JP2001182892A - Heat insulating structure of water jacket pipe - Google Patents

Heat insulating structure of water jacket pipe

Info

Publication number
JP2001182892A
JP2001182892A JP37057299A JP37057299A JP2001182892A JP 2001182892 A JP2001182892 A JP 2001182892A JP 37057299 A JP37057299 A JP 37057299A JP 37057299 A JP37057299 A JP 37057299A JP 2001182892 A JP2001182892 A JP 2001182892A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
ceramic fiber
water cooling
insulating structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP37057299A
Other languages
Japanese (ja)
Other versions
JP3830707B2 (en
Inventor
Tsuyoshi Matsuda
強志 松田
Yukihisa Abe
恭久 阿部
Tadashi Sato
正 佐藤
Hisashi Sato
久 佐藤
Masato Nakajima
正人 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Nippon Steel Corp
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Krosaki Harima Corp filed Critical Nippon Steel Corp
Priority to JP37057299A priority Critical patent/JP3830707B2/en
Publication of JP2001182892A publication Critical patent/JP2001182892A/en
Application granted granted Critical
Publication of JP3830707B2 publication Critical patent/JP3830707B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a heat insulating structure of a water jacket pipe applicable for a skid pipe in a heating furnace, a riser pipe, or the like and superior in heat insulating effect under severe conditions. SOLUTION: The outer periphery of this water jacket pipe is coated with a micro-cellular heat insulating material 2 having extremely low heat conductivity, whose outer periphery is further encircled by a ceramic fiber molding 3. With the micro-cellular heating insulating material 2 encircled by the ceramic fiber molding 3, the oversintering and physical damage of the micro-cellular heat insulating material 2 are prevented, resulting in stable heat insulating effect.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、製鉄および非鉄金
属産業における加熱炉のスキッドパイプ、ライザーパイ
プ等に使用される水冷管の断熱構造に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat insulating structure for a water cooling pipe used for a skid pipe, a riser pipe and the like of a heating furnace in the iron making and non-ferrous metal industries.

【0002】[0002]

【従来の技術】一般に、鋼塊を炉内に連続的に挿入して
加熱する連続加熱炉においては、加熱物を移送するため
のスキッドレール等が付設され、このスキッドレール等
を支持するためにスキッドパイプ、ライザーパイプ等が
使用されている。これらのパイプは1000℃以上の高
温に曝されることから、パイプ内に冷却水を通過させる
水冷管構造にし、かつその水冷管の外周に断熱層が施し
た断熱構造が採用される。
2. Description of the Related Art Generally, in a continuous heating furnace in which a steel ingot is continuously inserted into a furnace and heated, a skid rail or the like for transferring a heated object is provided, and in order to support the skid rail or the like. Skid pipes, riser pipes and the like are used. Since these pipes are exposed to a high temperature of 1000 ° C. or higher, a water-cooled pipe structure through which cooling water passes through the pipes and a heat-insulating structure in which a heat insulating layer is provided on the outer periphery of the water-cooled pipe is adopted.

【0003】図5には、この種の一般的な水冷管の断熱
構造が示されている。この従来構造では、図示のよう
に、水冷管51の外周にはキャスタブル耐火物52より
なる断熱層が施され、このキャスタブル耐火物52は水
冷管51の外周面に溶接されて突出される金属製のスタ
ッド53により支持されている。
FIG. 5 shows a heat insulating structure of a general water cooling pipe of this kind. In this conventional structure, as shown in the figure, a heat insulating layer made of a castable refractory 52 is applied to the outer periphery of the water cooling pipe 51, and the castable refractory 52 is made of a metal that is welded to the outer peripheral surface of the water cooling pipe 51 and projected. Are supported by the studs 53.

【0004】しかし、この従来構造では、スタッド53
が金属製であるために熱伝導率が高く、このスタッド5
3を伝って水冷管51内を通過する冷却水へ熱放散され
ることになって、熱エネルギー効率の低下を招くという
問題点がある。
However, in this conventional structure, the stud 53
Is made of metal and has high thermal conductivity.
3, heat is dissipated to the cooling water passing through the water cooling pipe 51, which causes a problem of lowering thermal energy efficiency.

