JP2001174770A - Semiconductor magneto-optical effect device and method of producing the same - Google Patents

Semiconductor magneto-optical effect device and method of producing the same

Info

Publication number
JP2001174770A
JP2001174770A JP35350699A JP35350699A JP2001174770A JP 2001174770 A JP2001174770 A JP 2001174770A JP 35350699 A JP35350699 A JP 35350699A JP 35350699 A JP35350699 A JP 35350699A JP 2001174770 A JP2001174770 A JP 2001174770A
Authority
JP
Japan
Prior art keywords
semiconductor
optical effect
magneto
effect device
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35350699A
Other languages
Japanese (ja)
Inventor
Masaaki Tanaka
雅明 田中
Taiga Shimizu
大雅 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP35350699A priority Critical patent/JP2001174770A/en
Priority to PCT/JP2000/008366 priority patent/WO2001042849A1/en
Publication of JP2001174770A publication Critical patent/JP2001174770A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/0009Materials therefor
    • G02F1/0036Magneto-optical materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/0151Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction modulating the refractive index
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • G02F2201/307Reflective grating, i.e. Bragg grating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/34Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 reflector
    • G02F2201/346Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 reflector distributed (Bragg) reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/041Optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06258Controlling the frequency of the radiation with DFB-structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1053Comprising an active region having a varying composition or cross-section in a specific direction
    • H01S5/1067Comprising an active region having a varying composition or cross-section in a specific direction comprising nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity
    • H01S5/426Vertically stacked cavities

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor magneto-optical effect device which shows a large magneto-optical effect at room temperature, which can be controlled for the operational wavelength in a wide range, and which can be easily integrated with semiconductor optical devices and photoelectronic integrated circuits. SOLUTION: The semiconductor magneto-optical effect device has semiconductor multilayered reflection films 2, 6 which are formed on a semiconductor substrate 1 and formed as the upper and lower layers of a thin film consisting of a semiconductor/ferromagnetic metal composite material (GaAs:MnAs).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体磁気光学効
果装置及びその製造方法に関するものである。
[0001] 1. Field of the Invention [0002] The present invention relates to a semiconductor magneto-optical effect device and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来、このような分野の技術としては、
例えば本願発明者の提案にかかる以下に開示されるよう
なものがあった。
2. Description of the Related Art Conventionally, techniques in such a field include:
For example, there has been a proposal disclosed by the present inventors as disclosed below.

【0003】〔1〕田中 雅明、林 稔晶、西永 頌、
島田 宏“III-V 族希薄磁性半導体GaMnAsのエピ
タキシャル成長と磁性・電気伝導特性”日本応用磁気学
会誌、21,pp.393−396(1997). 〔2〕T.Hayashi,M.Tanaka,T.N
ishinaga and H.Shimada“Ga
MnAs:New III-V Based Diluted
Magnetic Semiconductors
Grown by Molecular Beam E
pitaxy”J.of Crystal Growt
h 175/176,pp.1063−1068(19
97). 〔3〕Masaaki Tanaka“Epitaxi
al Ferromagnetic Thin Fil
ms and Heterostructures o
f Mn−based Metallic and S
emiconducting Compounds o
n GaAs”,Instituteof Elect
rical Engineers of Japan,
MAG97−189,pp.31−38,Ryukyu
University,November 199
7.〔田中 雅明“磁性体/半導体ハイブリッド構造の
形成とその物性”電気学会マグネティクス研究会、MA
G−97−189,pp.31−38,琉球大学、19
97年11月〕 上記論文〔1〕及び〔2〕には、いずれも磁性半導体
(GaMn)Asの製造方法、その構造評価、電気伝
導、磁気的性質等について述べている。
[1] Masaaki Tanaka, Minoru Hayashi, Sho Nishinaga,
Hiroshi Shimada, “Epitaxial growth and magnetic and electrical properties of III-V diluted magnetic semiconductor GaMnAs”, Journal of the Japan Society of Applied Magnetics, 21, pp. 393-396 (1997). [2] T.I. Hayashi, M .; Tanaka, T .; N
ishinaga and H .; Shimada "Ga
MnAs: New III-V Based Diluted
Magnetic Semiconductors
GROWN BY MOLECULAR BEAM E
pitxy "J. of Crystal Growth
h 175/176 pp. 1063-1068 (19
97). [3] Masaaki Tanaka "Epitaxi
al Ferromagnetic Thin Film
ms and Heterostructures o
f Mn-based Metallic and S
emiconing Compounds o
n GaAs ", Institute of Select
Rikal Engineers of Japan,
MAG97-189, pp. 31-38, Ryukyu
University, November 199
7. [Masaaki Tanaka “Formation of Magnetic / Semiconductor Hybrid Structure and Its Physical Properties” IEICE Magnetics Research Group, MA
G-97-189, pp. 31-38, University of the Ryukyus, 19
November 1997] Both of the above-mentioned papers [1] and [2] describe a method for manufacturing a magnetic semiconductor (GaMn) As, its structure evaluation, electric conduction, magnetic properties, and the like.

【0004】また、上記論文〔3〕には、磁性半導体
(GaMn)As/非磁性半導体(AlAs)からなる
超格子の製造法、構造評価、電気伝導、磁気的性質につ
いて述べている。
The above-mentioned paper [3] describes a method of manufacturing a superlattice composed of a magnetic semiconductor (GaMn) As / a non-magnetic semiconductor (AlAs), a structure evaluation, electric conduction, and magnetic properties.

【0005】[0005]

【発明が解決しようとする課題】また、従来は、磁性層
としては、Bi:YIG(yttrium irong
arnet)のガーネット系のものが用いられていた
が、半導体基板とのなじみが良いとはいえなかった。
Conventionally, as a magnetic layer, Bi: YIG (yttrium iron) has been used.
arnet) was used, but it could not be said that it had good compatibility with a semiconductor substrate.

