JP2001179261A - Method for keeping electric desalting apparatus - Google Patents

Method for keeping electric desalting apparatus

Info

Publication number
JP2001179261A
JP2001179261A JP36482299A JP36482299A JP2001179261A JP 2001179261 A JP2001179261 A JP 2001179261A JP 36482299 A JP36482299 A JP 36482299A JP 36482299 A JP36482299 A JP 36482299A JP 2001179261 A JP2001179261 A JP 2001179261A
Authority
JP
Japan
Prior art keywords
exchange membrane
chamber
membrane
desalination apparatus
electric desalination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36482299A
Other languages
Japanese (ja)
Inventor
Hiroshi Toda
洋 戸田
Yukio Matsumura
幸夫 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP36482299A priority Critical patent/JP2001179261A/en
Publication of JP2001179261A publication Critical patent/JP2001179261A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for keeping an electric desalting apparatus so as to prevent the lowering of the capacity of an ion exchange membrane or the like caused by the surface contamination in the apparatus at a time when the apparatus is kept over a long period of time without supplying water and a current. SOLUTION: When the electric desalting apparatus is kept over a long period of time without supplying water and a current, the water content of an ion exchange membrane and an ion exchange resin is set to 30% or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、食塩製造工業、廃
液処理関連工業、医薬品製造工業、半導体製造工業、食
品工業などの産業分野の他、ボイラー、研究施設などの
純水利用施設で用いられる電気式脱塩装置の保管方法に
関する。
The present invention is used in pure water utilization facilities such as boilers and research facilities in addition to industrial fields such as salt production industry, waste liquid treatment industry, pharmaceutical production industry, semiconductor production industry, food industry and the like. The present invention relates to a method for storing an electric desalination apparatus.

【0002】[0002]

【従来の技術】陽極を備える陽極室と、陰極を備える陰
極室との間に、カチオン交換膜とアニオン交換膜とを交
互に配列し、陽極側がアニオン交換膜で区画され陰極側
がカチオン交換膜で区画された脱塩室、陽極側がカチオ
ン交換膜で区画され陰極側がアニオン交換膜で区画され
た濃縮室が形成され、電圧を印加することにより脱塩室
内に供給される被処理液体中のイオンを、濃縮室内に供
給される液体中へ移動させ、被処理液体を脱塩する電気
式脱塩装置が知られている。通常、この電気式脱塩装置
の脱塩室にはイオン交換樹脂が充填されている。
2. Description of the Related Art A cation exchange membrane and an anion exchange membrane are alternately arranged between an anode chamber having an anode and a cathode chamber having a cathode, and the anode side is partitioned by an anion exchange membrane and the cathode side is a cation exchange membrane. A partitioned deionization chamber, a concentration chamber is formed in which the anode side is partitioned by a cation exchange membrane and the cathode side is partitioned by an anion exchange membrane, and ions in the liquid to be treated supplied into the desalination chamber by applying a voltage are formed. 2. Description of the Related Art There is known an electric desalination apparatus that moves a liquid to be treated by moving the liquid into a liquid supplied into a concentration chamber. Usually, a desalination chamber of this electric desalination apparatus is filled with an ion exchange resin.

【0003】電気式脱塩装置の不使用時に長期保管する
場合には、単純に使用溶液を満たしたままや、使用溶液
を抜く場合でも少量の溶液を残した状態での保管方法が
知られている。例えば50%プロピレングリコール溶液
を装置内に満たした保管方法などがある。これらの方法
によれば、1週間以上の通水通電せずに長期保管する際
は、かびなどの発生が懸念される。このためイオン交換
膜などの性能低下や装置の運転に必要な電圧の上昇、さ
らには医薬品関連工業ではTOC(有機体炭素)やエン
ドトキシンによる品質低下が問題となる可能性がある。
[0003] For long-term storage when the electric desalination apparatus is not used, a storage method is known in which the used solution is simply filled or a small amount of the solution is left even when the used solution is withdrawn. I have. For example, there is a storage method in which a 50% propylene glycol solution is filled in the apparatus. According to these methods, when storing for a long time without supplying electricity for more than one week, there is a concern that mold or the like may occur. For this reason, there is a possibility that the performance of the ion-exchange membrane or the like may be reduced, the voltage required for operating the apparatus may be increased, and further, in the pharmaceutical industry, the quality may be deteriorated due to TOC (organic carbon) or endotoxin.