【0005】このような問題点に対処するための改善策
として、実公昭50−42098号公報においては、水
冷管とスタッドとの間にセラミックファイバーよりなる
断熱層を介在させ、水冷管とスタッドとを接触させない
ようにした構造が提案されている。
[0005] As an improvement measure to cope with such a problem, Japanese Utility Model Publication No. 50-42098 discloses that a heat insulating layer made of ceramic fiber is interposed between a water cooling tube and a stud, and the water cooling tube and the stud are connected to each other. There has been proposed a structure in which no contact is made.

【0006】また、実公昭61−46393号公報にお
いては、ドーナツ型のセラミックファイバー成形体を水
冷管の長さ方向に積層した断熱構造のものが提案されて
いる。この場合、隣接するセラミックファイバー成形体
同士はピンの挿通あるいは締め付け金具によって固定す
るようにされている。
Japanese Utility Model Publication No. Sho 61-46393 proposes a heat insulating structure in which doughnut-shaped ceramic fiber moldings are laminated in the longitudinal direction of a water cooling tube. In this case, adjacent ceramic fiber molded bodies are fixed by inserting a pin or by using a clamp.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前記前
者の公報(実公昭50−42098号公報)に記載の断
熱構造では、スタッドおよびスタッド取り付け金物に対
する冷却機能を有していないために、これらの金物の熱
変形や酸化によってキャスタブル耐火物の破壊・脱落を
招いてしまうという問題点がある。
However, since the heat insulating structure described in the former publication (Japanese Utility Model Publication No. 50-42098) does not have a cooling function for the studs and the stud mounting hardware, these hardwares are not provided. There is a problem that the castable refractory is broken or dropped due to thermal deformation or oxidation of the castable refractory.

【0008】一方、前記後者の公報(実公昭61−46
393号公報)に記載の断熱構造では、ピンあるいは締
め付け金具の熱変形でセラミックファイバー成形体の切
れ目や積層界面に隙間が生じ、断熱効果が低下するとと
もに、水冷管の熱損傷も懸念されるという問題点があ
る。
On the other hand, the latter gazette (Japanese Utility Model Publication No. 61-46)
In the heat insulating structure described in Japanese Patent Application Laid-Open No. 393), thermal deformation of the pin or the clamp causes a gap in the ceramic fiber molded body or a gap at the lamination interface, thereby lowering the heat insulating effect and causing heat damage to the water cooling tube. There is a problem.

【0009】本発明は、このような問題点を解消するた
めになされたもので、加熱炉のスキッドパイプ、ライザ
ーパイプ等に適用され、過酷な使用条件下においても優
れた断熱効果を得ることのできる水冷管の断熱構造を提
供することを目的とするものである。
The present invention has been made in order to solve such a problem, and is applied to a skid pipe, a riser pipe, and the like of a heating furnace to obtain an excellent heat insulating effect even under severe use conditions. It is an object of the present invention to provide a heat-insulating structure for a water-cooled tube that can be used.

【0010】[0010]

【課題を解決するための手段および作用・効果】前記目
的を達成するために、本発明に係る水冷管の断熱構造
は、水冷管の外周を微孔性断熱材で被覆し、さらにその
外周をセラミックファイバー成形体で包囲してなること
を特徴とするものである。
Means for Solving the Problems and Action / Effect In order to achieve the above object, a heat insulating structure for a water cooling tube according to the present invention is provided in which the outer periphery of the water cooling tube is covered with a microporous heat insulating material. It is characterized by being surrounded by a ceramic fiber molded body.

