JP2001178080A - Cooling structure for rotor winding - Google Patents

Cooling structure for rotor winding

Info

Publication number
JP2001178080A
JP2001178080A JP36066999A JP36066999A JP2001178080A JP 2001178080 A JP2001178080 A JP 2001178080A JP 36066999 A JP36066999 A JP 36066999A JP 36066999 A JP36066999 A JP 36066999A JP 2001178080 A JP2001178080 A JP 2001178080A
Authority
JP
Japan
Prior art keywords
cooling
axial
centrifugal
groove
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP36066999A
Other languages
Japanese (ja)
Inventor
Sadatoshi Shinohara
定敏 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP36066999A priority Critical patent/JP2001178080A/en
Publication of JP2001178080A publication Critical patent/JP2001178080A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Windings For Motors And Generators (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooling structure for dynamoelectric machine which can enhance the cooling efficiency, by circulating a cooling medium satisfactorily. SOLUTION: Each cooling groove 13 in the centrifugal direction is inclined, in the stream direction of a cooling medium in an axial cooling groove 12, with respect to the axial cooling groove 12 which extends axially within a rotor iron core 1, and also the section branching from the axial cooling groove 12 to the centrifugal cooling grooves 13 is made into a circular curve 14, whereby this structure can reduce the pressure loss in both cooling grooves 12 and 13, and also can easily discharge mixed-in foreign matters to the outside.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は回転子巻線の冷却構
造に関し、特に発電機の回転子等、大形の回転電機の回
転子に適用して有用なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling structure for a rotor winding, and is particularly useful when applied to a rotor of a large rotating electric machine such as a generator rotor.

【0002】[0002]

【従来の技術】発電機回転子の回転子巻線には大きなジ
ュール熱が発生するので、これを効果的に除去する必要
がある。この種の発電機回転子巻線の冷却構造では、回
転子巻線に生じた損失熱をこの回転子巻線の外側表面か
ら冷却媒体に伝達して放散するようになっている。ここ
で、損失熱は回転子の冷却溝又は回転子の表面で冷却媒
体により取り去られる前に、巻線の絶縁、空隙、回転子
歯を通って流れなければならない。直接冷却では、回転
子巻線中に生じた損失熱は、回転子巻線の冷却表面から
直接冷却媒体に取り去られる。かかる直接冷却方式は、
殆ど全ての中、大容量の発電機に採用されている。
2. Description of the Related Art Since a large Joule heat is generated in a rotor winding of a generator rotor, it is necessary to effectively remove the Joule heat. In this type of generator rotor winding cooling structure, heat loss generated in the rotor winding is transmitted from the outer surface of the rotor winding to the cooling medium and is dissipated. Here, the lost heat must flow through the insulation of the windings, the gaps, the rotor teeth before being removed by the cooling medium at the cooling grooves of the rotor or at the surface of the rotor. In direct cooling, the lost heat generated in the rotor windings is removed directly from the cooling surface of the rotor windings into the cooling medium. Such a direct cooling method,
Almost all of them are used in large-capacity generators.

【0003】図3(a)は、従来技術に係る回転子巻線
の冷却構造を示す図である。同図は、一部切り欠いて示
す発電機の回転子とともに示すものである。また、図3
(b)はそのスロット部分を示す横断面図である。両図
に示すように、当該冷却構造は、回転子鉄心1の軸方向
に伸びるスロット底溝である軸方向冷却溝2と、この軸
方向冷却溝2に対して連続するとともに、これと直角な
遠心方向に伸びる多数の遠心方向冷却溝3とを有してい
る。かかる冷却構造において、回転子巻線4の両端から
取り入れた冷却媒体(気体)は軸方向冷却溝2を通って
当該回転子の中央に向かって流れ、銅導体に打ち抜かれ
た各遠心方向冷却溝3を通って外部に出る。このときの
冷却媒体の流通方向を図中に矢印で示す。
FIG. 3A is a diagram showing a cooling structure for a rotor winding according to the prior art. The figure is shown together with the generator rotor shown partially cut away. FIG.
(B) is a transverse sectional view showing the slot portion. As shown in both figures, the cooling structure has an axial cooling groove 2 which is a slot bottom groove extending in the axial direction of the rotor core 1 and is continuous with and perpendicular to the axial cooling groove 2. It has a number of centrifugal cooling grooves 3 extending in the centrifugal direction. In such a cooling structure, the cooling medium (gas) taken in from both ends of the rotor winding 4 flows toward the center of the rotor through the axial cooling grooves 2, and each of the centrifugal cooling grooves punched in the copper conductor. Go outside through 3. The flow direction of the cooling medium at this time is indicated by an arrow in the figure.