【0004】かびなどによる汚染を防止するために、装
置内を防かび効果のある液体で満たす方法が考えられる
が、例えば超純水等を製造する装置に関しては、再起用
後の処理水中に薬液などの不純物が混ざり、所定の水質
を得るためには、再起用に長時間要するおそれがある。
さらに、溶液で装置内を満たす方法は、溶液の分だけ装
置の重量が大きくなるので、移動や流通に影響がある。
また寒冷地では、場合によっては装置内部の水分の凍結
により、イオン交換膜やイオン交換樹脂または装置自身
の破壊が起こる可能性もある。
[0004] In order to prevent mold contamination, a method of filling the inside of the apparatus with a liquid having a fungicidal effect can be considered. For example, in the case of an apparatus for producing ultrapure water or the like, the chemical liquid is contained in the treated water after reactivation. In order to obtain predetermined water quality, impurities may be required for re-starting for a long time.
Further, in the method of filling the inside of the apparatus with the solution, the weight of the apparatus is increased by the amount of the solution, so that movement and distribution are affected.
Further, in a cold region, there is a possibility that the ion exchange membrane, the ion exchange resin, or the device itself may be destroyed due to freezing of water inside the device in some cases.

【0005】一方、イオン交換樹脂塔などでは、数ヶ月
以上の長期保存時に性能低下することがある。その原因
としては、塔内にアニオン交換樹脂とカチオン交換樹脂
が混在しているため、保管期間中にカチオン交換樹脂か
らの有機物などの溶出物により、アニオン交換樹脂の表
面が汚染を受けることが考えられている。このため、例
えば特開平7−116526に記載されるように、アニ
オン交換樹脂とカチオン交換樹脂を分離して両者の接触
部を減らすことによって、性能を維持する試みが行われ
ている。しかし、電気式脱塩装置の脱塩室にイオン交換
樹脂を充填した場合では、イオン交換樹脂の分離操作は
装置上の問題から困難であり、実際の適用は行われてい
ない。
On the other hand, in ion-exchange resin towers and the like, the performance may deteriorate during long-term storage for several months or more. The reason for this is that since the anion exchange resin and the cation exchange resin are mixed in the tower, the surface of the anion exchange resin may be contaminated by eluates such as organic substances from the cation exchange resin during the storage period. Have been. For this reason, as described in, for example, JP-A-7-116526, an attempt has been made to maintain the performance by separating the anion exchange resin and the cation exchange resin to reduce the contact portion between the two. However, when the ion exchange resin is filled in the desalination chamber of the electric desalination apparatus, the operation of separating the ion exchange resin is difficult due to a problem in the apparatus, and no actual application has been performed.

【0006】[0006]

【発明が解決しようとする課題】本発明は、電気式脱塩
装置を通水通電せず長期間保管する場合に、イオン交換
膜等の品質低下を防止することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to prevent deterioration of the quality of an ion-exchange membrane or the like when stored for a long period of time without passing electricity through an electric desalination apparatus.

【0007】[0007]

【課題を解決するための手段】本発明は第1に、陽極を
備える陽極室と、陰極を備える陰極室との間に、カチオ
ン交換膜とアニオン交換膜とを交互に配列し、陽極側が
アニオン交換膜で区画され陰極側がカチオン交換膜で区
画された脱塩室と、陽極側がカチオン交換膜で区画され
陰極側がアニオン交換膜で区画された濃縮室とを交互に
形成して構成される電気式脱塩装置において、通水通電
をせず長期間保管する際に、前記電気式脱塩装置内の液
体を排出し、かつ、前記カチオン交換膜および前記アニ
オン交換膜の含水率が運転時の30%以下となるように
乾燥させる電気式脱塩装置の保管方法を提供する。
According to the present invention, first, a cation exchange membrane and an anion exchange membrane are alternately arranged between an anode chamber having an anode and a cathode chamber having a cathode, and the anion side has an anion. An electric type configured by alternately forming a desalting chamber partitioned by an exchange membrane and a cathode side partitioned by a cation exchange membrane, and a concentration chamber partitioned by an anode side by a cation exchange membrane and a cathode side partitioned by an anion exchange membrane. In a desalination apparatus, when storing for a long time without supplying water, the liquid in the electric desalination apparatus is discharged, and the water content of the cation exchange membrane and the anion exchange membrane is 30% during operation. % Storage method of an electric desalination apparatus that is dried so as to be less than 0.1%.

【0008】また、本発明は第2に、前述される第1の
方法において前記電気式脱塩装置の前記脱塩室内にイオ
ン交換樹脂が収容され、通水通電をせず長期保管する際
に、前記イオン交換樹脂の含水率が、運転時の30%以
下となるように当該脱塩装置内を乾燥させて保管する方
法を提供する。
[0008] Secondly, the present invention relates to the above-mentioned first method, wherein the ion-exchange resin is accommodated in the desalting chamber of the electric desalination apparatus and stored for a long time without supplying water. The present invention also provides a method of drying and storing the inside of the desalination apparatus such that the water content of the ion exchange resin is 30% or less during operation.