【0011】本発明においては、水冷管を被覆する断熱
材として、熱伝導率が極めて低い微孔性断熱材が用いら
れ、この微孔性断熱材に所要の断熱機能を持たせるよう
にされ、さらにその微孔性断熱材の外周をセラミックフ
ァイバー成形体で包囲するようにされていて、前記微孔
性断熱材が管状体から脱離するのが防止される。前記微
孔性断熱材は断熱性に優れる反面、微孔性のために高温
下での使用で焼結が進むと微孔が消失し、断熱機能が失
われ、また微孔性のために組織強度に劣るという欠点を
有しているが、この微孔性断熱材をセラミックファイバ
ー成形体にて包囲することで、微孔性断熱材の過焼結と
物理的損傷とを防止することができ、水冷管に対する断
熱効果は安定的なものとなる。また、セラミックファイ
バー成形体を固定するのにピンあるいは締め付け金具等
の固定具を使用した場合、これら固定具の熱変形でセラ
ミックファイバー成形体の切れ目や積層界面に隙間が生
じたとしても、前記微孔性断熱材の存在によって断熱効
果が低下することはなく、この結果、水冷管が熱損傷す
ることがない。
In the present invention, a microporous heat insulating material having an extremely low thermal conductivity is used as a heat insulating material for covering the water cooling tube, and the microporous heat insulating material is provided with a required heat insulating function. Further, the outer periphery of the microporous heat insulating material is surrounded by a ceramic fiber molded body, so that the microporous heat insulating material is prevented from detaching from the tubular body. Although the microporous heat insulating material has excellent heat insulating properties, the micropores disappear as the sintering proceeds at a high temperature due to the microporosity, the heat insulating function is lost, and the microporous material has a texture due to the microporosity. Although it has a disadvantage of poor strength, by surrounding this microporous heat insulating material with a ceramic fiber molded body, it is possible to prevent oversintering and physical damage of the microporous heat insulating material. In addition, the heat insulating effect on the water cooling tube becomes stable. In addition, when fixing devices such as pins or clamps are used to fix the ceramic fiber molded body, even if a gap is generated in a cut or a lamination interface of the ceramic fiber molded body due to thermal deformation of these fixing devices, the above-mentioned fineness is obtained. The presence of the porous heat insulating material does not reduce the heat insulating effect, and as a result, the water cooling tube is not thermally damaged.

【0012】こうして、優れた断熱効果と信頼性によっ
て、加熱炉のスキッドパイプ、ライザーパイプ等のよう
に過酷な使用条件下で使用される管体においても、その
断熱効果を長期にわたって安定的に発揮することができ
る。
[0012] Thus, due to the excellent heat insulating effect and reliability, the heat insulating effect can be stably exhibited over a long period of time even in a pipe body used under severe use conditions such as a skid pipe and a riser pipe of a heating furnace. can do.

【0013】本発明において、前記セラミックファイバ
ー成形体による包囲は、ドーナツ状またはひも状のセラ
ミックファイバー成形体を水冷管の長さ方向に積層する
ことによりなされるのが好ましい。
In the present invention, the surrounding by the ceramic fiber molded body is preferably performed by laminating a donut-shaped or string-shaped ceramic fiber molded body in the longitudinal direction of the water cooling tube.

【0014】本発明で使用する微孔性断熱材は、100
nm以下の微孔を有し、常温における熱伝導伝率が0.
05w・m−1・k−1以下であるのが好ましい。この
条件を満たすには、その組成として、例えばシリカ超微
粉を主材とするものを選定するのが好適である。このシ
リカ超微粉は、例えば四塩化ケイ素を水素−酸素の火炎
気流中に通すことで製造される。なお、一般にはイン
ク、タイヤ等の添加物として知られているヒュームドシ
リカが使用される。
The microporous heat insulating material used in the present invention is 100
It has micropores of not more than nm and has a thermal conductivity of 0.
It is preferably at most 05 w · m −1 · k −1 . In order to satisfy this condition, it is preferable to select a composition mainly composed of, for example, ultrafine silica powder. This ultrafine silica powder is produced, for example, by passing silicon tetrachloride through a flame of hydrogen-oxygen. In general, fumed silica known as an additive for inks, tires and the like is used.

【0015】前記微孔性断熱材を適用することにより、
熱伝導率が通常の断熱材の1/3から1/10と極めて
低くなる。これにより、断熱層は薄く、且つコンパクト
な構造となる。
By applying the microporous heat insulating material,
The thermal conductivity is extremely low, from 1/3 to 1/10 that of a normal heat insulating material. Thereby, the heat insulating layer has a thin and compact structure.

【0016】製鉄業の加熱炉の場合、定期修理または故
障による修理の際には炉内温度を常温まで下げることが
ある。このとき、耐火物で被覆した水冷管表面に多量の
結露が発生する。微孔性断熱材は、この結露による水分
との反応で組織がぜい弱化し、断熱機能が低下する。シ
リカ超微粉を主材とした微孔性断熱材の場合、結露によ
る組織のぜい弱化はより顕著である。
In the case of a heating furnace in the steel industry, the temperature inside the furnace may be lowered to room temperature during regular repair or repair due to breakdown. At this time, a large amount of dew is generated on the surface of the water-cooled tube covered with the refractory. In the microporous heat insulating material, the tissue weakens due to the reaction with moisture due to the condensation, and the heat insulating function is reduced. In the case of a microporous heat insulating material mainly composed of ultrafine silica powder, the brittleness of the structure due to condensation is more remarkable.