【0004】[0004]

【発明が解決しようとする課題】上述の如き従来技術に
係る冷却構造においては、各遠心方向冷却溝3が軸方向
冷却溝2に対して直角に形成してあるので、冷却媒体が
軸方向冷却溝2から各遠心方向冷却溝3に流入すべくそ
の流れ方向を変えるとき、大きな圧力損失が発生すると
ともに、埃等が軸方向冷却溝2から遠心方向冷却溝3へ
の分岐部分に付着して軸方向冷却溝2又は遠心方向冷却
溝3を次第に塞ぎ、冷却媒体の流通抵抗が大きくなると
いう問題を生起している。
In the cooling structure according to the prior art as described above, since each centrifugal cooling groove 3 is formed at right angles to the axial cooling groove 2, the cooling medium is cooled in the axial cooling direction. When the flow direction is changed so as to flow into each centrifugal cooling groove 3 from the groove 2, a large pressure loss occurs, and dust adheres to a branch portion from the axial cooling groove 2 to the centrifugal cooling groove 3. There is a problem that the axial cooling groove 2 or the centrifugal cooling groove 3 is gradually closed to increase the flow resistance of the cooling medium.

【0005】本発明は、上記従来技術に鑑み、冷却媒体
を良好に流通させて冷却効率を向上させることができる
回転電機巻線の冷却構造を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above prior art, an object of the present invention is to provide a cooling structure for a rotating electric machine winding that can improve the cooling efficiency by circulating a cooling medium well.

【0006】上記目的を達成する本発明の構成は、次の
点を特徴とする。
The structure of the present invention that achieves the above object has the following features.

【0007】1) 回転子鉄心の内部で軸方向に伸びる
軸方向冷却溝と、この軸方向冷却溝に対して連続すると
ともに回転子鉄心の遠心方向に伸びて回転子鉄心の表面
に開口する多数の遠心方向冷却溝とを有するとともに、
冷却媒体を、軸方向冷却溝を流通させ、その後各遠心方
向冷却溝を流通させて各開口から外部に排出するように
構成した回転子巻線の冷却構造において、各遠心方向冷
却溝を、軸方向冷却溝おける冷却媒体の流れ方向に傾斜
させたこと。
[0007] 1) An axial cooling groove extending in the axial direction inside the rotor core, and a plurality of cooling grooves which are continuous with the axial cooling groove, extend in the centrifugal direction of the rotor core, and open to the surface of the rotor core. And with a centrifugal cooling groove of
In the cooling structure of the rotor winding configured to allow the cooling medium to flow through the axial cooling grooves, and then to flow through each centrifugal cooling groove and to be discharged to the outside from each opening, each centrifugal cooling groove is The cooling medium in the directional cooling groove is inclined in the flow direction.

【0008】2) 回転子鉄心の内部で軸方向に伸びる
軸方向冷却溝と、この軸方向冷却溝に対して連続すると
ともに回転子鉄心の遠心方向に伸びて回転子鉄心の表面
に開口する多数の遠心方向冷却溝とを有するとともに、
冷却媒体を、軸方向冷却溝を流通させ、その後各遠心方
向冷却溝を流通させて各開口から外部に排出するように
構成した回転子巻線の冷却構造において、各遠心方向冷
却溝を、軸方向冷却溝おける冷却媒体の流れ方向に傾斜
させるとともに、軸方向冷却溝と各遠心方向冷却溝との
合流部分の内、少なくとも冷却媒体の流れ方向に関する
下流側の部分は円弧状の曲線部としたこと。
[0008] 2) An axial cooling groove extending in the axial direction inside the rotor core, and a plurality of cooling grooves that are continuous with the axial cooling groove, extend in the centrifugal direction of the rotor core, and open to the surface of the rotor core. And with a centrifugal cooling groove of
In the cooling structure of the rotor winding configured to allow the cooling medium to flow through the axial cooling grooves, and then to flow through each centrifugal cooling groove and to be discharged to the outside from each opening, each centrifugal cooling groove is The cooling medium is inclined in the direction of flow of the cooling medium in the direction cooling groove, and at least a portion on the downstream side with respect to the direction of flow of the cooling medium in the confluence of the axial direction cooling groove and each of the centrifugal direction cooling grooves has an arcuate curved portion. thing.