【0009】さらに、本発明は第3に、前述される第1
と第2の方法において、前記カチオン交換膜または前記
アニオン交換膜は、乾燥状態での膜寸法と運転時の状態
での膜寸法の差が、運転時の状態での膜寸法に対して1
%以下である保管方法を提供する。
Further, the present invention thirdly provides the above-described first embodiment.
And the second method, wherein the difference between the membrane size in the dry state and the membrane size in the operation state is 1 to the membrane size in the operation state.
% Is provided.

【0010】さらに、本発明は第4に、前述の第1〜3
の電気式脱塩装置の保管方法に際し、前記カチオン交換
膜および前記アニオン交換膜を乾燥した後、前記電気式
脱塩素内に乾燥気体を封入する保管方法を提供する。
Further, the present invention fourthly provides the first to third embodiments.
In the storage method of the electric desalination apparatus described above, a storage method is provided in which the cation exchange membrane and the anion exchange membrane are dried and then a dry gas is sealed in the electric dechlorination.

【0011】[0011]

【発明の実施の形態】本発明で用いる電気式脱塩装置の
一例を図1に示す。図1の電気式脱塩装置1では陽極2
を備える陽極室3と陰極9を備える陰極室8との間に、
カチオン交換膜4とアニオン交換膜5とを交互に配列
し、陽極側がアニオン交換膜で区画され陰極側がカチオ
ン交換膜で区画された脱塩室6、陽極側がカチオン交換
膜で区画され陰極側がアニオン交換膜で区画された濃縮
室7が形成されている。そして電圧を印加することによ
り脱塩室6内に供給される被処理液体中のイオンを、濃
縮室7へ供給される溶液中へと移動させ、被処理液体を
脱塩する。
FIG. 1 shows an example of an electric desalination apparatus used in the present invention. In the electric desalination apparatus 1 shown in FIG.
Between an anode chamber 3 having a cathode and a cathode chamber 8 having a cathode 9;
A cation exchange membrane 4 and an anion exchange membrane 5 are alternately arranged, a desalting chamber 6 in which the anode side is partitioned by an anion exchange membrane and the cathode side is partitioned by a cation exchange membrane, and the anode side is partitioned by a cation exchange membrane and the cathode side is anion exchange membrane. A concentration chamber 7 partitioned by a membrane is formed. Then, by applying a voltage, ions in the liquid to be treated supplied into the desalting chamber 6 are moved into the solution supplied to the concentration chamber 7, and the liquid to be treated is desalted.

【0012】具体的には、脱塩室供給ダクト10を通し
て脱塩室6に供給される被処理液体中の陽イオンは、カ
チオン交換膜を透過して濃縮室7ヘ移動し、次のアニオ
ン交換膜によりその移動はせき止められて濃縮室7に留
まる。一方、脱塩室供給ダクト10を通して脱塩室に供
給される被処理液体中の陰イオンは、アニオン交換膜を
透過して濃縮室7ヘ移動し、次のカチオン交換膜により
その移動はせき止められて濃縮室7に留まる。脱塩され
た溶液は、脱塩室排出ダクト15を通して排出される。
濃縮室7には濃縮室供給ダクト11から電解質溶液が供
給される。隣の脱塩室から透過してきたイオンが濃縮さ
れた濃縮室7中の液体は、濃縮室排出ダクト14を通じ
排出される。
More specifically, the cations in the liquid to be treated, which are supplied to the desalting chamber 6 through the desalting chamber supply duct 10, pass through the cation exchange membrane and move to the concentration chamber 7, where the next anion exchange is performed. The movement is blocked by the membrane and stays in the concentration chamber 7. On the other hand, the anions in the liquid to be treated, which are supplied to the desalting chamber through the desalting chamber supply duct 10, pass through the anion exchange membrane and move to the concentration chamber 7, where the movement is blocked by the next cation exchange membrane. And stays in the concentration room 7. The desalted solution is discharged through a desalting chamber discharge duct 15.
An electrolyte solution is supplied to the concentration chamber 7 from a concentration chamber supply duct 11. The liquid in the concentration chamber 7 in which the ions permeating from the adjacent desalting chamber are concentrated is discharged through the concentration chamber discharge duct 14.

【0013】また、本電気式脱塩装置の陽極室3中の液
体は、陽極室排出ダクト12を通して、陰極室8中の液
体は、陰極室排出ダクト13を通して排出される。
The liquid in the anode chamber 3 of the electric desalination apparatus is discharged through an anode chamber discharge duct 12, and the liquid in the cathode chamber 8 is discharged through a cathode chamber discharge duct 13.