【0017】シリカ超微粉としてのヒュームドシリカ
は、通常、次式の結合組織を有する。
The fumed silica as the ultrafine silica powder usually has the following connective structure.

【化1】 このヒュームドシリカはOH基を有することで、結露等
からくる水分との反応で次式の組織に変化し、その際の
体積収縮で、断熱材の組織をぜい弱化させる。
Embedded image Since this fumed silica has an OH group, it changes into a structure of the following formula by a reaction with moisture coming from dew condensation and the like, and the volume shrinkage at that time weakens the structure of the heat insulating material.

【化2】 Embedded image

【0018】本発明においては、前記水冷管と微孔性断
熱材との間に金属箔を介挿するのが好ましい。このよう
にすれば、水冷管表面の結露による水分を金属箔によっ
て遮断することができ、これによって微孔性断熱材の断
熱効果の劣化を防止することができる。
In the present invention, it is preferable to insert a metal foil between the water cooling tube and the microporous heat insulating material. With this configuration, the moisture due to the condensation on the surface of the water cooling tube can be blocked by the metal foil, and thereby the deterioration of the heat insulating effect of the microporous heat insulating material can be prevented.

【0019】また、前記水冷管と金属箔との間に耐熱性
クッション層が介挿されるのが好ましい。こうすること
で、この耐熱性クッション層が金属箔の破損を防止する
役目をする。
Preferably, a heat-resistant cushion layer is interposed between the water cooling tube and the metal foil. By doing so, the heat-resistant cushion layer serves to prevent damage to the metal foil.

【0020】[0020]

【発明の実施の形態】次に、本発明による水冷管の断熱
構造の具体的な実施の形態について、図面を参照しつつ
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a specific embodiment of a heat insulating structure for a water cooling tube according to the present invention will be described with reference to the drawings.

【0021】図1(a)は、本発明の第1の実施の形態
に係る水冷管の断熱構造を示す断面斜視図、図1(b)
は、セラミックファイバー成形体の斜視図である。
FIG. 1A is a sectional perspective view showing a heat insulating structure of a water cooling tube according to a first embodiment of the present invention, and FIG.
FIG. 3 is a perspective view of a ceramic fiber molded body.

【0022】本実施の形態において、水冷管1は、その
外周部が微孔性断熱材2で被覆され、さらにその外周が
セラミックファイバー成形体3で包囲されている。微孔
性断熱材2の具体例としては、シリカ超微粉として粒子
径10〜100nm程度のヒュームドシリカを主材と
し、必要に応じてチタニア粉、ジルコニア粉、セラミッ
クファイバーを組合わせる。各組成の割合は、例えばチ
タニア粉:0〜20質量%、ジルコニア粉:0〜50質
量%、セラミックファイバー:0〜5質量%、残部をシ
リカ超微粉主体とする。粒子径10〜100nmのシリ
カ超微粉を使用すると、断熱材組織に微細な空隙が形成
されることになり、優れた断熱効果を発揮する。
In the present embodiment, the outer periphery of the water cooling tube 1 is covered with a microporous heat insulating material 2, and the outer periphery is further surrounded by a ceramic fiber molded body 3. As a specific example of the microporous heat insulating material 2, fumed silica having a particle diameter of about 10 to 100 nm is mainly used as ultrafine silica powder, and titania powder, zirconia powder, and ceramic fiber are combined as necessary. The proportion of each composition is, for example, titania powder: 0 to 20% by mass, zirconia powder: 0 to 50% by mass, ceramic fiber: 0 to 5% by mass, and the remainder mainly composed of ultrafine silica powder. When ultrafine silica powder having a particle diameter of 10 to 100 nm is used, fine voids are formed in the heat insulating material structure, and an excellent heat insulating effect is exhibited.

【0023】微孔性断熱材2は、前述の粉体よりなる配
合組成を袋詰めにした状態での成形体、あるいは前述の
粉体よりなる配合組成を成形した後、焼成したもの等で
ある。このうち、粉体を袋詰めにした状態での成形体を
用いれば、曲げや切断加工が容易であることから現場合
わせも可能であり、より精度の高い断熱構造を得ること
ができる。
The microporous heat insulating material 2 is a molded body in a state where the above-mentioned composition of powder is packed in a bag, or a product obtained by molding the above-mentioned composition of powder and firing. . Of these, if a molded body in a state in which powder is packed in a bag is used, bending and cutting can be easily performed, so that site adjustment can be performed, and a more accurate heat insulating structure can be obtained.