【0006】本発明は、上記したような磁性半導体(G
aMn)As/非磁性半導体(AlAs)からなる超格
子を更に発展させて、磁性体微粒子/半導体複合材料ま
たは磁性半導体を用いた磁気光学効果装置を開発した。
The present invention provides a magnetic semiconductor (G
By further developing a superlattice composed of aMn) As / non-magnetic semiconductor (AlAs), a magneto-optical effect device using magnetic fine particles / semiconductor composite material or magnetic semiconductor was developed.

【0007】また、上記したような磁性半導体(GaM
n)Asは極低温では大きな磁気光学効果を示すもの
の、キュリー温度が100K程度以下と低いために室温
ではわずかな磁気光学効果しか得られず、実用的な磁気
光学効果装置に利用することはできない。
Further, a magnetic semiconductor (GaM
n) As shows a large magneto-optical effect at extremely low temperatures, but has a small magneto-optical effect at room temperature because the Curie temperature is as low as about 100 K or less, and cannot be used for a practical magneto-optical effect device. .

【0008】本発明は、上記状況に鑑みて、室温で大き
な磁気光学効果を示し、動作波長が広い範囲で制御可能
であり、しかも、半導体光デバイス・光電子集積回路と
の集積化が容易な半導体磁気光学効果装置及びその製造
方法を提供することを目的とする。
In view of the above circumstances, the present invention provides a semiconductor which exhibits a large magneto-optical effect at room temperature, can control the operating wavelength in a wide range, and can be easily integrated with a semiconductor optical device / optoelectronic integrated circuit. An object of the present invention is to provide a magneto-optical effect device and a method for manufacturing the same.

【0009】[0009]

【課題を解決するための手段】本発明は、上記目的を達
成するために、 〔1〕半導体磁気光学効果装置において、半導体基板上
に形成されるとともに、半導体/強磁性金属複合材料か
らなる薄膜を挟んで上下に形成される非磁性半導体多層
反射膜とを具備することを特徴とする。
According to the present invention, there is provided a semiconductor magneto-optical effect device comprising: a thin film formed on a semiconductor substrate and comprising a semiconductor / ferromagnetic metal composite material; And a non-magnetic semiconductor multilayer reflective film formed vertically above and below the film.

【0010】〔2〕上記〔1〕記載の半導体磁気光学効
果装置において、前記半導体多層反射膜は、GaAs/
AlAs、GaAs/AlGaAs、AlAs/AlG
aAs、InGaAs/InAlAs、InP/InG
aAsであり、前記半導体/強磁性金属複合材料は、
(InMn)As、(GaMn)As、(InGaM
n)As,(AlMn)As、(GaMn)Sbを熱処
理して形成される半導体/強磁性金属クラスター系であ
ることを特徴とする。
[2] In the semiconductor magneto-optical effect device according to the above [1], the semiconductor multilayer reflective film is made of GaAs /
AlAs, GaAs / AlGaAs, AlAs / AlG
aAs, InGaAs / InAlAs, InP / InG
aAs, wherein the semiconductor / ferromagnetic metal composite material is
(InMn) As, (GaMn) As, (InGaM)
n) A semiconductor / ferromagnetic metal cluster system formed by heat-treating As, (AlMn) As, and (GaMn) Sb.

【0011】〔3〕半導体磁気光学効果装置において、
半導体基板上に形成されるとともに、磁性半導体材料か
らなる薄膜を挟んで上下に形成される半導体多層反射膜
とを具備することを特徴とする。
[3] In the semiconductor magneto-optical effect device,
And a semiconductor multilayer reflective film formed on a semiconductor substrate and formed above and below with a thin film made of a magnetic semiconductor material interposed therebetween.

【0012】〔4〕上記〔3〕記載の半導体磁気光学効
果装置において、前記半導体多層反射膜は、GaAs/
AlAs、GaAs/AlGaAs、AlAs/AlG
aAs、InGaAs/InAlAs、InP/InG
aAsであり、前記磁性半導体材料は、(InMn)A
s、(GaMn)As、(InGaMn)As、(Al
Mn)As、(GaMn)Sbからなることを特徴とす
る。
[4] In the semiconductor magneto-optical effect device according to the above [3], the semiconductor multilayer reflection film is made of GaAs /
AlAs, GaAs / AlGaAs, AlAs / AlG
aAs, InGaAs / InAlAs, InP / InG
aAs, wherein the magnetic semiconductor material is (InMn) A
s, (GaMn) As, (InGaMn) As, (Al
Mn) As and (GaMn) Sb.

【0013】〔5〕半導体磁気光学効果装置において、
面発光レーザー装置の面発光側に集積されるとともに、
半導体/強磁性金属複合材料又は磁性半導体からなる薄
膜を挟んで上下に形成される半導体多層反射膜とを具備
することを特徴とする。
[5] In the semiconductor magneto-optical effect device,
While being integrated on the surface emitting side of the surface emitting laser device,
And a semiconductor multi-layer reflective film formed above and below a thin film made of a semiconductor / ferromagnetic metal composite material or a magnetic semiconductor.

【0014】〔6〕半導体磁気光学効果装置において、
横型の光導波路の上部に磁性半導体/非磁性半導体から
なる回折格子を作製することを特徴とする。
[6] In the semiconductor magneto-optical effect device,
It is characterized in that a diffraction grating composed of a magnetic semiconductor / non-magnetic semiconductor is manufactured on the upper part of the horizontal optical waveguide.

【0015】〔7〕半導体磁気光学効果装置の製造方法
において、半導体基板を用意し、この半導体基板上に分
子線エピタキシー成長により、第1の高温で半導体多層
膜を形成し、この半導体多層膜上に低温分子線エピタキ
シー成長により、磁性半導体薄膜を形成し、この磁性半
導体薄膜を500〜700℃程度で熱処理し、半導体/
強磁性金属複合材料からなる薄膜を形成し、この薄膜上
に第2の高温で半導体多層膜を形成することを特徴とす
る。
[7] In the method of manufacturing a semiconductor magneto-optical effect device, a semiconductor substrate is prepared, and a semiconductor multilayer film is formed on the semiconductor substrate at a first high temperature by molecular beam epitaxy. A magnetic semiconductor thin film is formed by low-temperature molecular beam epitaxy, and the magnetic semiconductor thin film is heat-treated at about 500 to 700 ° C.
A thin film made of a ferromagnetic metal composite material is formed, and a semiconductor multilayer film is formed on the thin film at a second high temperature.

【0016】〔8〕半導体磁気光学効果装置の製造方法
において、半導体基板を用意し、この半導体基板上に分
子線エピタキシー成長により、高温で半導体多層膜を形
成し、この半導体多層膜上に低温または通常の温度の分
子線エピタキシー成長により、磁性半導体薄膜を形成
し、この薄膜上に低温または通常の温度で半導体多層膜
を形成することを特徴とする。
[8] In the method of manufacturing a semiconductor magneto-optical effect device, a semiconductor substrate is prepared, a semiconductor multilayer film is formed on the semiconductor substrate by molecular beam epitaxy at a high temperature, and a low temperature or a low temperature is formed on the semiconductor multilayer film. A feature is that a magnetic semiconductor thin film is formed by molecular beam epitaxy growth at a normal temperature, and a semiconductor multilayer film is formed on the thin film at a low temperature or a normal temperature.

【0017】[0017]

〔9〕上記〔7〕又は〔8〕記載の半導体
磁気光学効果装置の製造方法において、前記第1の高温
は600℃程度、第2の高温は600℃程度、低温は2
00℃〜300℃程度であることを特徴とする。
[9] In the method of manufacturing a semiconductor magneto-optical effect device according to [7] or [8], the first high temperature is about 600 ° C., the second high temperature is about 600 ° C., and the low temperature is 2 ° C.
It is characterized by a temperature of about 00 ° C to 300 ° C.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態につい
て図を参照しながら詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0019】図1は本発明の実施例を示す半導体磁気光
学効果装置の模式図、図2はその半導体磁気光学効果装
置の断面図(SEM観察した写真)である。
FIG. 1 is a schematic view of a semiconductor magneto-optical effect device showing an embodiment of the present invention, and FIG. 2 is a cross-sectional view (SEM observation photograph) of the semiconductor magneto-optical effect device.

【0020】これらの図において、1は(001)Ga
As基板、1aはAlGaAsエッチングストップ層、
2は半導体多層膜であり、この多層膜2は、GaAs層
3とAlAs層4からなる多層膜で、特定の波長の光を
全反射するDBR(Distributed Brag
g Reflector:分散型ブラッグ散乱)構造と
なっている。5は半導体/強磁性金属複合材料からなる
薄膜であり、GaAs中に強磁性金属MnAsのナノク
ラスター(大きさ数ナノメータの微粒子)が埋め込まれ
た半導体/強磁性金属複合材料薄膜となっている。6は
半導体多層膜であり、この多層膜6は、GaAs層7と
AlAs層8からなる多層膜で、特定の波長の光を全反
射するDBR構造となっている。
In these figures, 1 is (001) Ga
As substrate, 1a is an AlGaAs etching stop layer,
Reference numeral 2 denotes a semiconductor multilayer film. The multilayer film 2 is a multilayer film including a GaAs layer 3 and an AlAs layer 4, and is a DBR (Distributed Bragg) that totally reflects light of a specific wavelength.
g Reflector (dispersion type Bragg scattering) structure. Reference numeral 5 denotes a thin film made of a semiconductor / ferromagnetic metal composite material, which is a semiconductor / ferromagnetic metal composite material thin film in which nanoclusters (fine particles of several nanometers) of ferromagnetic metal MnAs are embedded in GaAs. Reference numeral 6 denotes a semiconductor multilayer film. The multilayer film 6 is a multilayer film including a GaAs layer 7 and an AlAs layer 8, and has a DBR structure that totally reflects light of a specific wavelength.

【0021】また、(001)GaAs基板に半導体多
層膜と、磁性半導体材料からなる薄膜(GaMnAs)
と更に 半導体多層膜とを設けるようにしてもよい。つ
まり、GaAs層中に強磁性金属MnAsのナノクラス
ター5に代えて、(GaMnAs)を用いるようにして
もよい。
Further, a semiconductor multilayer film and a thin film (GaMnAs) made of a magnetic semiconductor material are formed on a (001) GaAs substrate.
And further, a semiconductor multilayer film may be provided. That is, (GaMnAs) may be used instead of the nanocluster 5 of the ferromagnetic metal MnAs in the GaAs layer.

【0022】以下、本発明の半導体磁気光学効果装置の
製造方法について説明する。
Hereinafter, a method for manufacturing the semiconductor magneto-optical effect device of the present invention will be described.

【0023】図3は本発明の第1実施例を示す半導体磁
気光学効果装置の製造工程断面図である。
FIG. 3 is a sectional view showing a manufacturing process of the semiconductor magneto-optical effect device according to the first embodiment of the present invention.

【0024】(1)まず、GaAs半導体基板11を用
意して、分子線エピタキシー成長(Molecular
Beam Epitaxy,MBE)により、GaA
sバッファ層薄膜を成長し、表面を原子レベルで平坦化
する。
(1) First, a GaAs semiconductor substrate 11 is prepared, and molecular beam epitaxy (Molecular) is performed.
Beam Epitaxy, MBE)
An s-buffer layer thin film is grown, and the surface is planarized at the atomic level.

【0025】(2)次に、そのGaAs半導体基板11
上に600℃程度の高温で半導体多層膜12を形成す
る。この半導体多層膜12はGaAs層とAlAs層か
らなる多層膜で、特定の波長の光を全反射するDBR構
造となっている。
(2) Next, the GaAs semiconductor substrate 11
A semiconductor multilayer film 12 is formed thereon at a high temperature of about 600 ° C. The semiconductor multilayer film 12 is a multilayer film composed of a GaAs layer and an AlAs layer, and has a DBR structure that totally reflects light of a specific wavelength.

【0026】(3)その後、その上に200〜300℃
程度の低温または通常の温度の分子線エピタキシー成長
(low temperature−moleculu
rbeam epitaxy,LT−MBE)により、
(GaMn)As磁性半導体薄膜13を形成する。
(3) After that, 200-300 ° C.
Low temperature or normal temperature molecular beam epitaxy growth (low temperature-molecule)
rbeam epitaxy, LT-MBE)
A (GaMn) As magnetic semiconductor thin film 13 is formed.

【0027】(4)そこで、200〜300℃程度の低
温で成長した(GaMn)As磁性半導体薄膜13を一
旦500〜700℃で熱処理し、GaAs中に強磁性金
属MnAsのナノクラスター(大きさ数ナノメータの微
粒子)が埋め込まれた半導体/強磁性金属複合材料から
なる薄膜14に変質させる。
(4) Then, the (GaMn) As magnetic semiconductor thin film 13 grown at a low temperature of about 200 to 300 ° C. is once subjected to a heat treatment at 500 to 700 ° C. to form nanoclusters (size The thin film 14 is made of a semiconductor / ferromagnetic metal composite material in which nanometer particles are embedded.

【0028】(5)次に、高温で、GaAsとAlAs
からなる半導体多層膜15(DBR構造)を形成する。
(5) Next, at high temperature, GaAs and AlAs
A semiconductor multi-layer film 15 (DBR structure) is formed.

【0029】実際に作製した結晶の断面を走査型電子顕
微鏡(SEM)で観測したものが図2に示されている。
FIG. 2 shows a cross section of the actually prepared crystal observed with a scanning electron microscope (SEM).

【0030】図2の結晶において、中央の磁性薄膜層を
形成する際には、200〜300℃程度の低温で成長し
た(GaMn)As磁性半導体薄膜を一旦600℃程度
で熱処理したので、中央の磁性層は、GaAs中に強磁
性金属MnAsの微小クラスターが埋め込まれた半導体
/強磁性金属複合材料薄膜となっている。
In the crystal of FIG. 2, when forming the central magnetic thin film layer, the (GaMn) As magnetic semiconductor thin film grown at a low temperature of about 200 to 300 ° C. was once heat-treated at about 600 ° C. The magnetic layer is a semiconductor / ferromagnetic metal composite thin film in which microclusters of ferromagnetic metal MnAs are embedded in GaAs.

【0031】図4は本発明の第2実施例を示す半導体磁
気光学効果装置の製造工程断面図である。
FIG. 4 is a sectional view showing a manufacturing process of a semiconductor magneto-optical effect device according to a second embodiment of the present invention.

【0032】(1)まず、GaAs半導体基板21を用
意して、分子線エピタキシー成長により、GaAsバッ
ファ層薄膜を成長し、表面を原子レベルで平坦化する。
(1) First, a GaAs semiconductor substrate 21 is prepared, a GaAs buffer layer thin film is grown by molecular beam epitaxy, and the surface is flattened at an atomic level.

【0033】(2)次に、そのGaAs半導体基板21
上に600℃程度の高温で半導体多層膜22を形成す
る。この半導体多層膜22はGaAsとAlAsからな
る多層膜で、特定の波長の光を全反射するDBR構造と
なっている。
(2) Next, the GaAs semiconductor substrate 21
A semiconductor multilayer film 22 is formed thereon at a high temperature of about 600 ° C. The semiconductor multilayer film 22 is a multilayer film made of GaAs and AlAs, and has a DBR structure that totally reflects light of a specific wavelength.

【0034】(3)その後、その上に200〜300℃
程度の低温または通常の温度の分子線エピタキシー成長
により、(GaMn)As磁性半導体薄膜23を形成す
る。
(3) Thereafter, 200-300 ° C.
The (GaMn) As magnetic semiconductor thin film 23 is formed by molecular beam epitaxy at a low or normal temperature.

【0035】(4)次に、(GaMn)As磁性半導体
薄膜23上に、200〜300℃程度の低温または30
0〜550℃程度の通常の温度で、GaAsとAlAs
からなる半導体多層膜24(DBR構造)を形成する。
(4) Next, on the (GaMn) As magnetic semiconductor thin film 23, a low temperature of about 200 to 300.degree.
GaAs and AlAs at a normal temperature of about 0 to 550 ° C.
A semiconductor multi-layer film 24 (DBR structure) is formed.

【0036】いずれの場合でも、磁性半導体または半導
体/強磁性金属複合材料の磁性薄膜が中央にあり、その
両側を非磁性の半導体多層膜(DBR構造)で構成した
構造ができる。これが半導体磁気光学効果装置(半導体
磁気光学結晶)の基本形である。
In any case, a structure in which a magnetic thin film of a magnetic semiconductor or a semiconductor / ferromagnetic metal composite material is located at the center and both sides thereof are formed of a nonmagnetic semiconductor multilayer film (DBR structure) can be obtained. This is the basic form of the semiconductor magneto-optical effect device (semiconductor magneto-optical crystal).

【0037】それぞれの層の膜厚は、MBEのような結
晶成長法を用いることにより、非常に正確に制御可能と
なる。ここで、磁気光学デバイスとしての動作波長をλ
として、DBR構造の各層の膜厚をλ/4n、中央の磁
性層の膜厚をλ/2n(nはそれぞれの膜材料の屈折率
とする)としておくと、図1に示したように中央の磁性
層近傍に波長λの光が局在することにより、磁気光学効
果の大きさを非常に大きくすることができる。しかも波
長λの光は、この構造を透過することができるので、透
過型の磁気光学デバイスに応用することができる。
The thickness of each layer can be controlled very accurately by using a crystal growth method such as MBE. Here, the operating wavelength of the magneto-optical device is λ
Assuming that the thickness of each layer of the DBR structure is λ / 4n and the thickness of the central magnetic layer is λ / 2n (n is the refractive index of each film material), as shown in FIG. By localizing the light having the wavelength λ in the vicinity of the magnetic layer, the magnitude of the magneto-optical effect can be greatly increased. Moreover, since light having a wavelength λ can pass through this structure, it can be applied to a transmission type magneto-optical device.

【0038】上記したように、本発明によれば、 分子線エピタキシーに代表される原子層単位で膜厚
制御が可能な半導体エピタキシャル成長技術を用いて、
半導体基板上に半導体ベースの磁性材料を積層し、その
磁性材料の両側(あるいは上下)に光を閉じ込めるため
の非磁性半導体多層膜(DBR構造)を形成した。つま
り、単結晶からなる高品質の材料である。
As described above, according to the present invention, a semiconductor epitaxial growth technique capable of controlling the film thickness in atomic layer units represented by molecular beam epitaxy is used.
A semiconductor-based magnetic material was laminated on a semiconductor substrate, and a nonmagnetic semiconductor multilayer film (DBR structure) for confining light on both sides (or above and below) of the magnetic material was formed. That is, it is a high quality material made of a single crystal.

【0039】 半導体ベースの磁性材料薄膜を形成す
るために、低温又は通常の温度の分子線エピタキシー成
長と熱処理という特別の工夫をしている。
In order to form a semiconductor-based magnetic material thin film, special measures such as molecular beam epitaxy growth and heat treatment at low or normal temperature are taken.

【0040】 磁性材料の膜厚をλ/2n、非磁性半
導体多層膜(DBR構造)の各層の膜厚をλ/4nとな
るように正確に制御するようにした。これにより、動作
波長λを自由に制御することができる。
The thickness of the magnetic material is precisely controlled to be λ / 2n, and the thickness of each layer of the nonmagnetic semiconductor multilayer film (DBR structure) is precisely controlled to be λ / 4n. Thereby, the operating wavelength λ can be controlled freely.

【0041】 すべて半導体ベースの材料であり、作
製プロセスも半導体光デバイス製造技術と極めて整合性
が良いので、半導体光デバイス・光電子集積回路と容易
に集積化が可能である。
All are semiconductor-based materials, and the fabrication process is extremely compatible with semiconductor optical device manufacturing technology, so that they can be easily integrated with semiconductor optical devices and optoelectronic integrated circuits.

【0042】そして、図1に示したように、半導体磁気
光学効果装置では、波長λの光は中央の磁性層近傍に閉
じ込められる。従って、波長λにおいて、磁気光学効果
を非常に大きくすることができる。また、非磁性半導体
多層膜の各層の膜厚をλ/4nに、中央の磁性薄膜の膜
厚をλ/2nとすると、波長λの光はこの構造全体を透
過することができる。したがって、この材料を半導体ベ
ースの磁気光学効果素子として使うことができる。
Then, as shown in FIG. 1, in the semiconductor magneto-optical effect device, the light having the wavelength λ is confined in the vicinity of the central magnetic layer. Therefore, at the wavelength λ, the magneto-optical effect can be greatly increased. If the thickness of each layer of the non-magnetic semiconductor multilayer film is λ / 4n and the thickness of the central magnetic thin film is λ / 2n, light of wavelength λ can pass through the entire structure. Therefore, this material can be used as a semiconductor-based magneto-optical effect element.

【0043】次に、図5及び図6にその実験の1例を示
す。
Next, FIGS. 5 and 6 show an example of the experiment.

【0044】図5は本発明の図2の試料について室温で
測定した透過スペクトルを示している。
FIG. 5 shows a transmission spectrum measured at room temperature for the sample of FIG. 2 of the present invention.

【0045】この図において、矢印は波長λの透過モー
ドを表している。
In this figure, the arrows indicate the transmission mode of the wavelength λ.

【0046】図6は図5と同じ本発明の試料を室温で測
定したファラデー楕円率スペクトル(実線)aを示して
いる。
FIG. 6 shows a Faraday ellipticity spectrum (solid line) a obtained by measuring the same sample of the present invention as in FIG. 5 at room temperature.

【0047】これらの図から、波長λの透過モード(矢
印)において、光の閉じ込めのない単層の磁性膜のファ
ラデー楕円率スペクトル(点線)bに比べて、強いピー
クが見られ、すなわち、磁気光学効果が5倍〜6倍も大
きくなっていることが分かる。
From these figures, in the transmission mode (arrow) of the wavelength λ, a stronger peak is observed as compared with the Faraday ellipticity spectrum (dotted line) b of the single-layer magnetic film without confinement of light, It can be seen that the optical effect has increased 5 to 6 times.

【0048】次に、本発明の半導体磁気光学効果装置の
集積化の例について説明する。
Next, an example of integration of the semiconductor magneto-optical effect device of the present invention will be described.

【0049】図7は本発明の半導体磁気光学効果装置が
集積化された例(その1)を示す図である。
FIG. 7 is a view showing an example (part 1) in which the semiconductor magneto-optical effect device of the present invention is integrated.

【0050】この図に示すように、面発光レーザー31
の面発光側に、上記した本発明の半導体磁気光学効果装
置32を集積化する。そこで、面発光レーザー31の上
部を陽極とし、下部を陰極として、電流Iを供給する
と、面発光レーザー31での光の光偏波面33は半導体
磁気光学効果装置32において光の光偏波面34のよう
に回転することになる。
As shown in FIG.
The semiconductor magneto-optical effect device 32 of the present invention described above is integrated on the surface emitting side. Then, when the current I is supplied with the upper part of the surface emitting laser 31 as an anode and the lower part as a cathode, the light polarization plane 33 of the light from the surface emission laser 31 becomes the light polarization plane 34 of the light in the semiconductor magneto-optical effect device 32. It will rotate like so.

【0051】図8は本発明の半導体磁気光学効果装置の
応用例(その2)を示す図である。
FIG. 8 is a view showing an application example (part 2) of the semiconductor magneto-optical effect device of the present invention.

【0052】この図に示すように、横型の光導波路41
の上部(光路)に沿って磁性半導体(または半導体・強
磁性体金属複合材料)/非磁性半導体回折格子42を作
製する。
As shown in this figure, the horizontal optical waveguide 41
A magnetic semiconductor (or semiconductor / ferromagnetic metal composite material) / non-magnetic semiconductor diffraction grating 42 is formed along the upper part (optical path) of the semiconductor device.

【0053】このように構成することにより、横型の光
導波路41での入口側での光の光偏波面43は、その横
型の光導波路41の出射側では光偏波面44のように回
転することになる。
With this configuration, the light polarization plane 43 on the entrance side of the horizontal optical waveguide 41 rotates like the light polarization plane 44 on the exit side of the horizontal optical waveguide 41. become.

【0054】このように、横型の半導体磁気光学効果装
置にすることにより、端面発光レーザーとの集積化が可
能になる。
As described above, the lateral semiconductor magneto-optical effect device can be integrated with an edge emitting laser.

【0055】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。
It should be noted that the present invention is not limited to the above embodiment, but various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

【0056】[0056]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、次のような効果を奏することができる。
As described above, according to the present invention, the following effects can be obtained.

【0057】(A)動作波長が広い範囲で制御可能であ
る。
(A) The operating wavelength can be controlled in a wide range.

【0058】(B)半導体光デバイス・光電子集積回路
との集積化が容易である。
(B) Easy integration with semiconductor optical devices and optoelectronic integrated circuits.

【0059】(C)室温で大きな磁気光学効果を示す。(C) A large magneto-optical effect is exhibited at room temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す半導体磁気光学効果装置
の模式図である。
FIG. 1 is a schematic view of a semiconductor magneto-optical effect device showing an embodiment of the present invention.

【図2】本発明の実施例を示す半導体磁気光学効果装置
の断面図〔走査電子顕微鏡(SEM)観察した写真〕で
ある。
FIG. 2 is a cross-sectional view of a semiconductor magneto-optical effect device showing an example of the present invention (a photograph observed by a scanning electron microscope (SEM)).

【図3】本発明の第1実施例を示す半導体磁気光学効果
装置の製造工程断面図である。
FIG. 3 is a cross-sectional view showing a manufacturing process of the semiconductor magneto-optical effect device according to the first embodiment of the present invention.

【図4】本発明の第2実施例を示す半導体磁気光学効果
装置の製造工程断面図である。
FIG. 4 is a cross-sectional view illustrating a manufacturing process of a semiconductor magneto-optical effect device according to a second embodiment of the present invention.

【図5】本発明の図2に示す試料について室温で測定し
た透過スペクトルを示す図である。
FIG. 5 is a diagram showing a transmission spectrum of the sample shown in FIG. 2 of the present invention measured at room temperature.

【図6】図5と図2に示す試料を室温で測定したファラ
デー楕円率スペクトル(実線)を示す図である。
6 is a diagram showing a Faraday ellipticity spectrum (solid line) obtained by measuring the samples shown in FIGS. 5 and 2 at room temperature.

【図7】本発明の半導体磁気光学効果装置が集積化され
た例(その1)を示す図である。
FIG. 7 is a diagram showing an example (part 1) in which the semiconductor magneto-optical effect device of the present invention is integrated.

【図8】本発明の半導体磁気光学効果装置の応用例(そ
の2)を示す図である。
FIG. 8 is a diagram showing an application example (part 2) of the semiconductor magneto-optical effect device of the present invention.

【符号の説明】[Explanation of symbols]

1 GaAs基板 2,12 半導体多層膜 3,7 GaAs層 4,8 AlAs層 5,14 半導体/強磁性金属複合材料からなる薄膜
(強磁性金属MnAsのナノクラスター) 6,15,22,24 半導体多層膜(DBR構造) 11,21 GaAs半導体基板 13,23 (GaMn)As磁性半導体薄膜 31 面発光レーザー 32 半導体磁気光学効果装置 41 横型の光導波路 42 磁性半導体/非磁性半導体回折格子
DESCRIPTION OF SYMBOLS 1 GaAs substrate 2,12 Semiconductor multilayer film 3,7 GaAs layer 4,8 AlAs layer 5,14 Semiconductor / ferromagnetic metal composite thin film (ferromagnetic metal MnAs nanocluster) 6,15,22,24 Semiconductor multilayer Film (DBR structure) 11, 21 GaAs semiconductor substrate 13, 23 (GaMn) As magnetic semiconductor thin film 31 Surface emitting laser 32 Semiconductor magneto-optical effect device 41 Horizontal optical waveguide 42 Magnetic semiconductor / nonmagnetic semiconductor diffraction grating

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 半導体磁気光学効果装置において、 半導体基板上に形成されるとともに、半導体/強磁性金
属複合材料からなる薄膜を挟んで上下に形成される非磁
性半導体多層反射膜とを具備することを特徴とする半導
体磁気光学効果装置。
1. A semiconductor magneto-optical effect device comprising: a non-magnetic semiconductor multilayer reflection film formed on a semiconductor substrate and formed above and below a thin film made of a semiconductor / ferromagnetic metal composite material. A semiconductor magneto-optical effect device comprising:
【請求項2】 請求項1記載の半導体磁気光学効果装置
において、前記非磁性半導体多層反射膜は、GaAs/
AlAs、GaAs/AlGaAs、AlAs/AlG
aAs、InGaAs/InAlAs、InP/InG
aAsであり、前記半導体/強磁性金属複合材料は、
(InMn)As、(GaMn)As、(InGaM
n)As、(AlMn)As、(GaMn)Sbを熱処
理して形成される半導体/強磁性金属クラスター系であ
ることを特徴とする半導体磁気光学効果装置。
2. The semiconductor magneto-optical effect device according to claim 1, wherein said nonmagnetic semiconductor multilayer reflective film is made of GaAs /
AlAs, GaAs / AlGaAs, AlAs / AlG
aAs, InGaAs / InAlAs, InP / InG
aAs, wherein the semiconductor / ferromagnetic metal composite material is
(InMn) As, (GaMn) As, (InGaM)
n) A semiconductor magneto-optical effect device comprising a semiconductor / ferromagnetic metal cluster system formed by heat-treating As, (AlMn) As, and (GaMn) Sb.
【請求項3】 半導体磁気光学効果装置において、 半導体基板上に形成されるとともに、磁性半導体材料か
らなる薄膜を挟んで上下に形成される半導体多層反射膜
とを具備することを特徴とする半導体磁気光学効果装
置。
3. A semiconductor magneto-optical effect device, comprising: a semiconductor multilayer reflection film formed on a semiconductor substrate and formed above and below a thin film made of a magnetic semiconductor material. Optical effect device.
【請求項4】 請求項3記載の半導体磁気光学効果装置
において、前記半導体多層反射膜は、GaAs/AlA
s、GaAs/AlGaAs、AlAs/AlGaA
s、InGaAs/InAlAs、InP/InGaA
sであり、前記磁性半導体材料は、(InMn)As、
(GaMn)As、(InGaMn)As、(AlM
n)As、(GaMn)Sbからなることを特徴とする
半導体磁気光学効果装置。
4. The semiconductor magneto-optical effect device according to claim 3, wherein said semiconductor multilayer reflection film is made of GaAs / AlA.
s, GaAs / AlGaAs, AlAs / AlGaAs
s, InGaAs / InAlAs, InP / InGaAs
s, wherein the magnetic semiconductor material is (InMn) As,
(GaMn) As, (InGaMn) As, (AlM
n) A semiconductor magneto-optical effect device comprising As and (GaMn) Sb.
【請求項5】 半導体磁気光学効果装置において、 面発光レーザー装置の面発光側に集積されるとともに、
半導体/強磁性金属複合材料からなる薄膜を挟んで上下
に形成される半導体多層反射膜とを具備することを特徴
とする半導体磁気光学効果装置。
5. A semiconductor magneto-optical effect device, wherein the device is integrated on a surface emitting side of a surface emitting laser device,
A semiconductor magneto-optical effect device comprising: a semiconductor multilayer reflection film formed on and below a thin film made of a semiconductor / ferromagnetic metal composite material.
【請求項6】 半導体磁気光学効果装置において、 横型の光導波路の上部に磁性半導体/非磁性半導体から
なる回折格子を集積化することを特徴とする半導体磁気
光学効果装置。
6. A semiconductor magneto-optical effect device, wherein a diffraction grating composed of a magnetic semiconductor / non-magnetic semiconductor is integrated above a horizontal optical waveguide.
【請求項7】 半導体磁気光学効果装置の製造方法にお
いて、(a)半導体基板を用意し、(b)該半導体基板
上に分子線エピタキシー成長により、第1の高温で半導
体多層膜を形成し、(c)該半導体多層膜上に低温分子
線エピタキシー成長により、磁性半導体薄膜を形成し、
(d)該磁性半導体薄膜を500〜700℃程度で熱処
理し、半導体/強磁性金属複合材料からなる薄膜を形成
し、(e)該薄膜上に第2の高温で半導体多層膜を形成
することを特徴とする半導体磁気光学効果装置の製造方
法。
7. A method of manufacturing a semiconductor magneto-optical effect device, comprising: (a) preparing a semiconductor substrate; and (b) forming a semiconductor multilayer film on the semiconductor substrate at a first high temperature by molecular beam epitaxy; (C) forming a magnetic semiconductor thin film on the semiconductor multilayer film by low-temperature molecular beam epitaxy;
(D) heat treating the magnetic semiconductor thin film at about 500 to 700 ° C. to form a thin film composed of a semiconductor / ferromagnetic metal composite material; and (e) forming a semiconductor multilayer film on the thin film at a second high temperature. A method for manufacturing a semiconductor magneto-optical effect device, comprising:
【請求項8】 半導体磁気光学効果装置の製造方法にお
いて、(a)半導体基板を用意し、(b)該半導体基板
上に分子線エピタキシー成長により、高温で半導体多層
膜を形成し、(c)該半導体多層膜上に低温又は通常の
温度の分子線エピタキシー成長により、磁性半導体薄膜
を形成し、(d)該薄膜上に低温または通常の温度で半
導体多層膜を形成することを特徴とする半導体磁気光学
効果装置の製造方法。
8. A method for manufacturing a semiconductor magneto-optical effect device, comprising: (a) preparing a semiconductor substrate; (b) forming a semiconductor multilayer film on the semiconductor substrate by molecular beam epitaxy at a high temperature; Forming a magnetic semiconductor thin film on the semiconductor multilayer film by molecular beam epitaxy at a low temperature or a normal temperature; and (d) forming a semiconductor multilayer film on the thin film at a low temperature or a normal temperature. A method for manufacturing a magneto-optical effect device.
【請求項9】 請求項7又は8記載の半導体磁気光学効
果装置の製造方法において、前記第1の高温は600℃
程度、第2の高温は600℃程度、低温は200℃〜3
00℃程度であることを特徴とする半導体磁気光学効果
装置の製造方法。
9. The method for manufacturing a semiconductor magneto-optical effect device according to claim 7, wherein the first high temperature is 600 ° C.
Degree, the second high temperature is about 600 ° C., and the low temperature is 200 ° C. to 3 ° C.
A method for manufacturing a semiconductor magneto-optical effect device, wherein the temperature is about 00 ° C.
JP35350699A 1999-12-13 1999-12-13 Semiconductor magneto-optical effect device and method of producing the same Pending JP2001174770A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP35350699A JP2001174770A (en) 1999-12-13 1999-12-13 Semiconductor magneto-optical effect device and method of producing the same
PCT/JP2000/008366 WO2001042849A1 (en) 1999-12-13 2000-11-28 Semiconductor magnetooptic-effect device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35350699A JP2001174770A (en) 1999-12-13 1999-12-13 Semiconductor magneto-optical effect device and method of producing the same

Publications (1)

Publication Number Publication Date
JP2001174770A true JP2001174770A (en) 2001-06-29

Family

ID=18431314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35350699A Pending JP2001174770A (en) 1999-12-13 1999-12-13 Semiconductor magneto-optical effect device and method of producing the same

Country Status (2)

Country Link
JP (1) JP2001174770A (en)
WO (1) WO2001042849A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152674A (en) * 1991-11-25 1993-06-18 Nec Corp Surface light emitting semiconductor laser with outer modulator
JPH06202056A (en) * 1992-12-28 1994-07-22 Japan Energy Corp Faraday effect device
JPH0888435A (en) * 1994-09-20 1996-04-02 Fujitsu Ltd Semiconductor laser
JPH09293924A (en) * 1996-04-25 1997-11-11 Matsushita Electric Ind Co Ltd Varying method of wavelength of diffracted light and efficiency of diffraction, magnetic semiconductor wave guiding element and magnetic semiconductor laser element and their manufacturing method, high permiability mount device and magnetic semiconductor optical element module and their manufacturing method
US5805624A (en) * 1996-07-30 1998-09-08 Hewlett-Packard Company Long-wavelength infra-red vertical cavity surface-emitting laser on a gallium arsenide substrate
JP2879433B2 (en) * 1997-01-16 1999-04-05 工業技術院長 Semiconductor magneto-optical materials

Also Published As

Publication number Publication date
WO2001042849A1 (en) 2001-06-14

Similar Documents

Publication Publication Date Title
Liu et al. Influences of the spacer layer growth temperature on multilayer InAs∕ GaAs quantum dot structures
US7550755B2 (en) Semiconductor device with tunable energy band gap
Shimizu et al. Magneto-optical properties of a GaAs: MnAs hybrid structure sandwiched by GaAs/AlAs distributed Bragg reflectors: Enhanced magneto-optical effect and theoretical analysis
WO2003065525A1 (en) Circular polarization spin semiconductor laser using magnetic semiconductor and laser beam generating method
JPH0828498B2 (en) Semiconductor device and manufacturing method thereof
Tanaka et al. Enhancement of magneto-optical effect in a GaAs: MnAs hybrid nanostructure sandwiched by GaAs/AlAs distributed Bragg reflectors: epitaxial semiconductor-based magneto-photonic crystal
Shimizu et al. Magneto-optical properties of semiconductor-based superlattices having GaAs with MnAs nanoclusters
Dróżdż et al. Monolithic cyan− violet InGaN/GaN LED array
Zhang et al. Interface Engineering and Epitaxial Growth of Single‐Crystalline Aluminum Films on Semiconductors
JP2001174770A (en) Semiconductor magneto-optical effect device and method of producing the same
US5872023A (en) Method of fabricating of light emitting device with controlled lattice mismatch
JP3768790B2 (en) Quantum dot structure and semiconductor device apparatus having the same
JP3370935B2 (en) Method of manufacturing magneto-optical device and magneto-optical device thereof
Shimizu et al. Magneto-optical properties of a Si-doped GaAs: MnAs-based magneto-photonic crystal operating at 1.55 μm
Cho Molecular beam epitaxy from research to manufacturing
Zeng et al. Molecular beam epitaxial growth of lattice-matched ZnxCdyMg1− x− ySe quaternaries on InP substrates
JPH11135883A (en) Semiconductor light-emitting element and manufacture thereof
Wang et al. GaN-Based VCSELs
JP5077880B2 (en) Fine structure element manufacturing apparatus and fine structure element production method
JP2833604B2 (en) Semiconductor laminated structure
Dahl et al. Raman scattering by plasmons in deep etched quantum wires
Ivanov et al. Molecular beam epitaxy of alternating-strain ZnSe-based multilayer heterostructures for blue-green lasers
Akahane et al. Polarization dependence of photoluminescence from InAs quantum dots grown on InP (311) B substrates using digital embedding method
JPH09121065A (en) Superlattice structure magnetic film and its manufacturing method
Cheong Magneto-optical studies of gallium arsenide-based quantum well structures

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020122