【0014】本発明における電気式脱塩装置に用いるア
ニオン交換膜またはカチオン交換膜(以下総称してイオ
ン交換膜という)としては、乾燥した時点での膜強度が
十分にあれば、一般に区分される均質膜または不均質膜
等のいずれでもよい。特に、膨潤した後の再乾燥におい
て膜の寸法変化が少ない点で、イオン交換樹脂とバイン
ダーを混合して作製した不均質膜が好ましい。膜破断を
防ぐためには、一旦水で膨潤させた後に運転時の含水率
の30%以下まで水分を除去したときに生ずる引張応力
に耐えられる強度を有するのが好ましい。具体的には、
引張強度として20N/cm以上が望ましい。
An anion exchange membrane or a cation exchange membrane (hereinafter collectively referred to as an ion exchange membrane) used in the electric desalination apparatus of the present invention is generally classified as long as the membrane strength at the time of drying is sufficient. Either a homogeneous film or a heterogeneous film may be used. In particular, a heterogeneous membrane prepared by mixing an ion-exchange resin and a binder is preferable in that the dimensional change of the membrane during swelling and re-drying is small. In order to prevent film breakage, it is preferable that the film has a strength that can withstand the tensile stress generated when water is removed to 30% or less of the water content during operation after being once swollen with water. In particular,
The tensile strength is desirably 20 N / cm or more.

【0015】本発明では、通水通電をせず長期間保管す
る際に、イオン交換膜の含水率は運転時でのイオン交換
膜の含水率に対し、30%以下とすることが必要であ
る。生菌等の発生を抑制する点から含水率は20%以下
が好ましい。
In the present invention, it is necessary that the water content of the ion-exchange membrane is not more than 30% of the water content of the ion-exchange membrane during operation when the battery is stored for a long period of time without supplying electricity. . The water content is preferably 20% or less from the viewpoint of suppressing the generation of viable bacteria and the like.

【0016】本発明で使用されるイオン交換膜は、耐薬
品性、耐熱性、イオン交換特性および選択透過性の制御
の容易性などの優位性から、スチレン−ジビニルベンゼ
ン共重合体系のイオン交換膜が好ましい。
The ion-exchange membrane used in the present invention is an ion-exchange membrane of a styrene-divinylbenzene copolymer system because of its advantages such as chemical resistance, heat resistance, ion exchange characteristics and easy control of permselectivity. Is preferred.

【0017】また、イオン交換膜中のイオン交換基は、
陽イオン交換基としては強酸であるスルホン酸型が、陰
イオン交換基としては強塩基である4級アンモニウム塩
型またはピリジウム塩型が、イオン交換特性と化学的安
定性の点から好ましい。イオン交換膜のイオン交換容量
は、0.5〜7ミリ当量/g乾燥樹脂が好ましい。イオ
ン交換容量が0.5ミリ当量/g乾燥樹脂より低いと、
脱塩室でのイオンの吸着、脱塩が十分に行われず、処理
水純度が低下するおそれがあるので好ましくない。イオ
ン交換容量が1〜5ミリ当量/g乾燥樹脂である場合
は、処理水純度の高いものが得られ、性能安定性も優れ
ておりさらに好ましい。
The ion exchange group in the ion exchange membrane is
As the cation exchange group, a sulfonic acid type which is a strong acid is preferable, and as an anion exchange group, a quaternary ammonium salt type or a pyridinium salt type which is a strong base is preferable in terms of ion exchange characteristics and chemical stability. The ion exchange capacity of the ion exchange membrane is preferably 0.5 to 7 meq / g dry resin. If the ion exchange capacity is lower than 0.5 meq / g dry resin,
It is not preferable because adsorption and desalting of ions in the desalting chamber are not sufficiently performed, and the purity of treated water may be reduced. When the ion exchange capacity is 1 to 5 meq / g dry resin, a high purity of treated water can be obtained, and the performance stability is also excellent.

【0018】またイオン交換膜の寸法の変化は、運転時
の状態での膜寸法に対する乾燥状態の寸法の差が1%以
下であることが好ましい。これらの方法は、いずれも、
膜を固定せずに測定する。膜破断を避けるために寸法差
が0.5%以下であればさらに好ましい。
The change in the dimensions of the ion exchange membrane is preferably such that the difference between the dimensions in the dry state and the dimensions in the operation state is 1% or less. Each of these methods
Measure without fixing the membrane. More preferably, the dimensional difference is 0.5% or less in order to avoid film breakage.