【0024】また、セラミックファイバー成形体3によ
る包囲は、例えばドーナツ状またはひも状のセラミック
ファイバー成形体3を水冷管の長さ方向に積層して行わ
れる。図1の例では、ドーナツ状のセラミックファイバ
ー成形体3が示されている。このセラミックファイバー
成形体3には、微孔性断熱材2の外周に嵌合させるため
に切れ目4が入れられる。この切れ目4については、微
孔性断熱材2の外周に嵌合させた後に、締付け金具また
は固定ピン等で係止するのが好ましい。
The surrounding by the ceramic fiber molded body 3 is performed, for example, by laminating donut-shaped or string-shaped ceramic fiber molded bodies 3 in the longitudinal direction of the water-cooled tube. In the example of FIG. 1, a doughnut-shaped ceramic fiber molded body 3 is shown. A cut 4 is made in the ceramic fiber molded body 3 to fit the outer periphery of the microporous heat insulating material 2. It is preferable that the notch 4 be fitted with the outer periphery of the microporous heat insulating material 2 and then locked with a fastener or a fixing pin.

【0025】なお、図示されていないが、ひも状のセラ
ミックファイバー成形体の場合には、このセラミックフ
ァイバー成形体を微孔性断熱材2の外周に巻き付けるこ
とによって積層させる。
Although not shown, in the case of a string-shaped ceramic fiber molded body, the ceramic fiber molded body is laminated by winding it around the outer periphery of the microporous heat insulating material 2.

【0026】前記セラミックファイバー成形体3は図に
示す一重に限らず、材質の異なるセラミックファイバー
成形体をもって多層にしてもよい。また、セラミックフ
ァイバーの材質は、アルミナ質あるいはアルミナ−シリ
カ質が一搬的である。アルミナ質はアルミナ−シリカ質
に比べて耐熱性に優れる反面、価格が高い。このため、
セラミックファイバー成形体を、例えば上層にアルミナ
質、下層にアルミナ−シリカ質の多層構造にしてもよ
い。
The ceramic fiber molded body 3 is not limited to a single ceramic fiber molded body as shown in FIG. The material of the ceramic fiber is translucent to alumina or alumina-silica. Alumina has better heat resistance than alumina-silica, but is expensive. For this reason,
The ceramic fiber molded body may have a multilayer structure of, for example, alumina in the upper layer and alumina-silica in the lower layer.

【0027】図2は、本発明の第2の実施の形態に係る
水冷管の断熱構造を示す断面斜視図である。
FIG. 2 is a sectional perspective view showing a heat insulating structure of a water cooling tube according to a second embodiment of the present invention.

【0028】本実施の形態においては、水冷管1と微孔
性断熱材2との間に金属箔5が介挿されている。ここ
で、金属箔5の材質例としては、アルミニウム、ステン
レス、鉄等である。中でも加工性、耐酸性および経済性
を兼ね備えるアルミニウムを用いるのが好ましい。な
お、アルミニウム箔等の金属箔5をもって表面を被覆し
た微孔性断熱材2を使用した場合にも、水冷管1と微孔
性断熱材2との間に金属箔5を介挿させた構造を得るこ
とができる。例えば表面をポリエチレン等の樹脂フィル
ムで補強したアルミニウム箔の袋で真空パックした微孔
性断熱材を用いることができる。
In this embodiment, a metal foil 5 is interposed between the water cooling tube 1 and the microporous heat insulating material 2. Here, examples of the material of the metal foil 5 include aluminum, stainless steel, and iron. Among them, it is preferable to use aluminum having both workability, acid resistance and economy. Note that, even when the microporous heat insulating material 2 whose surface is covered with the metal foil 5 such as an aluminum foil is used, the structure in which the metal foil 5 is interposed between the water cooling tube 1 and the microporous heat insulating material 2 is used. Can be obtained. For example, a microporous heat insulating material vacuum-packed with an aluminum foil bag whose surface is reinforced with a resin film such as polyethylene can be used.