【0009】[0009]

【発明の実施の形態】以下本発明の実施の形態を図面に
基づき詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0010】図1(a)は、本発明の実施の形態に係る
回転子巻線の冷却構造を示す図である。同図は、一部切
り欠いて示す発電機の回転子とともに示すものである。
同図に示すように、本形態に係る冷却構造も図3に示す
冷却構造と同様に、軸方向冷却溝12と、この軸方向冷
却溝12に対して分岐する多数の遠心方向冷却溝13と
を有しているが、各遠心方向冷却溝13の軸方向冷却溝
12に対する角度が異なる。すなわち、各遠心方向冷却
溝13は、軸方向冷却溝12における冷却媒体の流れ方
向に傾斜させてある。しかも、図1(b)に同図(a)
のA部分を抽出・拡大して示すように、軸方向冷却溝1
2と各遠心方向冷却溝13との合流部分の内、冷却媒体
の流れ方向に関する下流側の部分は、円弧状の曲線部1
4として形成してある。なお、図3と同一部分には同一
番号を付し、重複する説明は省略する。
FIG. 1A is a diagram showing a cooling structure for a rotor winding according to an embodiment of the present invention. The figure is shown together with the generator rotor shown partially cut away.
As shown in the figure, the cooling structure according to the present embodiment also has an axial cooling groove 12 and a large number of centrifugal cooling grooves 13 branched from the axial cooling groove 12, similarly to the cooling structure shown in FIG. However, the angle of each centrifugal cooling groove 13 with respect to the axial cooling groove 12 is different. That is, each centrifugal cooling groove 13 is inclined in the flow direction of the cooling medium in the axial cooling groove 12. In addition, FIG.
As shown in the enlarged and extracted portion A of FIG.
Of the confluence of the cooling medium 2 and the centrifugal cooling grooves 13 on the downstream side with respect to the flow direction of the cooling medium, the arc-shaped curved portion 1
4 is formed. Note that the same parts as those in FIG. 3 are denoted by the same reference numerals, and redundant description will be omitted.

【0011】かかる本形態によれば、遠心方向冷却溝1
3が軸方向冷却溝12に対して傾斜しており、しかもこ
の傾斜方向は冷却媒体の流れ方向であるので、両冷却溝
12、13における圧力損失が従来よりも低減され、冷
却媒体の良好な流通を保障することができる。また、遠
心方向冷却溝13を傾斜させることによって、図2に示
すように、回転子鉄心1と固定子鉄心15との間のギャ
ップで形成する軸方向の通路と、固定子鉄心15に遠心
方向に設けた固定子冷却溝16とに均等に冷却媒体を流
れ込ませることができる。さらに、埃等の異物が遠心方
向冷却溝13に混入した場合でも、これを良好に外部に
排出することができ、異物の混入・滞留による流通抵抗
の増大も除去することができる。
According to this embodiment, the cooling groove 1 in the centrifugal direction is provided.
3 is inclined with respect to the axial cooling groove 12, and since the inclined direction is the flow direction of the cooling medium, the pressure loss in both cooling grooves 12, 13 is reduced as compared with the conventional case, and the cooling medium can be cooled well. Distribution can be guaranteed. By inclining the cooling groove 13 in the centrifugal direction, as shown in FIG. 2, an axial passage formed by a gap between the rotor core 1 and the stator core 15 and a centrifugal The cooling medium can be caused to flow evenly into the stator cooling grooves 16 provided in the cooling medium. Furthermore, even when foreign matter such as dust enters the centrifugal cooling groove 13, the foreign matter can be satisfactorily discharged to the outside, and an increase in flow resistance due to the mixture and stagnation of the foreign matter can be eliminated.

【0012】なお、上記実施の形態では、各遠心方向冷
却溝13との合流部分の内、冷却媒体の流れ方向に関す
る下流側の部分には、円弧状の曲線部14を形成した
が、必ずしもこのように曲線部14を形成する必要はな
い。遠心方向冷却溝13を傾斜させるだけでも、冷却媒
体の良好な流通は保障される。逆に、冷却媒体の流れ方
向に関する上流側の部分にも同様の曲線部14を形成し
ても良い。この場合には、遠心方向冷却溝13に混入し
た異物の排出を、さらに良好に行うことができる。
In the above-described embodiment, the arc-shaped curved portion 14 is formed at a portion downstream of the converging portion with each of the cooling grooves 13 in the flow direction of the cooling medium. It is not necessary to form the curved portion 14 as described above. Even if the cooling groove 13 in the centrifugal direction is merely inclined, good circulation of the cooling medium is guaranteed. Conversely, a similar curved portion 14 may be formed in an upstream portion in the flow direction of the cooling medium. In this case, the foreign matter mixed in the cooling groove 13 in the centrifugal direction can be discharged more favorably.