【0019】本発明においては、脱塩室内にイオン交換
樹脂を収容することにより、さらに脱塩効率を高めるこ
とができる。この場合乾燥時には、脱塩室内に収容した
イオン交換樹脂も、その含水率が、運転時の含水率に対
して30%以下となるよう乾燥することが好ましい。
In the present invention, the desalting efficiency can be further improved by accommodating the ion exchange resin in the desalting chamber. In this case, at the time of drying, it is preferable that the ion exchange resin accommodated in the desalting chamber is also dried so that the water content thereof is 30% or less of the water content during operation.

【0020】本発明に用いられるイオン交換樹脂として
は、一般に純水製造装置として使用される電気式脱塩装
置の脱塩室内に充填されているイオン交換樹脂体に代表
されるビーズ状、繊維状、シート状等のイオン交換樹脂
が用いられ、特にその形状および組成に制限はない。ま
たそれらをイオン交換樹脂以外の成分と混合して成形し
ても得られるような、イオン交換樹脂多孔質体を用いる
ことが好ましい。
The ion exchange resin used in the present invention may be a bead or fibrous material represented by an ion exchange resin filled in a desalting chamber of an electric desalination apparatus generally used as a pure water producing apparatus. , A sheet-like ion exchange resin is used, and the shape and composition are not particularly limited. Further, it is preferable to use an ion exchange resin porous body which can be obtained by mixing and molding these with components other than the ion exchange resin.

【0021】本発明において、イオン交換膜を乾燥した
後、電気式脱塩装置中に乾燥気体を封入するのが好まし
い。その場合に用いられる気体は、窒素のような酸化性
のない気体、露点が−10℃以下である乾燥空気、その
他イオン交換基を破壊しない気体であればいずれでもよ
く、防菌防かび作用が備わっていればさらに好ましい。
これらの気体を封入する方法としては、温度変化させる
ことで当該気体を発生させるような液体または固体を封
入する方法が好ましい。
In the present invention, it is preferable that after the ion exchange membrane is dried, a dry gas is sealed in an electric desalination apparatus. The gas used in this case may be any gas having no oxidizing property such as nitrogen, dry air having a dew point of −10 ° C. or less, or any other gas that does not destroy the ion exchange group. It is more preferable if it is provided.
As a method for encapsulating these gases, a method for encapsulating a liquid or a solid that generates the gas by changing the temperature is preferable.

【0022】[0022]

【実施例】[例1]図1のような構成で、脱塩室数30
室の電気式脱塩装置を使用した。脱塩室にカチオン交換
樹脂(三菱化学社製、商品名SK−1B)、アニオン交
換樹脂(三菱化学社製、商品名SA−10A)およびバ
インダー(ダウケミカル社製、商品名SM−1300)
を混合して成形したイオン交換樹脂多孔質体を充填し
た。またイオン交換膜として、スチレン−ジビニルベン
ゼン系の共重合体にアニオン交換基を導入したアニオン
交換膜および同重合体にカチオン交換基を導入したカチ
オン交換膜(旭硝子社製、商品名セレミオン)を使用し
た。濃縮室には流路を確保するための樹脂スペーサーを
充填した。被処理液としてイオン交換水を逆浸透膜装置
で処理した水を通水し、濃縮室、陰極室および陽極室に
は電導度が約300μS/cmとなるように試薬級食塩
を加えて調製した水溶液を通水した。
[Example 1] With the configuration as shown in FIG.
A room electric desalination unit was used. Cation exchange resin (Mitsubishi Chemical Corporation, trade name SK-1B), anion exchange resin (Mitsubishi Chemical Corporation, trade name SA-10A) and binder (Dow Chemical Co., trade name SM-1300) in the desalting chamber
Was mixed and molded into an ion-exchange resin porous body. In addition, as the ion exchange membrane, an anion exchange membrane in which an anion exchange group is introduced into a styrene-divinylbenzene copolymer and a cation exchange membrane in which a cation exchange group is introduced into the same polymer (trade name: Selemion, manufactured by Asahi Glass Co., Ltd.) are used. did. The enrichment chamber was filled with a resin spacer for securing a flow path. As the liquid to be treated, ion-exchanged water treated with a reverse osmosis membrane apparatus was passed through, and reagent-grade sodium chloride was added to the concentration chamber, the cathode chamber and the anode chamber so that the conductivity became about 300 μS / cm. The aqueous solution was passed.

【0023】つぎに所定の再生運転を行った後、被処理
水流量2800L/h、電流1.0A、電圧150〜1
80V、被処理水電導度2.5μS/cmの運転条件で
性能を確認した結果を表1に示す。ただし、定電流運転
のため電圧は若干の幅を持つ。
Next, after performing a predetermined regeneration operation, the flow rate of the water to be treated is 2800 L / h, the current is 1.0 A, and the voltage is 150 to 1.
Table 1 shows the results of confirming the performance under the operating conditions of 80 V and the electric conductivity of the water to be treated of 2.5 μS / cm. However, the voltage has some width due to the constant current operation.