【0029】本実施の形態において、金属箔5、特にア
ルミニウム箔は水冷管1の付着物、突起物等と接触して
破損することが懸念される。そこで、この金属箔5を使
用した場合には、図3に示されるように水冷管1と金属
箔5との間にセラミックファイバーシート等の耐熱性ク
ッション層6を介挿し、これによって金属箔5の破損を
防止するようにするのが好ましい。ここで、セラミック
ファイバーシートの材質としては、アルミナ質、アルミ
ナ−シリカ質等を選択するのが良い。また、その厚さは
1〜10mm程度の薄層とするのが良い。
In the present embodiment, there is a concern that the metal foil 5, particularly the aluminum foil, may be damaged by contact with the attachments, projections and the like of the water cooling tube 1. Therefore, when this metal foil 5 is used, a heat resistant cushion layer 6 such as a ceramic fiber sheet is interposed between the water cooling tube 1 and the metal foil 5 as shown in FIG. It is preferable to prevent the breakage of the sheet. Here, as the material of the ceramic fiber sheet, alumina, alumina-silica or the like is preferably selected. The thickness is preferably a thin layer of about 1 to 10 mm.

【0030】[0030]

【実施例】次に、製鉄業の連続加熱炉において使用され
るスキッドパイプに適用した実施例および比較例につい
て説明する。
Next, examples and comparative examples applied to skid pipes used in a continuous heating furnace in the steelmaking industry will be described.

【0031】実施例:シリカ超微粉としてヒュームドシ
リカを使用し、このヒュームドシリカを主材とした、厚
さ10mmで常温における熱伝導率0.021w・m
−1・k−1の微孔性断熱材をもって外径165mmの
水冷管を被覆し、さらにその上を、厚さ65mmのアル
ミナ質セラミックファイバー成形体で包囲した。 比較例:外径165mmの水冷管を、厚さ75mmのア
ルミナ質セラミックファイバー成形体のみで包囲した
(従来の断熱構造に相当)。ここで、実施例、比較例と
もにセラミックファイバー成形体は厚さ65mmのドー
ナツ型とし、水冷管の長さ方向に積層して設けた。
Example: Fumed silica was used as the ultrafine silica powder, and the fumed silica was used as a main material.
A water-cooled tube having an outer diameter of 165 mm was covered with a microporous heat insulating material of −1 · k −1 , and further covered with a 65 mm-thick alumina ceramic fiber molded body. Comparative Example: A water-cooled tube having an outer diameter of 165 mm was surrounded only by a 75 mm-thick alumina ceramic fiber molded body (corresponding to a conventional heat insulating structure). Here, in both the examples and the comparative examples, the ceramic fiber molded body was a donut type having a thickness of 65 mm, and was provided by being laminated in the length direction of the water cooling tube.

【0032】図4は、前述の実施例および比較例の断熱
構造において、その計算境界温度を示すグラフである。
実施例の断熱構造(実線)においては、従来の断熱構造
に相当する比較例(破線)に比べ、放散熱量が25%低
減していることが確認できた。また、実施例において
は、セラミックファイバー成形体による保護作用で、微
孔性断熱材はその優れた断熱効果を長期にわたって発揮
することができた。
FIG. 4 is a graph showing the calculated boundary temperatures in the heat insulating structures of the above-mentioned examples and comparative examples.
In the heat insulating structure (solid line) of the example, it was confirmed that the amount of heat dissipated was reduced by 25% as compared with the comparative example (broken line) corresponding to the conventional heat insulating structure. Further, in the examples, the microporous heat insulating material was able to exert its excellent heat insulating effect over a long period of time due to the protective action of the ceramic fiber molded body.

【0033】前記実施例の構造において、さらに水冷管
と微孔性断熱材との間にアルミニウム箔を介在させた例
では、水冷管に生じる結露からの水分を遮断し、微孔性
断熱材がもつ断熱効果がより確実なものになった。
In the structure of the above embodiment, in the case where an aluminum foil is interposed between the water cooling tube and the microporous heat insulating material, moisture from dew condensation generated in the water cooling tube is blocked, and the microporous heat insulating material is used. The heat insulation effect has become more reliable.

