10 ) capable of outputting high average ultraviolet light.
The present invention relates to a wavelength converter using crystal TYPE1.

【0002】[0002]

【従来の技術】図8は、波長変換素子として非線形光学
結晶を用い、基本波の第4高調波(4倍波)を出力する
紫外線レーザ装置の一例である。パルスレーザ装置であ
る基本波レーザ装置(例えばNd:YLFレーザ)11
から波長1047nmのレーザ光が、集光レンズ12を
介して第1の非線形光学結晶〔LBO(LiB3 5
結晶〕1−1に入射し、第2高調波(2倍波:波長52
3nm)に波長変換される。この2倍波は集光レンズ1
3を介して第2の非線形光学結晶(CLBO結晶)1−
2に入射し、第4高調波(4倍波:波長262nm)に
波長変換される。この4倍波は集光レンズ14により集
光され被加工物15に照射される。非線形光学結晶1−
1,1−2はヒータ3−1,3−2により加熱され、そ
の温度は熱電対17により検出される。熱電対17の出
力は温度調節器(温調器)16に送られ、温調器16は
各非線形光学結晶が一定温度になるように制御する。
2. Description of the Related Art FIG. 8 shows an example of an ultraviolet laser device which uses a nonlinear optical crystal as a wavelength conversion element and outputs a fourth harmonic (fourth harmonic) of a fundamental wave. Fundamental wave laser device (for example, Nd: YLF laser) which is a pulse laser device 11
From the first nonlinear optical crystal [LBO (LiB 3 O 5 )] through the condenser lens 12.
Crystal] 1-1, and the second harmonic (second harmonic: wavelength 52
3 nm). This second harmonic is collected by the condenser lens 1
3 through a second nonlinear optical crystal (CLBO crystal) 1-
2 and is wavelength-converted to the fourth harmonic (fourth harmonic: wavelength 262 nm). The fourth harmonic is condensed by the condenser lens 14 and radiated on the workpiece 15. Nonlinear optical crystal 1
1, 1-2 are heated by heaters 3-1 and 3-2, and the temperature is detected by thermocouple 17. The output of the thermocouple 17 is sent to a temperature controller (temperature controller) 16, and the temperature controller 16 controls each of the nonlinear optical crystals to have a constant temperature.

【0003】[0003]

【発明が解決しようとする課題】図8に示すように、非
線形光学結晶(CLBO結晶)を用い、Nd:YAGや
Nd:YLFレーザなど波長1μmの基本波レーザの高
調波や和周波発生によって紫外線を得ようとする場合、
通常、波長変換用非線形光学結晶(CLBO結晶)は紫
外線の吸収が可視域に比べて大きく、従って高平均出力
を出力する場合には、発生する紫外線により結晶が自己
加熱する。この自己加熱により、結晶の位相整合条件が
乱され、出力が大きく低下する欠点がある。特に、入射
光線方向に対して7〜8mm以上の長い結晶を用いる場
合、発生する紫外線による結晶の自己加熱による結晶内
温度上昇は紫外光の伝搬する方向に分布を持つことが、
サーモビュアーを用いた本発明者らの測定で明らかにな
った。
As shown in FIG. 8, a non-linear optical crystal (CLBO crystal) is used to generate ultraviolet light by generating a harmonic or a sum frequency of a fundamental wave laser having a wavelength of 1 μm such as a Nd: YAG or Nd: YLF laser. If you want to get
Normally, a nonlinear optical crystal for wavelength conversion (CLBO crystal) absorbs ultraviolet light more than in the visible region, and therefore, when outputting a high average output, the crystal is self-heated by the generated ultraviolet light. Due to this self-heating, the phase matching condition of the crystal is disturbed, and there is a disadvantage that the output is greatly reduced. In particular, when using a long crystal of 7 to 8 mm or more with respect to the direction of the incident light, the temperature rise in the crystal due to self-heating of the crystal by the generated ultraviolet light may have a distribution in the direction in which the ultraviolet light propagates.
The measurement was made by the present inventors using a thermoviewer.