【0024】その後装置を停止し、脱塩室、濃縮室、陰
極室および陽極室中の液を抜き、さらに乾燥状態を促進
するため、脱塩室、濃縮室、陰極室および陽極室に窒素
ガスを流入させた。このとき、イオン交換膜およびイオ
ン交換樹脂の含水率はそれぞれ9%、5%であって、膜
の寸法変化は0.5%であった。この状態のまま通水通
電せず3ヶ月間保管した後、再び被処理水を脱塩室、濃
縮室、陰極室および陽極室に流入させて、イオン交換膜
およびイオン交換樹脂を膨潤させた。このとき、別の電
気式脱塩装置にて処理した超純水を水膨潤処理に使用し
た。
Thereafter, the apparatus was stopped, the liquid in the desalting chamber, the concentrating chamber, the cathode chamber and the anode chamber was drained, and nitrogen gas was supplied to the desalting chamber, the concentrating chamber, the cathode chamber and the anode chamber in order to further promote the drying state. Was allowed to flow. At this time, the water contents of the ion exchange membrane and the ion exchange resin were 9% and 5%, respectively, and the dimensional change of the membrane was 0.5%. After storing for 3 months without supplying electricity in this state, the water to be treated was flown again into the desalting chamber, the concentrating chamber, the cathode chamber and the anode chamber to swell the ion exchange membrane and the ion exchange resin. At this time, ultrapure water treated by another electric desalination apparatus was used for water swelling treatment.

【0025】この後、装置の下部ダクトから液を採取
し、簡易生菌検出キット(ミリポア社製、商品名ウォー
ターサンプラーMSPC00025)にて所定の方法に
よる生菌測定を行った。この結果を、表1の保管後生菌
数の欄に示す。同様の測定をこの電気式脱塩装置で得ら
れた超純水とを用いて実施したところ、生菌数は0.9
個/mLであった。また、同様の運転条件で、脱塩テス
トを行った。測定結果を表1に示す。さらに、島津TO
C−500Aを使用し測定したTOC測定結果を表2に
示す。単位はCO2換算ppbである。
Thereafter, the liquid was collected from the lower duct of the apparatus, and the viable cells were measured by a predetermined method using a simple viable cell detection kit (manufactured by Millipore, trade name: Water Sampler MSPC00025). The results are shown in the column of viable cell count after storage in Table 1. When the same measurement was performed using ultrapure water obtained by this electric desalination apparatus, the viable cell count was 0.9.
Pcs / mL. Further, a desalination test was performed under the same operating conditions. Table 1 shows the measurement results. Furthermore, Shimadzu TO
Table 2 shows the TOC measurement results measured using C-500A. The unit is ppb in terms of CO 2 .

【0026】[例2(比較例)]例1と同じ電気式脱塩
装置を液抜きせずに通水通電せず3ヶ月保管した。3ヶ
月後下部ダクトから液を採取し生菌測定を行った。結果
を表1に示す。同様に脱塩テストを行い、保管前後の被
処理水抵抗率および電圧を表1に、TOC測定結果を表
2に示す。
Example 2 (Comparative Example) The same electric desalination apparatus as in Example 1 was stored for 3 months without drainage and without water flow. Three months later, the liquid was collected from the lower duct, and viable bacteria were measured. Table 1 shows the results. Similarly, a desalination test was performed, and the resistivity and the voltage of the treated water before and after storage are shown in Table 1, and the TOC measurement results are shown in Table 2.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】本発明の方法で保管した例1では、保管前
後での電圧の上昇と抵抗率の低下は見られず、例2と同
等の性能となった。また、例1では水の溜まりが電槽内
にはないため、液浸漬状態で保管した比較例に比べ、再
通水後もはじめから生菌数が少ない。このため、再起用
に伴うフラッシング時間はほとんど必要ない。TOCに
関しても同様なことがいえる。テスト後の例1および例
2の電槽解体点検の際、どちらもイオン交換膜やイオン
交換樹脂に関して性能に影響を与える欠損は見られなか
った。また、今回乾燥保管した電槽の重量は、満水時の
約15%減であり、移動コストも軽減できることが期待
される。さらに寒冷地でも、電槽内部での凍結を避ける
ことが可能となる。
In Example 1 stored by the method of the present invention, no increase in voltage and no decrease in resistivity before and after storage were observed, and the performance was equivalent to that of Example 2. In addition, in Example 1, since the water pool was not in the battery case, the number of viable bacteria was smaller from the beginning even after re-watering than in the comparative example stored in the liquid immersion state. Therefore, almost no flushing time is required for re-use. The same is true for TOC. At the time of the battery case disassembly inspection of Examples 1 and 2 after the test, neither of the ion exchange membranes nor the ion exchange resin had any defects affecting the performance. In addition, the weight of the battery case that has been dried and stored this time is reduced by about 15% when it is full, and it is expected that the moving cost can be reduced. Furthermore, even in a cold region, freezing inside the battery case can be avoided.

【0030】[0030]

【発明の効果】本発明によれば、電式式脱塩装置の停止
期間中のアニオン交換樹脂表面の汚染、かびまたは生菌
の発生によるイオン交換膜等の性能低下を防止でき、電
気脱塩装置の再機動後の処理水中の不純物の混入が防止
され、所定の水質を得るための時間の長期化という問題
が解決される。
According to the present invention, it is possible to prevent contamination of the anion exchange resin surface, deterioration of the ion exchange membrane or the like due to generation of fungi or viable bacteria during the stop period of the electric desalination apparatus, and to prevent the desalination. The contamination of the impurities in the treated water after the restart of the apparatus is prevented, and the problem of prolonging the time for obtaining the predetermined water quality is solved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で用いる電気透析装置の一例の構造を模
式的に示す図。
FIG. 1 is a view schematically showing the structure of an example of an electrodialysis apparatus used in the present invention.

【符号の説明】[Explanation of symbols]

1:電気式脱塩装置 2:陽極 3:陽極室 4:カチオン交換膜 5:アニオン交換膜 6:脱塩室 7:濃縮室 8:陰極室 9:陰極 1: Electric desalination device 2: Anode 3: Anode compartment 4: Cation exchange membrane 5: Anion exchange membrane 6: Desalination compartment 7: Concentration compartment 8: Cathode compartment 9: Cathode

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D006 GA17 HA47 JA70Z KA26 KA82 KA84 KB01 LA01 MA08 MA13 MA14 MB07 MC24 MC74 MC78 PA05 PB02 PB27 PC01 PC11 PC31 PC41 4D025 AA01 BA09 BA14 BA27 DA05 DA06 DA10 4D061 DA01 DB13 EA09 EB13 EB22 FA20  ──────────────────────────────────────────────────続 き Continued on front page F term (reference) 4D006 GA17 HA47 JA70Z KA26 KA82 KA84 KB01 LA01 MA08 MA13 MA14 MB07 MC24 MC74 MC78 PA05 PB02 PB27 PC01 PC11 PC31 PC41 4D025 AA01 BA09 BA14 BA27 DA05 DA06 DA10 4D061 DA01 DB13 EA09 EB09 FA

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】陽極を備える陽極室と、陰極を備える陰極
室との間に、カチオン交換膜とアニオン交換膜とを交互
に配列し、陽極側がアニオン交換膜で区画され陰極側が
カチオン交換膜で区画された脱塩室と、陽極側がカチオ
ン交換膜で区画され陰極側がアニオン交換膜で区画され
た濃縮室とを交互に形成して構成される電気式脱塩装置
において、通水通電をせず長期間保管する際に、前記電
気式脱塩装置内の液体を排出し、かつ、前記カチオン交
換膜および前記アニオン交換膜の含水率が運転時の30
%以下となるように乾燥させる電気式脱塩装置の保管方
法。
A cation exchange membrane and an anion exchange membrane are alternately arranged between an anode chamber having an anode and a cathode chamber having a cathode, and the anode side is defined by an anion exchange membrane and the cathode side is a cation exchange membrane. In an electric desalination apparatus configured by forming alternately a partitioned desalting chamber and a concentrating chamber in which the anode side is partitioned by a cation exchange membrane and the cathode side is partitioned by an anion exchange membrane, no water flow is conducted. During long-term storage, the liquid in the electric desalination apparatus is discharged, and the water content of the cation exchange membrane and the anion exchange membrane is 30% at the time of operation.
% Storage method of an electric desalination apparatus that is dried so as to be less than 10%.
【請求項2】前記電気式脱塩装置の前記脱塩室内にイオ
ン交換樹脂が収容され、通水通電をせず長期保管する際
に、前記イオン交換樹脂の含水率が、運転時の30%以
下となるように乾燥させる請求項1記載の電気式脱塩装
置の保管方法。
2. An ion exchange resin is accommodated in the desalination chamber of the electric desalination apparatus, and when stored for a long time without supplying water, the water content of the ion exchange resin is reduced to 30% of that during operation. The method for storing an electric desalination apparatus according to claim 1, wherein the drying is performed as follows.
【請求項3】前記カチオン交換膜または前記アニオン交
換膜は、乾燥状態での膜寸法と運転時の状態での膜寸法
の差が、運転時の状態での膜寸法に対して1%以下であ
る請求項1または2記載の電気式脱塩装置の保管方法。
3. The cation exchange membrane or the anion exchange membrane, wherein a difference between a membrane size in a dry state and a membrane size in an operation state is 1% or less of a membrane size in an operation state. The method for storing an electric desalination apparatus according to claim 1 or 2.
【請求項4】前記カチオン交換膜および前記アニオン交
換膜を乾燥した後、前記電気式脱塩装置内に乾燥気体を
封入する請求項1、2または3記載の電気式脱塩装置の
保管方法。
4. The method according to claim 1, wherein after drying the cation exchange membrane and the anion exchange membrane, a dry gas is sealed in the electric desalination apparatus.
JP36482299A 1999-12-22 1999-12-22 Method for keeping electric desalting apparatus Pending JP2001179261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36482299A JP2001179261A (en) 1999-12-22 1999-12-22 Method for keeping electric desalting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36482299A JP2001179261A (en) 1999-12-22 1999-12-22 Method for keeping electric desalting apparatus

Publications (1)

Publication Number Publication Date
JP2001179261A true JP2001179261A (en) 2001-07-03

Family

ID=18482753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36482299A Pending JP2001179261A (en) 1999-12-22 1999-12-22 Method for keeping electric desalting apparatus

Country Status (1)

Country Link
JP (1) JP2001179261A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004033977A (en) * 2002-07-05 2004-02-05 Kurita Water Ind Ltd Operation method of electrically deionizing apparatus
JP2005254201A (en) * 2004-03-15 2005-09-22 Japan Organo Co Ltd Bacterium growth inhibition method in electric desalted water production device
CN109351194A (en) * 2018-11-02 2019-02-19 苏州立升净水科技有限公司 The method of the membrane flux of ultrafiltration membrane preservative agent and raising ultrafiltration membrane

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004033977A (en) * 2002-07-05 2004-02-05 Kurita Water Ind Ltd Operation method of electrically deionizing apparatus
JP2005254201A (en) * 2004-03-15 2005-09-22 Japan Organo Co Ltd Bacterium growth inhibition method in electric desalted water production device
CN109351194A (en) * 2018-11-02 2019-02-19 苏州立升净水科技有限公司 The method of the membrane flux of ultrafiltration membrane preservative agent and raising ultrafiltration membrane
CN109351194B (en) * 2018-11-02 2021-08-06 苏州立升净水科技有限公司 Ultrafiltration membrane preservative and method for improving membrane flux of ultrafiltration membrane

Similar Documents

Publication Publication Date Title
EP0946301B1 (en) Electrodeionization apparatus and method
JP3794268B2 (en) Electrodeionization apparatus and operation method thereof
EP2857442B1 (en) Ion exchange membrane for flow-electrode capacitive deionization device and flow-electrode capacitive deionization device including the same
ES2856413T3 (en) Electrodialysis
JP4303242B2 (en) Electric desalination module and apparatus equipped with the module
Jordan et al. Promoting water-splitting in Janus bipolar ion-exchange resin wafers for electrodeionization
WO2004047991A1 (en) Electrodeionization apparatus
JP4672601B2 (en) Deionized water production equipment
JP4049170B2 (en) Method for producing deionized water production apparatus
JP2004206899A (en) Filter medium for fuel cell and filter for fuel cell as well as porous ion exchanger
JP2001079553A (en) Method for packing ion exchanger in electric deionizer, and electric deionizer
KR100519196B1 (en) Electrochemical treatment of ion exchange material
JP3966103B2 (en) Operation method of electrodeionization equipment
JP4819026B2 (en) Electric deionized water production apparatus and deionized water production method
JP2001179261A (en) Method for keeping electric desalting apparatus
JP2006015260A (en) Electric deionized water manufacturing apparatus
KR20150007070A (en) Capacitive deionization unit cell and preparation method thereof
US20080308482A1 (en) Electric Deionized Water Production Apparatus
JP5233798B2 (en) Electric regenerative pure water production equipment
KR20230009916A (en) Improved chlorine tolerance of continuous electrical deionization modules
JP4016663B2 (en) Operation method of electrodeionization equipment
JP3979890B2 (en) Operation method for producing deionized water
JPH0724828B2 (en) Method of removing electrolyte
KR101756327B1 (en) Manufacturing Method of Electrode for Membrane Capacitive Deionization Process
JP5246116B2 (en) Ion exchange resin filling method and electric regenerative pure water production apparatus