【0034】また、アルミニウム箔を介在させた前記実
施例において、水冷管とアルミニウム箔との間に、耐熱
性クッション層として厚さ10mmのアルミナ質ファイ
バー層を設けた例では、前記アルミニウム箔の破損防止
効果によって、断熱構造の信頼性がさらに向上した。
In the above-described embodiment in which an aluminum foil is interposed, an alumina fiber layer having a thickness of 10 mm is provided as a heat-resistant cushion layer between the water cooling tube and the aluminum foil. The prevention effect further improved the reliability of the heat insulating structure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(a)は、本発明の第1の実施の形態に係
る水冷管の断熱構造を示す断面斜視図、図1(b)は、
セラミックファイバー成形体の斜視図である。
FIG. 1A is a cross-sectional perspective view showing a heat insulating structure of a water cooling tube according to a first embodiment of the present invention, and FIG.
It is a perspective view of a ceramic fiber molded object.

【図2】図2は、本発明の第2の実施の形態に係る水冷
管の断熱構造を示す断面斜視図である。
FIG. 2 is a sectional perspective view showing a heat insulating structure of a water cooling tube according to a second embodiment of the present invention.

【図3】図3は、第2の実施の形態の変形例を示す断面
斜視図である。
FIG. 3 is a cross-sectional perspective view showing a modification of the second embodiment.

【図4】図4は、断熱における計算境界温度を示したグ
ラフである。
FIG. 4 is a graph showing a calculated boundary temperature in heat insulation.

【図5】図5は、従来の断熱キャスタブル用いた断熱構
造の断面斜視図である。
FIG. 5 is a cross-sectional perspective view of a conventional heat-insulating structure using a heat-insulating castable.

【符号の説明】[Explanation of symbols]

1 水冷管 2 微孔性断熱材 3 セラミックファイバー成形体 4 切れ目 5 金属箔 6 耐熱性クッション層 DESCRIPTION OF SYMBOLS 1 Water-cooled tube 2 Microporous heat insulating material 3 Ceramic fiber molded object 4 Cut 5 Metal foil 6 Heat resistant cushion layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿部 恭久 愛知県東海市東海町5−3 新日本製鐵株 式会社名古屋製鐵所内 (72)発明者 佐藤 正 愛知県東海市東海町5−3 新日本製鐵株 式会社名古屋製鐵所内 (72)発明者 佐藤 久 兵庫県高砂市荒井町新浜1丁目3番1号 ハリマセラミック株式会社内 (72)発明者 中島 正人 兵庫県高砂市荒井町新浜1丁目3番1号 ハリマセラミック株式会社内 Fターム(参考) 3H036 AA01 AB23 AC01 AE04 AE13 4K034 AA13 BA08 CA01 FA05 FB15 4K055 AA05 CA01  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yasuhisa Abe 5-3 Tokai-cho, Tokai-city, Aichi Prefecture Nippon Steel Corporation Nagoya Works (72) Inventor Tadashi Sato 5-3, Tokai-cho, Tokai-city, Aichi Prefecture Inside Nippon Steel Corporation Nagoya Works (72) Inventor Hisashi Sato 1-3-1, Shinhama, Arai-machi, Takasago City, Hyogo Prefecture Inside Harima Ceramics Co., Ltd. No.3-1 F-term in Harima Ceramics Co., Ltd. (Reference) 3H036 AA01 AB23 AC01 AE04 AE13 4K034 AA13 BA08 CA01 FA05 FB15 4K055 AA05 CA01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水冷管の外周を微孔性断熱材で被覆し、
さらにその外周をセラミックファイバー成形体で包囲し
てなることを特徴とする水冷管の断熱構造。
1. An outer periphery of a water cooling tube is covered with a microporous heat insulating material,
A heat insulating structure for a water-cooled tube, the outer periphery of which is surrounded by a ceramic fiber molded body.
【請求項2】 前記セラミックファイバー成形体による
包囲は、ドーナツ状またはひも状のセラミックファイバ
ー成形体を水冷管の長さ方向に積層することによりなさ
れる請求項1に記載の水冷管の断熱構造。
2. The heat insulating structure for a water cooling tube according to claim 1, wherein the surrounding by the ceramic fiber molded body is performed by laminating a donut-shaped or string-shaped ceramic fiber molded body in a longitudinal direction of the water cooling tube.
【請求項3】 前記微孔性断熱材の組成はシリカ超微粉
を主材とするものである請求項1または2に記載の水冷
管の断熱構造。
3. The heat insulating structure for a water-cooled tube according to claim 1, wherein the composition of the microporous heat insulating material is mainly composed of ultrafine silica powder.
【請求項4】 前記水冷管と微孔性断熱材との間に金属
箔が介挿される請求項1、2または3に記載の水冷管の
断熱構造。
4. The heat insulating structure for a water cooling pipe according to claim 1, wherein a metal foil is interposed between the water cooling pipe and the microporous heat insulating material.
【請求項5】 前記水冷管と金属箔との間に耐熱性クッ
ション層が介挿される請求項4に記載の水冷管の断熱構
造。
5. The heat insulating structure for a water-cooled tube according to claim 4, wherein a heat-resistant cushion layer is interposed between the water-cooled tube and the metal foil.
JP37057299A 1999-12-27 1999-12-27 Heat insulation structure of water-cooled pipe for heating furnace Expired - Fee Related JP3830707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37057299A JP3830707B2 (en) 1999-12-27 1999-12-27 Heat insulation structure of water-cooled pipe for heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37057299A JP3830707B2 (en) 1999-12-27 1999-12-27 Heat insulation structure of water-cooled pipe for heating furnace