【0013】[0013]

【発明の効果】以上実施の形態とともに詳細に説明した
通り、本発明によれば、冷却溝の圧力損失を良好に低減
でき、また固定子内部と固定子間のギャップとに均等に
冷却媒体を流通させることができるので、効率の良い巻
線の冷却を行うことができる。さらに、軸方向冷却溝か
ら遠心方向冷却溝への分岐部分に曲線部を形成した場合
には、異物が混入した場合であってもこれを良好に外部
に排出することができるので、冷却溝の詰まりを防止す
ることができ、このことによっても総合的な冷却効率を
向上させることができる。
As described in detail with the above embodiments, according to the present invention, the pressure loss in the cooling groove can be reduced favorably, and the cooling medium can be evenly distributed in the inside of the stator and the gap between the stators. Since it can be distributed, the winding can be efficiently cooled. Furthermore, in the case where a curved portion is formed at a branch portion from the axial cooling groove to the centrifugal cooling groove, even if foreign matter is mixed in, the foreign matter can be satisfactorily discharged to the outside. Clogging can be prevented, which can also improve overall cooling efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る回転子巻線の冷却構
造を示す図で、(a)は一部切り欠いて発電機の回転子
とともに示す斜視図、(b)はそのA部分を抽出・拡大
して示す拡大図である。
1A and 1B are diagrams showing a cooling structure of a rotor winding according to an embodiment of the present invention, in which FIG. 1A is a perspective view showing the cooling structure together with a generator rotor, and FIG. It is an enlarged view which extracts and expands.

【図2】図1に示す冷却構造の作用・効果を説明するた
めの説明図である。
FIG. 2 is an explanatory diagram for explaining the operation and effect of the cooling structure shown in FIG.

【図3】従来技術に係る回転子巻線の冷却構造を示す図
で、(a)は一部切り欠いて発電機の回転子とともに示
す斜視図、(b)はその横断面図である。
3A and 3B are diagrams showing a cooling structure of a rotor winding according to a conventional technique, in which FIG. 3A is a perspective view showing the cooling structure together with a generator rotor, and FIG. 3B is a cross-sectional view thereof.

【符号の説明】[Explanation of symbols]

1 回転子鉄心 12 軸方向冷却溝 13 遠心方向冷却溝 14 曲線部 DESCRIPTION OF SYMBOLS 1 Rotor core 12 Axial cooling groove 13 Centrifugal cooling groove 14 Curved part

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H002 AD04 5H603 AA11 BB02 BB12 CA04 CB02 CC03 CD02 CD21 CE01 5H609 BB03 BB12 PP02 PP07 PP08 PP09 QQ12 QQ13 QQ18 RR06 RR16 RR36 RR37 RR42 RR43 RR44 RR69 RR73  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H002 AD04 5H603 AA11 BB02 BB12 CA04 CB02 CC03 CD02 CD21 CE01 5H609 BB03 BB12 PP02 PP07 PP08 PP09 QQ12 QQ13 QQ18 RR06 RR16 RR36 RR37 RR42 RR43 RR44 RR69 RR73

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 回転子鉄心の内部で軸方向に伸びる軸方
向冷却溝と、この軸方向冷却溝に対して連続するととも
に回転子鉄心の遠心方向に伸びて回転子鉄心の表面に開
口する多数の遠心方向冷却溝とを有するとともに、冷却
媒体を、軸方向冷却溝を流通させ、その後各遠心方向冷
却溝を流通させて各開口から外部に排出するように構成
した回転子巻線の冷却構造において、 各遠心方向冷却溝を、軸方向冷却溝おける冷却媒体の流
れ方向に傾斜させたことを特徴とする回転子巻線の冷却
構造。
An axial cooling groove extending in an axial direction inside a rotor core, and a plurality of cooling grooves that are continuous with the axial cooling groove, extend in a centrifugal direction of the rotor core, and open to the surface of the rotor core. And a cooling structure for the rotor winding, wherein the cooling medium flows through the axial cooling grooves, and then flows through the centrifugal cooling grooves and is discharged from each opening to the outside. 3. The cooling structure for a rotor winding according to claim 1, wherein each of the centrifugal cooling grooves is inclined in a flow direction of the cooling medium in the axial cooling groove.
【請求項2】 回転子鉄心の内部で軸方向に伸びる軸方
向冷却溝と、この軸方向冷却溝に対して連続するととも
に回転子鉄心の遠心方向に伸びて回転子鉄心の表面に開
口する多数の遠心方向冷却溝とを有するとともに、冷却
媒体を、軸方向冷却溝を流通させ、その後各遠心方向冷
却溝を流通させて各開口から外部に排出するように構成
した回転子巻線の冷却構造において、 各遠心方向冷却溝を、軸方向冷却溝おける冷却媒体の流
れ方向に傾斜させるとともに、軸方向冷却溝と各遠心方
向冷却溝との合流部分の内、少なくとも冷却媒体の流れ
方向に関する下流側の部分は円弧状の曲線部としたこと
を特徴とする回転子巻線の冷却構造。
2. An axial cooling groove extending in the axial direction inside the rotor core, and a plurality of cooling grooves that are continuous with the axial cooling groove, extend in the centrifugal direction of the rotor core, and open on the surface of the rotor core. And a cooling structure for the rotor winding, wherein the cooling medium flows through the axial cooling grooves, and then flows through the centrifugal cooling grooves and is discharged from each opening to the outside. In the above, each centrifugal cooling groove is inclined in the flow direction of the cooling medium in the axial cooling groove, and at least the downstream side of the confluence of the axial cooling groove and each centrifugal cooling groove with respect to the flow direction of the cooling medium. A cooling structure for a rotor winding, wherein the portion is an arc-shaped curved portion.
JP36066999A 1999-12-20 1999-12-20 Cooling structure for rotor winding Withdrawn JP2001178080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36066999A JP2001178080A (en) 1999-12-20 1999-12-20 Cooling structure for rotor winding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36066999A JP2001178080A (en) 1999-12-20 1999-12-20 Cooling structure for rotor winding

Publications (1)

Publication Number Publication Date
JP2001178080A true JP2001178080A (en) 2001-06-29

Family

ID=18470410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36066999A Withdrawn JP2001178080A (en) 1999-12-20 1999-12-20 Cooling structure for rotor winding

Country Status (1)

Country Link
JP (1) JP2001178080A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114586260A (en) * 2019-10-08 2022-06-03 株式会社东芝 Rotor of rotating electric machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114586260A (en) * 2019-10-08 2022-06-03 株式会社东芝 Rotor of rotating electric machine
CN114586260B (en) * 2019-10-08 2024-01-16 株式会社东芝 rotor of rotating electrical machine

Similar Documents

Publication Publication Date Title
CA2148213C (en) Cooling arrangements for rotating electrical machines
US5886434A (en) Generator field turn copper
JPH1198727A (en) Stator iron core assembly for dynamo-electric machine
JP2002262490A (en) Electric motor or generator
JP2001086679A (en) Rotating machine
US10637328B2 (en) Synchronous reluctance machine
JP2010104225A (en) Heat transfer enhancement of dynamoelectric machine rotor
US6392326B1 (en) Flow-through spaceblocks with deflectors and method for increased electric generator endwinding cooling
US6465917B2 (en) Spaceblock deflector for increased electric generator endwinding cooling
JP3574221B2 (en) Rotating electric machine rotor
JP2007282488A (en) Streamline-shaped body wedge block and method for improving cooling of generator rotor
KR100467390B1 (en) Wake reduction structure for enhancing cavity flow in generator rotor endwindings
CN116830433A (en) Stator, simulation method and computer program product
JP2001178080A (en) Cooling structure for rotor winding
EP3312974B1 (en) Radial counter flow jet cooling system
US3270229A (en) Cooling arrangements for electric machines
JP2016146680A (en) Rotary electric machine
US8525376B2 (en) Dynamoelectric machine coil spaceblock having flow deflecting structure in coil facing surface thereof
JP2010104202A (en) Rotor of rotating electrical machine
JP2002507109A (en) Ventilation system for exciting winding of large salient pole machine
JP2001231193A (en) Electric rotating machine
JP2003088022A (en) Rotating electric machine, rotor, manufacturing method for the electric machine, and operating method for the electric machine
JP5290118B2 (en) Rotating electric machine and rotor used for the same
JPS5828455Y2 (en) rotating electric machine
JPH11206045A (en) Rotary electric machine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070306