【0004】通常、結晶への入力が増加し、紫外線の出
力も強くなってくると上記理由によって結晶の屈折率が
紫外光の伝搬する方向に分布を持つこととなる。これ
は、言い換えると位相整合角が結晶の場所によって異な
ることを意味する。従って、通常結晶への入力の増加に
よる温度上昇とともに位相整合角を再調整しなければな
らないが、上記のように、結晶の屈折率が紫外光の伝搬
する方向に分布を持つため、結晶の角度調整だけでは結
晶中の全ての部分における位相不整合量を最適に補正す
ることは不可能であった。
Normally, when the input to the crystal increases and the output of ultraviolet rays increases, the refractive index of the crystal has a distribution in the direction in which ultraviolet light propagates for the above-described reason. This means that the phase matching angle differs depending on the location of the crystal. Therefore, usually, the phase matching angle must be readjusted with an increase in temperature due to an increase in the input to the crystal. However, as described above, since the refractive index of the crystal has a distribution in the direction in which ultraviolet light propagates, the angle of the crystal is It was not possible to optimally correct the amount of phase mismatch in all parts of the crystal only by adjustment.

【0005】図2は後述するように、Nd:YAGレー
ザ装置が出力する基本波の2倍波(波長532nm)を
TYPE1のCLBO結晶に入力し、その4倍波(波長
266nm)を得る場合のCLBO結晶の入力エネルギ
ーと出力エネルギーの関係を示す図である。結晶の屈折
率が紫外光の伝搬する方向に分布を持つため、図2の
−2で示されるように、従来においては、いくら結晶の
角度を再調整しても限度があり、入力増加とともに変換
効率が低下し、−1で示されているように、出力エネ
ルギーは入力エネルギーの増加分ほどには増加しないと
いう欠点があった。本発明は上記した従来技術の問題点
に鑑みなされたものであって、その目的とするところ
は、CLBO結晶のTYPE1を使った波長変換装置に
おいて、結晶の自己加熱があっても、位相整合条件から
のずれを従来よりも大きく抑制でき、波長変換効率の低
下を抑制し、高平均紫外光を出力できる波長変換装置を
提供することである。
FIG. 2 shows a case where the second harmonic (wavelength 532 nm) of the fundamental wave output from the Nd: YAG laser device is input to the CLBO crystal of TYPE 1 to obtain the fourth harmonic (wavelength 266 nm), as described later. FIG. 3 is a diagram illustrating a relationship between input energy and output energy of a CLBO crystal. Since the refractive index of the crystal has a distribution in the direction in which the ultraviolet light propagates, as shown by -2 in FIG. 2, in the related art, there is a limit even if the angle of the crystal is readjusted. Efficiency was reduced, and the output energy did not increase as much as the input energy, as indicated by -1. SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems of the related art, and an object of the present invention is to provide a wavelength conversion device using TYPE 1 of a CLBO crystal even if the crystal has self-heating even if the crystal has self-heating. It is an object of the present invention to provide a wavelength conversion device capable of suppressing the deviation from the conventional one more than before, suppressing a decrease in the wavelength conversion efficiency, and outputting a high average ultraviolet light.

【0006】[0006]

【課題を解決するための手段】発生する紫外線による結
晶の自己加熱による結晶内温度上昇は紫外光の伝搬する
方向に屈折率分布を誘起する。位相不整合量はΔk=2
π(n3/λ3−n2/λ2−n1/λ1)で与えられ
る。ここで、niは、波長λiでの屈折率である。この
ため、結晶の紫外線吸収による自己加熱により、位相不
整合量に結晶内分布が生じる。上記位相不整合量の結晶
内分布を抑制するため、本発明では、波長変換に用いら
れる非線形光学結晶の光弾性効果を利用する。光弾性効
果とは非線形光学結晶へ圧力を印加すると、圧力の影響
下にある非線形光学結晶の屈折率が変化する性質のこと
である。本発明者らの種々の実験によって、CLBO結
晶のTYPE1を使った波長変換装置において、結晶長
の光入射側の前半部の一点(水平方向ではほぼ中央)に
圧力を加えることによって、位相不整合量の結晶内分布
を極小に抑制できることがわかった。圧力を加える位置
は、結晶長の光入射側の0〜1/3までの前半部が好ま
しい。
The temperature rise in the crystal due to the self-heating of the crystal by the generated ultraviolet light induces a refractive index distribution in the direction in which the ultraviolet light propagates. The amount of phase mismatch is Δk = 2
π (n3 / λ3-n2 / λ2-n1 / λ1). Here, ni is the refractive index at the wavelength λi. For this reason, in-crystal distribution occurs in the amount of phase mismatch due to self-heating due to absorption of ultraviolet light by the crystal. In order to suppress the distribution of the phase mismatch amount in the crystal, the present invention utilizes the photoelastic effect of a nonlinear optical crystal used for wavelength conversion. The photoelastic effect is a property in which when a pressure is applied to a nonlinear optical crystal, the refractive index of the nonlinear optical crystal under the influence of the pressure changes. According to various experiments by the present inventors, in a wavelength conversion apparatus using TYPE 1 of a CLBO crystal, phase mismatch was caused by applying pressure to a point (almost the center in the horizontal direction) of the first half of the crystal length on the light incident side. It has been found that the distribution of the amount in the crystal can be minimized. The pressure is preferably applied to the first half of 0 to 1/3 of the light incidence side of the crystal length.

【0007】以上に基づき、本発明においては次のよう
にして前記課題を解決する。 (1)CLBO結晶のTYPE1を使って波長変換を行
うに際し、CLBO結晶の入射側の前半部に対して、光
学軸と入射光線方向とで決まる平面内で圧力を加える。 (2)上記(1)において、上記圧力を、結晶長の光入
射側の1/3までの前半部に加える。 本発明においては、上記のようにCLBO結晶の入射側
の前半部に対して、光学軸と入射光線方向とで決まる平
面内で圧力を加えているので、前記光弾性効果により、
結晶内に生ずる位相不整合量の結晶内分布を抑制するこ
とができる。このため、結晶の自己加熱があっても、波
長変換効率の低下を抑制し、高平均紫外光を出力するこ
とが可能となる。
Based on the above, the present invention solves the above-mentioned problems as follows. (1) When wavelength conversion is performed using TYPE 1 of a CLBO crystal, pressure is applied to the first half on the incident side of the CLBO crystal within a plane determined by the optical axis and the direction of incident light. (2) In the above (1), the pressure is applied to the first half of the crystal length up to 1/3 of the light incident side. In the present invention, pressure is applied to the first half of the CLBO crystal on the incident side as described above in a plane determined by the optical axis and the incident light beam direction.
In-crystal distribution of the amount of phase mismatch generated in the crystal can be suppressed. For this reason, even if there is self-heating of the crystal, it is possible to suppress a decrease in the wavelength conversion efficiency and to output high average ultraviolet light.

【0008】[0008]

【発明の実施の形態】図1は本発明の実施例を示す図で
ある。本実施例においては、CLBO結晶1を用いTY
PE1の位相整合により波長変換を行うに際し、図1に
示すように、入射光線方向の結晶長をLとしたとき、光
入射側から(1/3)×Lまでの一点に、光学軸Cと入
射光線方向で決まる平面Pに平行な方向の圧力を加え
た。ここで、同図は、TYPE1の位相整合であり、入
射光は垂直方向に偏光方位があり、出射光は入射光偏光
方位と直角方向の偏光方位を有する。
FIG. 1 is a diagram showing an embodiment of the present invention. In this embodiment, the CLBO crystal 1 is used and the TY
When performing wavelength conversion by phase matching of PE1, as shown in FIG. 1, when the crystal length in the incident light beam direction is L, one point from the light incident side to (() × L is the optical axis C. Pressure was applied in a direction parallel to the plane P determined by the incident light beam direction. Here, the figure shows the phase matching of TYPE1, in which the incident light has a polarization direction in the vertical direction, and the outgoing light has a polarization direction perpendicular to the polarization direction of the incident light.

【0009】図2はNd:YAGレーザ光源が出力する
基本波(波長1064nm)の2倍波(波長532n
m)をCLBO結晶(7×8×15mm)に入力し、T
YPE1の位相整合により波長変換を行い、上記基本波
の4倍波(波長266nm)を得る場合における実験結
果の一例を示す図である。同図は、圧力を加えない場合
と、図1に示すようにCLBO結晶に圧力を加えた場合
における出力エネルギーおよび変換効率を示したもので
あり、横軸はCLBO結晶に入射する2倍波のレーザ光
の入力エネルギー(mJ)、縦軸左はCLBO結晶から
出射する4倍波のレーザ光の出力エネルギー(mJ)、
縦軸右は変換効率〔出力エネルギー/入力エネルギー〕
(%)であり、−1,−2はそれぞれCLBO結晶
に圧力を加えない場合、−1,−2はCLBO結晶
に圧力を加えた場合の出力エネルギー、変換効率を示し
ている。図2に示すように、圧力をCLBO結晶に印加
しない場合には、2倍波エネルギー最大入力(186m
J)時の4倍波出力エネルギーは87.9mJ、変換効
率48.6%であった。一方、同じ最大入力時でも圧力
をCLBO結晶に印加した場合には、4倍波出力エネル
ギーは121.9mJに増加し、変換効率は67.5%
に増加した。
FIG. 2 shows a second harmonic (wavelength 532n) of the fundamental wave (wavelength 1064nm) output from the Nd: YAG laser light source.
m) is input to a CLBO crystal (7 × 8 × 15 mm), and T
FIG. 9 is a diagram illustrating an example of an experimental result in a case where wavelength conversion is performed by phase matching of YPE1 to obtain a fourth harmonic (wavelength: 266 nm) of the fundamental wave. The figure shows the output energy and the conversion efficiency when no pressure is applied and when the pressure is applied to the CLBO crystal as shown in FIG. 1. The horizontal axis indicates the second harmonic of the incident light on the CLBO crystal. Input energy of laser light (mJ), left vertical axis is output energy (mJ) of fourth harmonic laser light emitted from CLBO crystal,
The right side of the vertical axis shows the conversion efficiency [output energy / input energy]
(%), Where -1 and -2 indicate the output energy and conversion efficiency when no pressure is applied to the CLBO crystal, and -1 and -2 indicate the conversion efficiency when the pressure is applied to the CLBO crystal. As shown in FIG. 2, when no pressure is applied to the CLBO crystal, the second harmonic energy maximum input (186 m
The fourth harmonic output energy at J) was 87.9 mJ and the conversion efficiency was 48.6%. On the other hand, when pressure is applied to the CLBO crystal even at the same maximum input, the fourth harmonic output energy increases to 121.9 mJ, and the conversion efficiency is 67.5%.
Increased.

【0010】次に、CLBO結晶にどの程度の圧力を印
加するのがよいかを実験により調べた。図3にその結果
を示す。同図の横軸はCLBO結晶に印加した圧力(k
g/cm2 )、左縦軸はCLBO結晶の4倍波出力エネ
ルギー(mJ)、右縦軸は出力エネルギーの増加率
(%)を示し、は出力エネルギー、は増加率を示し
ている。同図は、図1に示したようにCLBO結晶に圧
力を印加し、Nd:YAGの2倍波(波長532nm)
入力を186mJ一定として、CLBO結晶へ印加する
圧力を変えてCLBO結晶の出力を調べたものである。
図3から明らかなように、約20kg/cm2 の圧力付
近で出力増加が飽和している。即ち、CLBO結晶に印
加する圧力は、20kg/cm2 前後の圧力値が適して
いることを示している。
Next, an experiment was conducted to determine how much pressure should be applied to the CLBO crystal. FIG. 3 shows the result. The horizontal axis in the figure is the pressure (k) applied to the CLBO crystal.
g / cm 2 ), the left vertical axis indicates the fourth harmonic output energy (mJ) of the CLBO crystal, and the right vertical axis indicates the increase rate (%) of the output energy, and indicates the output energy. In the figure, as shown in FIG. 1, a pressure is applied to the CLBO crystal, and a second harmonic of Nd: YAG (wavelength 532 nm) is used.
The output of the CLBO crystal was examined by changing the pressure applied to the CLBO crystal while keeping the input constant at 186 mJ.
As is clear from FIG. 3, the increase in output is saturated around a pressure of about 20 kg / cm 2 . That is, it is shown that the pressure applied to the CLBO crystal is preferably about 20 kg / cm 2 .

【0011】さらに、別の実験例として、図4に示すよ
うに、波長1064nmの光と波長236nmの光とを
CLBO結晶1に入射し、和周波混合によって波長19
3nmの光を発生させる場合について調べた。CLBO
結晶1に圧力を印加する大きさと場所は図1とほぼ同じ
である。この場合も図1と同じくType1位相整合で
あり、入力の波長1064nmの光と波長236nmの
光の2光は同図に示すように同一偏光方位(例えば図示
のように紙面に対して垂直方向)で結晶に入射し、出力
光の偏光方位は上記入力光偏光方位と直角方向(例えば
図示のように紙面と平行方向)である。
Further, as another experimental example, as shown in FIG. 4, light having a wavelength of 1064 nm and light having a wavelength of 236 nm are incident on the CLBO crystal 1, and a wavelength of 19
The case where 3 nm light was generated was examined. CLBO
The size and location at which pressure is applied to crystal 1 are substantially the same as in FIG. In this case as well, Type 1 phase matching is performed as in FIG. 1, and two lights of the input wavelength of 1064 nm and the light of 236 nm are the same polarization direction as shown in FIG. Then, the polarization direction of the output light is in a direction perpendicular to the polarization direction of the input light (for example, parallel to the plane of the drawing as shown).

【0012】CLBO結晶1に入力する波長1064n
mの光と波長236nmの光はそれぞれ独立したレーザ
発振器から供給されており、その同期をとるのが難し
く、前記図2、図3に示した数値的なデータを得ること
が困難であった。そこで、CLBO結晶1に圧力を印加
した場合と、印加しない場合の出力パワーの変化を調べ
て、両者を比較した。その結果、出力パワーの変動は大
きいものの、CLBO結晶1の圧力を印加することによ
る出力増加の効果ははっきりと確認することができた。
Wavelength 1064n input to CLBO crystal 1
Since the light of m and the light of 236 nm are supplied from independent laser oscillators, it is difficult to synchronize them, and it is difficult to obtain the numerical data shown in FIGS. Therefore, the change in output power between when the pressure was applied to the CLBO crystal 1 and when the pressure was not applied was examined, and both were compared. As a result, although the output power fluctuated greatly, the effect of increasing the output by applying the pressure of the CLBO crystal 1 could be clearly confirmed.

【0013】図5、図6は上記実験結果を示す図であ
る。図5は圧力なしから圧力印加への過渡時の出力パワ
ーの変化を示し、図6は圧力ありから圧力なしの過渡時
の出力パワーの変化を示し、横軸は時間(秒)、縦軸は
出力パワー(mW)である。図5、図6から明らかなよ
うに圧力印加によって出力が顕著に向上していることが
分かる。同図からも分かるようにCLBO結晶に圧力を
印加しない場合には、出力パワーは平均値として3.6
7mWであるが、圧力を印加した場合には、た場合に
は、平均値として6.07mWを得ることができた。即
ち、出力は1.65倍に増強された。
FIGS. 5 and 6 show the results of the above experiment. FIG. 5 shows a change in output power during a transition from no pressure to pressure application, FIG. 6 shows a change in output power during a transition from pressure to no pressure, the horizontal axis represents time (seconds), and the vertical axis represents time. Output power (mW). As is clear from FIGS. 5 and 6, the output is significantly improved by the application of the pressure. As can be seen from the figure, when no pressure is applied to the CLBO crystal, the output power is 3.6 as an average value.
The pressure was 7 mW, but when pressure was applied, an average value of 6.07 mW was obtained when pressure was applied. That is, the output was increased 1.65 times.

【0014】この圧力印加による出力パワー増加の理由
は、前記したように結晶へ圧力を印加すると圧力の影響
下にある結晶の屈折率が変化する光弾性効果によるもの
である。すなわち、圧力を印加することによりその部分
の屈折率が変化し、結晶内に生ずる位相不整合量の結晶
内分布をキャンセルすることによるものと考えられる。
なお、上記実施例では、非線形光学結晶の光入射側の
(1/3)×Lまでの一点に圧力を加える場合について
説明したが、非線形光学結晶の光入射側の前半部に圧力
を加えれば、同様の効果が得られることが確認されてい
る。
The reason why the output power is increased by the application of the pressure is due to the photoelastic effect that the refractive index of the crystal under the influence of the pressure changes when the pressure is applied to the crystal as described above. That is, it is considered that the application of pressure changes the refractive index of the portion, and cancels the intra-crystal distribution of the amount of phase mismatch generated in the crystal.
In the above embodiment, the case where pressure is applied to one point up to (1 /) × L on the light incident side of the nonlinear optical crystal has been described, but if pressure is applied to the first half of the nonlinear optical crystal on the light incident side. It has been confirmed that similar effects can be obtained.

【0015】図7は、本発明による波長変換装置の具体
的構成例を示す図である。CLBO結晶に圧力を印加す
る方法は種々考えられるが、ここでは、電歪素子を用い
てCLBO結晶に圧力を印加する場合の例を示す。図7
において、同図(a)は波長変換装置の断面図、(b)
は正面図、(c)は制御系の構成例を示す。同図(a)
(b)に示すように、非線形光学結晶(CLBO結晶)
1は結晶保持容器2内に収納され、結晶保持容器2には
入射口2aと出射口2bが設けられている。入射口2a
から入射するレーザ光は非線形光学結晶1に入射して波
長変換され、波長変換されたレーザ光が出射口2bから
出射する。
FIG. 7 is a diagram showing a specific configuration example of a wavelength converter according to the present invention. There are various methods for applying pressure to the CLBO crystal. Here, an example in which pressure is applied to the CLBO crystal using an electrostrictive element will be described. FIG.
In the figure, (a) is a cross-sectional view of the wavelength converter, (b)
Shows a front view, and (c) shows a configuration example of a control system. FIG.
As shown in (b), a nonlinear optical crystal (CLBO crystal)
1 is accommodated in a crystal holding container 2, and the crystal holding container 2 is provided with an entrance 2 a and an exit 2 b. Entrance 2a
Is incident on the nonlinear optical crystal 1 and wavelength-converted, and the wavelength-converted laser light is emitted from the emission port 2b.

【0016】結晶保持容器2には電歪素子3が固定さ
れ、電歪素子3の駆動端3aが非線形光学結晶の光入射
側の前半部の一点に当接している。電歪素子3は電圧を
印加するとその駆動端3aが変位するので、電歪素子3
に電圧を印加することにより、非線形光学結晶1が押圧
され圧力が印加される。非線形光学結晶1を押圧する力
の大きさは、例えば、図7(c)に示すように非線形光
学結晶1から出射する出力光をパワーモニタ4によりモ
ニタし、それが最大になるように制御装置5により、電
歪素子3に印加する電圧を制御すればよい。
An electrostrictive element 3 is fixed to the crystal holding container 2, and a driving end 3a of the electrostrictive element 3 is in contact with one point of the first half of the nonlinear optical crystal on the light incident side. When a voltage is applied to the electrostrictive element 3, the drive end 3a is displaced.
, The nonlinear optical crystal 1 is pressed and pressure is applied. The magnitude of the force pressing the nonlinear optical crystal 1 is determined by, for example, monitoring the output light emitted from the nonlinear optical crystal 1 by the power monitor 4 as shown in FIG. 5, the voltage applied to the electrostrictive element 3 may be controlled.

【0017】[0017]

【発明の効果】以上説明したように、本発明において
は、CLBO結晶のTYPE1を使って波長変換を行う
に際し、CLBO結晶の前半部に対して、光学軸と入射
光線方向とで決まる平面内で圧力を加えるようにしたの
で、結晶内に生ずる位相不整合量の結晶内分布を抑制す
ることができ、波長変換効率の低下を抑制し、高平均紫
外光を出力することが可能となる。
As described above, in the present invention, when wavelength conversion is performed using TYPE 1 of a CLBO crystal, the first half of the CLBO crystal is positioned within a plane determined by the optical axis and the incident light direction. Since the pressure is applied, the distribution of the amount of phase mismatch generated in the crystal in the crystal can be suppressed, the decrease in the wavelength conversion efficiency can be suppressed, and high average ultraviolet light can be output.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】Nd:YAGレーザの4倍波発生における圧力
効果の実験例を示す図である。
FIG. 2 is a diagram showing an experimental example of a pressure effect in generating a fourth harmonic of an Nd: YAG laser.

【図3】CLBO結晶に印加する圧力と、出力エネルギ
ー、変換効率の関係を示す図である。
FIG. 3 is a diagram showing a relationship among a pressure applied to a CLBO crystal, output energy, and conversion efficiency.

【図4】和周波混合による193nmのレーザ光の発生
を説明する図である。
FIG. 4 is a diagram illustrating generation of 193 nm laser light by sum frequency mixing.

【図5】和周波混合によって193nmのレーザ光を発
生させる場合において、圧力なしから圧力印加への過渡
時の出力変化を示す図である。
FIG. 5 is a diagram illustrating an output change during a transition from no pressure to pressure application when a 193 nm laser beam is generated by sum frequency mixing.

【図6】和周波混合によって193nmのレーザ光を発
生させる場合において、圧力印加から圧力なしへの過渡
時の出力変化を示す図である。
FIG. 6 is a diagram illustrating a change in output during a transition from pressure application to no pressure when a 193 nm laser beam is generated by sum frequency mixing.

【図7】本発明が適用される波長変換装置の構成例を示
す図である。
FIG. 7 is a diagram illustrating a configuration example of a wavelength conversion device to which the present invention is applied;

【図8】波長変換素子として非線形光学結晶を用いた紫
外線レーザ装置の構成例を示す図である。
FIG. 8 is a diagram illustrating a configuration example of an ultraviolet laser device using a nonlinear optical crystal as a wavelength conversion element.

【符号の説明】[Explanation of symbols]

1 非線形光学結晶(CLBO結晶) 2 結晶保持容器 3 電歪素子 4 パワーモニタ 5 制御装置 DESCRIPTION OF SYMBOLS 1 Nonlinear optical crystal (CLBO crystal) 2 Crystal holding container 3 Electrostrictive element 4 Power monitor 5 Control device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 CLBO結晶のTYPE1を使って波長
変換を行う波長変換装置であって、 上記CLBO結晶の光入射側の前半部に対して、光学軸
と入射光線方向とで決まる平面内で圧力を加えることを
特徴とする波長変換装置。
1. A wavelength conversion device for performing wavelength conversion using a CLBO crystal TYPE1, wherein a pressure is applied to a first half of the CLBO crystal on a light incident side in a plane determined by an optical axis and an incident light beam direction. A wavelength converter characterized by adding:
【請求項2】 上記圧力は、結晶長の光入射側の1/3
までの前半部に加えることを特徴とする請求項1の波長
変換装置。
2. The pressure is 1 / of the crystal length on the light incident side.
2. The wavelength conversion device according to claim 1, wherein the wavelength conversion device is added to the first half of the wavelength conversion device.
JP36722799A 1999-12-24 1999-12-24 Wavelength converting device Pending JP2001183712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36722799A JP2001183712A (en) 1999-12-24 1999-12-24 Wavelength converting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36722799A JP2001183712A (en) 1999-12-24 1999-12-24 Wavelength converting device

Publications (1)

Publication Number Publication Date
JP2001183712A true JP2001183712A (en) 2001-07-06

Family

ID=18488795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36722799A Pending JP2001183712A (en) 1999-12-24 1999-12-24 Wavelength converting device

Country Status (1)

Country Link
JP (1) JP2001183712A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5312947B2 (en) * 2006-10-27 2013-10-09 パナソニック株式会社 Short wavelength light source and laser image forming apparatus
US20170090270A1 (en) * 2014-05-20 2017-03-30 Centre National De La Recherche Scientifique - Cnrs Frequency converter system conversion cell and frequency conversion system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5312947B2 (en) * 2006-10-27 2013-10-09 パナソニック株式会社 Short wavelength light source and laser image forming apparatus
US20170090270A1 (en) * 2014-05-20 2017-03-30 Centre National De La Recherche Scientifique - Cnrs Frequency converter system conversion cell and frequency conversion system
JP2017519243A (en) * 2014-05-20 2017-07-13 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク Conversion cell for frequency conversion system and frequency conversion system
US9841656B2 (en) * 2014-05-20 2017-12-12 Centre National De La Recherche Scientifique-Cnrs Frequency converter system conversion cell and frequency conversion system
EP3146387B1 (en) * 2014-05-20 2019-12-18 Centre National de la Recherche Scientifique (CNRS) Frequency converter system conversion cell, and frequency conversion system

Similar Documents

Publication Publication Date Title
US7443903B2 (en) Laser apparatus having multiple synchronous amplifiers tied to one master oscillator
US7529281B2 (en) Light source with precisely controlled wavelength-converted average power
US7830928B2 (en) Quasi-phase matching and quantum control of high harmonic generation in waveguides using counterpropagating beams
KR102344775B1 (en) High Efficiency Laser System for Third Harmonic Generation
JP2014530493A (en) Controllable multi-wavelength fiber laser source
JP2011128330A (en) Laser device
JP2013524276A (en) Nonlinear crystal with wedge-shaped facets for harmonic generation
JP5194795B2 (en) Laser light source standby method
JP2013156448A (en) Laser device, exposure device and inspection device
CN110932079A (en) Generation device of fourth harmonic beam
JP4969369B2 (en) Optical wavelength converter
JP2011161483A (en) Laser beam machining apparatus
JP2629621B2 (en) UV laser equipment
JP2001021931A (en) Laser device for processing using nonlinear crystal of type 1
JP2001183712A (en) Wavelength converting device
JP7079953B2 (en) Wavelength conversion method, wavelength conversion device and laser light source device
WO2001004698A1 (en) Laser for laser machining
IT201800010009A1 (en) TRANSPORT SYSTEM OF A LASER BEAM
JP2006145584A (en) Method and apparatus for forming plurality of laser beams with wavelengths in ultraviolet region, and laser machining device
JP3125512B2 (en) Method for stabilizing output of ultraviolet laser light and ultraviolet laser light generator
JP4340203B2 (en) Optical device
JP2011053314A (en) Light source device
JP2013044764A (en) Laser device, method for suppressing photorefractive effect of quasi-phase-matching wavelength conversion optical element, exposure device, and inspection device
JP6503435B1 (en) Laser device
JP2001042371A (en) Processing laser device