Publications (2)

Publication Number Publication Date
JP2001182892A true JP2001182892A (en) 2001-07-06
JP3830707B2 JP3830707B2 (en) 2006-10-11

Family

ID=18497243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37057299A Expired - Fee Related JP3830707B2 (en) 1999-12-27 1999-12-27 Heat insulation structure of water-cooled pipe for heating furnace

Country Status (1)

Country Link
JP (1) JP3830707B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009166526A (en) * 2008-01-11 2009-07-30 Honda Motor Co Ltd High mileage radial tire
JP2010151284A (en) * 2008-12-26 2010-07-08 Nippon Steel Corp Method of curing end of heat insulting refractory material lined on outer periphery of pipe
JP2016125769A (en) * 2015-01-05 2016-07-11 Dowaサーモテック株式会社 Heat treatment furnace, heat insulation material unit, agitation fan, and method for building furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009166526A (en) * 2008-01-11 2009-07-30 Honda Motor Co Ltd High mileage radial tire
JP2010151284A (en) * 2008-12-26 2010-07-08 Nippon Steel Corp Method of curing end of heat insulting refractory material lined on outer periphery of pipe
JP2016125769A (en) * 2015-01-05 2016-07-11 Dowaサーモテック株式会社 Heat treatment furnace, heat insulation material unit, agitation fan, and method for building furnace

Also Published As

Publication number Publication date
JP3830707B2 (en) 2006-10-11

Similar Documents

Publication Publication Date Title
JP6507004B2 (en) Core tube, core refractory structure using the same and induction heating furnace
KR101571644B1 (en) Lining structure for molten-metal container
JP2001182892A (en) Heat insulating structure of water jacket pipe
US3353808A (en) Refractory coated oxygen lance
JP4189087B2 (en) Lined structure of vacuum degassing furnace for molten steel and heat insulating plate used therefor
JP3785449B2 (en) Refractory structure of blast furnace cast iron
KR20160111484A (en) Process for producing lining structure of vessel for molten metal, and lining structure of vessel for molten metal
JP2875413B2 (en) Molten metal container
JP2613086B2 (en) Thermocouple protection tube and its manufacturing method
JPH10206031A (en) Heat insulating lining structure for ladle laying part
JP2003042667A (en) Protective structure of molten metal container
JP3715184B2 (en) Stave cooler and manufacturing method of double pipe used therefor
JP2002293611A (en) Refractory tube for induction heating furnace
JP2000319721A (en) Ceramic tube, and induction heating furnace using the same
GB1585155A (en) Arc-furnace lining
JP5691199B2 (en) Refractory lining structure for chaotic cars
RU1786687C (en) Method of manufacture of heating unit of electric furnace
JP2003103358A (en) Permanent brick with micro-porous heat-insulating material
CN217083308U (en) Composite magnesia-chrome brick
JP2941825B2 (en) Radiator tube of iron-chromium-aluminum type alloy and method of manufacturing the same
JP5439919B2 (en) Refractory lining structure for chaotic cars
JP5544743B2 (en) Refractory lining structure for chaotic cars
JPH0327720Y2 (en)
JPH0129519Y2 (en)
JPS59107757A (en) Ceramic roll for continuous casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060712

R150 Certificate of patent or registration of utility model

Ref document number: 3830707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees