JP2001174651A - Optical waveguide substrate - Google Patents

Optical waveguide substrate

Info

Publication number
JP2001174651A
JP2001174651A JP36344499A JP36344499A JP2001174651A JP 2001174651 A JP2001174651 A JP 2001174651A JP 36344499 A JP36344499 A JP 36344499A JP 36344499 A JP36344499 A JP 36344499A JP 2001174651 A JP2001174651 A JP 2001174651A
Authority
JP
Japan
Prior art keywords
optical waveguide
substrate
layer
organic
aluminum nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36344499A
Other languages
Japanese (ja)
Other versions
JP3690648B2 (en
Inventor
Katsuhiro Kaneko
勝弘 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP36344499A priority Critical patent/JP3690648B2/en
Publication of JP2001174651A publication Critical patent/JP2001174651A/en
Application granted granted Critical
Publication of JP3690648B2 publication Critical patent/JP3690648B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical waveguide substrate which is formed with an organic system optical waveguide with sufficient adhesion strength on an aluminum nitride substrate. SOLUTION: This optical waveguide substrate is constituted by forming the optical waveguide of the organic system having a layer consisting of an organic optical material having a hydroxyl group or alkyl group as a lower clad layer 3 on the aluminum oxide substrate 1 via an intermediate layer 2 consisting of silicon nitride or silicon interposed therebetween. Since the hydroxyl group at the terminal of the intermediate layer 2 surface and the hydroxyl group or alkyl group of the lower clad layer 3 are bonded by dehydration polymerization or dealcohol polymerization, the high adhesion strength may be obtained and the formation of the organic system optical waveguide on the aluminum nitride substrate with the sufficient adhesion strength is made possible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光通信モジュール
等に用いられる光導波路基板に関し、より詳細には、熱
伝導性に優れた窒化アルミニウム質焼結体から成る基板
上に光導波路を形成した光導波路基板に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide substrate used for an optical communication module or the like, and more particularly, to an optical waveguide formed on a substrate made of an aluminum nitride sintered body having excellent thermal conductivity. The present invention relates to an optical waveguide substrate.

【0002】[0002]

【従来の技術】従来、光通信モジュール等には、シリコ
ン基板に電気回路と光導波路とを形成した光導波路基板
に各種の光デバイスを搭載したものが使われている。ま
た、シリコン基板よりも電気的な高周波特性や機械的強
度に優れ、さらに多層化による高い電気配線密度が実現
できるセラミック回路基板に光導波路を形成した光導波
路基板がある。
2. Description of the Related Art Conventionally, optical communication modules and the like have been used in which various optical devices are mounted on an optical waveguide substrate in which an electric circuit and an optical waveguide are formed on a silicon substrate. Further, there is an optical waveguide substrate in which an optical waveguide is formed on a ceramic circuit substrate which is superior in electrical high-frequency characteristics and mechanical strength as compared with a silicon substrate, and can realize a high electric wiring density by multilayering.

【0003】中でも、窒化アルミニウム質焼結体から成
る基板(以下、窒化アルミニウム基板と略す)上に光導
波路を形成した光導波路基板は、多層電気回路が形成で
き、シリコン基板よりも電気的な高周波特性に優れ、さ
らに、シリコン基板並の高い熱伝導性を有している窒化
アルミニウム質焼結体から成る基板を用いていることか
ら、光デバイスや光デバイスを駆動・処理する電気デバ
イスおよび信号処理用の電気デバイス等を多数かつ高密
度に実装できる点で有望である。
[0003] Above all, an optical waveguide substrate in which an optical waveguide is formed on a substrate made of an aluminum nitride sintered body (hereinafter, abbreviated as aluminum nitride substrate) can form a multilayer electric circuit and has a higher electric frequency than a silicon substrate. Since it uses a substrate made of aluminum nitride sintered body that has excellent characteristics and high thermal conductivity comparable to that of a silicon substrate, optical devices and electrical devices that drive and process optical devices and signal processing Is promising in that many and high-density electrical devices can be mounted at high density.

【0004】一方、光導波路としては、例えば石英ガラ
ス基板やシリコン基板上に火炎堆積法により成膜したシ
リカ膜を利用して3次元形状のクラッド部およびコア部
を形成したシリカ系光導波路や、ニオブ酸リチウム単結
晶基板をクラッド部とし、この基板上にチタンを熱拡散
して3次元導波路形状にコア部を形成した光導波路等が
ある。
On the other hand, as an optical waveguide, for example, a silica-based optical waveguide in which a three-dimensional clad portion and a core portion are formed using a silica film formed by a flame deposition method on a quartz glass substrate or a silicon substrate, There is an optical waveguide or the like in which a lithium niobate single crystal substrate is used as a clad portion and titanium is thermally diffused on the substrate to form a core portion in a three-dimensional waveguide shape.

【0005】しかしながら、これらのシリカ系光導波路
等を形成するには約1000℃以上の高温の熱処理が必要で
あるため、電気回路基板上にこれら光導波路による光回
路を形成する際に下地となる電気回路基板に損傷を与え
ることとなってしまう。
[0005] However, since a high-temperature heat treatment of about 1000 ° C. or more is required to form these silica-based optical waveguides and the like, they form a base when an optical circuit using these optical waveguides is formed on an electric circuit board. The electric circuit board will be damaged.

【0006】これに対し、作製時に高温処理が必要なこ
れら従来のシリカ系光導波路等に代えて、低温形成が可
能な有機系光学材料による光導波路が検討されている。
この光導波路に利用される有機系光学材料としては、P
MMA(ポリメチルメタアクリレート)・ポリカーボネ
ート・ポリイミド・ポリシロキサン・BCB(ベンゾシ
クロブテン)・フッ素樹脂等が検討されている。
On the other hand, instead of these conventional silica-based optical waveguides and the like which require high-temperature processing during fabrication, optical waveguides made of organic optical materials that can be formed at a low temperature are being studied.
Organic optical materials used for this optical waveguide include P
MMA (polymethyl methacrylate), polycarbonate, polyimide, polysiloxane, BCB (benzocyclobutene), fluorine resin, and the like are being studied.

【0007】これら有機系光学材料から成る光導波路の
作製方法としては、シリコン基板やガラス基板上に下部
クラッド層を形成し、次に、この下部クラッド層よりも
高い屈折率を持つコア層を形成して、薄膜微細加工技術
を用いてコア層をRIE(リアクティブイオンエッチン
グ)等により加工してコア部を形成した後、コア部より
も低い屈折率を有する上部クラッド層を被覆して3次元
形状の光導波路を形成する方法が行なわれている。
As a method of manufacturing an optical waveguide made of these organic optical materials, a lower cladding layer is formed on a silicon substrate or a glass substrate, and then a core layer having a higher refractive index than the lower cladding layer is formed. Then, the core layer is processed by RIE (reactive ion etching) or the like using a thin film microfabrication technique to form a core portion, and then the upper cladding layer having a lower refractive index than the core portion is covered to form a three-dimensional structure. A method of forming an optical waveguide having a shape has been performed.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、有機系
光学材料による光導波路を窒化アルミニウム基板上に形
成しようとする場合、光導波路用の有機系光学材料と窒
化アルミニウム基板との密着強度が低く、光導波路の作
製工程やその後のデバイス実装等の後工程において、光
導波路用の有機系光学材料から成る下部クラッド層が窒
化アルミニウム基板から剥がれたり、下部クラッド層に
クラックが発生するという問題点があった。
However, when an optical waveguide made of an organic optical material is to be formed on an aluminum nitride substrate, the adhesion strength between the organic optical material for the optical waveguide and the aluminum nitride substrate is low, and the optical waveguide is not provided. In a post-process such as a waveguide manufacturing process and a subsequent device mounting process, there was a problem that a lower cladding layer made of an organic optical material for an optical waveguide was peeled off from an aluminum nitride substrate and cracks were generated in the lower cladding layer. .

【0009】本発明は上記従来技術の問題点に鑑みて案
出されたものであり、その目的は、窒化アルミニウム基
板上に十分な密着強度で有機系光導波路を形成した光導
波路基板を提供することにある。
The present invention has been devised in view of the above-mentioned problems of the prior art, and has as its object to provide an optical waveguide substrate having an organic optical waveguide formed on an aluminum nitride substrate with sufficient adhesion strength. It is in.

【0010】[0010]

【課題を解決するための手段】本発明の光導波路基板
は、窒化アルミニウム基板上に酸化珪素または珪素から
成る中間層を介在させて、水酸基またはアルキル基を有
する有機系光学材料から成る層を下部クラッド層とした
有機系光導波路を形成したことを特徴とするものであ
る。
According to the optical waveguide substrate of the present invention, a layer made of an organic optical material having a hydroxyl group or an alkyl group is formed on an aluminum nitride substrate with an intermediate layer made of silicon oxide or silicon interposed therebetween. An organic optical waveguide serving as a cladding layer is formed.

【0011】また、本発明の光導波路基板は、上記構成
において、前記有機系光学材料がシロキサン系ポリマで
あることを特徴とするものである。
The optical waveguide substrate according to the present invention is characterized in that, in the above-mentioned structure, the organic optical material is a siloxane-based polymer.

【0012】本発明の光導波路基板は、窒化アルミニウ
ム基板上に酸化珪素または珪素から成る中間層を介在さ
せて、水酸基またはアルキル基を有する有機系光学材料
から成る層を下部クラッド層とした有機系光導波路を形
成したことにより、中間層の表面終端の水酸基と光導波
路の下部クラッド層の水酸基やアルキル基とが脱水重合
や脱アルコール重合によって強固に結合することから、
窒化アルミニウム基板上に十分な密着強度で有機系光導
波路を形成した光導波路基板を得ることができる。
An optical waveguide substrate according to the present invention is an organic waveguide substrate having an interlayer made of silicon oxide or silicon on an aluminum nitride substrate, and a layer made of an organic optical material having a hydroxyl group or an alkyl group as a lower cladding layer. By forming the optical waveguide, the hydroxyl group at the surface end of the intermediate layer and the hydroxyl group or the alkyl group of the lower cladding layer of the optical waveguide are strongly bonded by dehydration polymerization or dealcoholization polymerization.
An optical waveguide substrate having an organic optical waveguide formed on an aluminum nitride substrate with sufficient adhesion strength can be obtained.

【0013】[0013]

【発明の実施の形態】以下、本発明の光導波路基板につ
いて図面を参照しつつ説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an optical waveguide substrate according to the present invention will be described with reference to the drawings.

【0014】図1は本発明の光導波路の実施の形態の一
例を示す断面図である。図1において、1は基板、2は
中間層、3は光導波路の有機系光学材料から成る下部ク
ラッド層、4は光導波路のコア部、5は光導波路の上部
クラッド層である。
FIG. 1 is a sectional view showing an example of an embodiment of an optical waveguide according to the present invention. In FIG. 1, 1 is a substrate, 2 is an intermediate layer, 3 is a lower cladding layer made of an organic optical material for an optical waveguide, 4 is a core portion of the optical waveguide, and 5 is an upper cladding layer of the optical waveguide.

【0015】基板1は窒化アルミニウム質焼結体から成
る基板であり、窒化アルミニウム基板単体や、電気回路
を表面に形成した窒化アルミニウム電気回路基板・窒化
アルミニウム基板内部に多層電気回路基板が形成された
基板等が使用できる。
The substrate 1 is a substrate made of an aluminum nitride sintered body. An aluminum nitride substrate alone, an aluminum nitride electric circuit substrate having an electric circuit formed on its surface, and a multilayer electric circuit substrate formed inside the aluminum nitride substrate are provided. A substrate or the like can be used.

【0016】中間層2は酸化珪素または珪素からなる層
である。この中間層2の形成方法としては、スパッタリ
ング法・電子ビーム蒸着法・イオンビーム蒸着法・レー
ザアブレーション成膜法・CVD法等を利用することが
できる。中でも、スパッタリング法やイオンビーム蒸着
法は、基板1表面への成膜材料粒子の打ち込み効果が大
きいので、アンカー効果によって中間層2と基板1との
密着強度が大きくなることから好適である。
The intermediate layer 2 is a layer made of silicon oxide or silicon. As a method for forming the intermediate layer 2, a sputtering method, an electron beam evaporation method, an ion beam evaporation method, a laser ablation film formation method, a CVD method, or the like can be used. Among them, the sputtering method and the ion beam evaporation method are preferable because the adhesion effect between the intermediate layer 2 and the substrate 1 is increased by the anchor effect because the effect of implanting the film-forming material particles on the surface of the substrate 1 is large.

【0017】本発明において中間層2として酸化珪素ま
たは珪素を用いるのは、中間層2とその上に形成する下
部クラッド層3との密着強度を十分に大きくすることが
できるためである。その理由は、酸化珪素または珪素か
らなる中間層2の表面は水酸基で終端することができる
ことと、有機系光学材料から成る下部クラッド層3に水
酸基やアルキル基が含まれることから、中間層2の表面
の水酸基と下部クラッド層3の水酸基やアルキル基とが
脱水重合や脱アルコール重合によって強固に結合し、両
層の間で大きな密着強度が得られるためである。
The reason why silicon oxide or silicon is used as the intermediate layer 2 in the present invention is that the adhesion strength between the intermediate layer 2 and the lower cladding layer 3 formed thereon can be sufficiently increased. The reason is that the surface of the intermediate layer 2 made of silicon oxide or silicon can be terminated with a hydroxyl group, and the lower clad layer 3 made of an organic optical material contains a hydroxyl group or an alkyl group. This is because a hydroxyl group on the surface and a hydroxyl group or an alkyl group of the lower cladding layer 3 are firmly bonded by dehydration polymerization or dealcoholization polymerization, and a large adhesion strength is obtained between the two layers.

【0018】なお、有機系光学材料から成る下部クラッ
ド層3自体に水酸基やアルキル基が含まれない場合であ
っても、下地が酸化珪素または珪素であれば、周知のシ
ラン系カップリング材を用いることによって中間層2と
の間に中間層2と結合する水酸基やアルキル基と、下部
クラッド層3との密着強度が大きい有機官能基とを有す
るものとすることができて、大きな密着強度を得ること
ができる。このようなシラン系カップリング材として
は、グリシドキシプロピルトリメトキシシラン・ヘキサ
メトキシジメチルシラザン・メタクリロキシプロピルト
リメトキシシラン・トリメトキシシリルプロピルエチレ
ンジアミン等が使用できる。
Even if the lower cladding layer 3 made of an organic optical material does not contain a hydroxyl group or an alkyl group, if the underlying layer is silicon oxide or silicon, a well-known silane coupling material is used. Thereby, a hydroxyl group or an alkyl group bonded to the intermediate layer 2 with the intermediate layer 2 and an organic functional group having a large adhesion strength with the lower cladding layer 3 can be obtained, and a large adhesion strength can be obtained. be able to. As such a silane coupling material, glycidoxypropyltrimethoxysilane, hexamethoxydimethylsilazane, methacryloxypropyltrimethoxysilane, trimethoxysilylpropylethylenediamine, or the like can be used.

【0019】中間層2の厚さとしては、酸化珪素または
珪素が数分子層あるいは数原子層あれば原理的に問題な
いが、一般的に窒化アルミニウム基板表面は10nm以上
の表面粗さを有しているので、中間層2による十分な被
覆性を得るためには10nm以上の厚さとすることが好ま
しい。
The thickness of the intermediate layer 2 is not problematic in principle as long as silicon oxide or silicon has several molecular layers or several atomic layers, but the surface of the aluminum nitride substrate generally has a surface roughness of 10 nm or more. Therefore, in order to obtain sufficient coverage with the intermediate layer 2, the thickness is preferably 10 nm or more.

【0020】一方、酸化珪素または珪素をスパッタリン
グ法・電子ビーム蒸着法・イオンビーム蒸着法・レーザ
アブレーション成膜法・CVD法等で成膜した場合は、
膜応力が100MPa以上であることが普通であり、層の
厚さが厚い場合には、膜応力によって基板を大きく反ら
せたり、基板表面から層が剥がれたり、クラックが生じ
たりする問題がある。これに対し、中間層2の厚さが50
0nm以下であれば、有機系光学材料から成る下部クラ
ッド層3と同程度の膜応力に抑えることができる。
On the other hand, when silicon oxide or silicon is formed by a sputtering method, an electron beam evaporation method, an ion beam evaporation method, a laser ablation film formation method, a CVD method, or the like,
Usually, the film stress is 100 MPa or more. When the thickness of the layer is large, there is a problem that the substrate is largely warped by the film stress, the layer is peeled off from the substrate surface, and cracks are generated. On the other hand, the thickness of the intermediate layer 2 is 50
When the thickness is 0 nm or less, the film stress can be suppressed to the same level as that of the lower cladding layer 3 made of an organic optical material.

【0021】基板1上に形成される光導波路は、下部ク
ラッド層3および上部クラッド層5から成るクラッド部
3・5中にコア部4が形成された三次元導波路形状の光
導波路である。その形成材料としては、例えばポリイミ
ド・フッ化ポリイミド・シロキサン系ポリマ・PMMA
(ポリメチルメタアクリレート)・オレフィン系樹脂等
から成り、末端基として水酸基またはアルキル基を有し
ている有機系の光学材料から成る光導波路を用いる。
The optical waveguide formed on the substrate 1 is a three-dimensional waveguide-shaped optical waveguide in which a core portion 4 is formed in cladding portions 3 and 5 comprising a lower cladding layer 3 and an upper cladding layer 5. As the forming material, for example, polyimide, fluorinated polyimide, siloxane-based polymer, PMMA
(Polymethylmethacrylate) An optical waveguide made of an olefin resin or the like and made of an organic optical material having a hydroxyl group or an alkyl group as a terminal group is used.

【0022】光導波路の作製方法としては、まず下部ク
ラッド層3を形成する。これにはポリイミド・フッ化ポ
リイミド・シロキサン系ポリマ・PMMA・オレフィン
系樹脂等の有機系光学材料の有機溶媒溶液を、中間層2
が形成された基板1にスピンコート法等により所定厚み
に塗布し、熱処理することにより形成する。
As a method of manufacturing the optical waveguide, first, the lower clad layer 3 is formed. To this, an organic solvent solution of an organic optical material such as polyimide, fluorinated polyimide, siloxane-based polymer, PMMA, olefin-based resin, etc.
Is formed on the substrate 1 on which is formed a predetermined thickness by a spin coating method or the like and heat-treated.

【0023】コア部4は、下部クラッド層3上にポリイ
ミド・フッ化ポリイミド・シロキサン系ポリマ・PMM
A・オレフィン系樹脂等の有機系光学材料の有機溶媒溶
液を中間層2が形成された基板1に例えばスピンコート
法等により所定厚みに塗布し、熱処理することにより層
形成した後、フォトリソグラフィやRIE等の周知の薄
膜微細加工技術を用いて所定の形状で形成すればよい。
ここで、コア部4は下部クラッド層3よりも高い屈折率
を有する材料とする。
The core part 4 has a polyimide / fluorinated polyimide / siloxane-based polymer / PMM on the lower cladding layer 3.
A: An organic solvent solution of an organic optical material such as an olefin resin is applied to the substrate 1 on which the intermediate layer 2 is formed to a predetermined thickness by, for example, a spin coating method or the like, and heat-treated to form a layer. What is necessary is just to form in a predetermined shape using well-known thin film microfabrication techniques, such as RIE.
Here, the core portion 4 is made of a material having a higher refractive index than the lower cladding layer 3.

【0024】上部クラッド層4は、コア部4を形成した
後に、ポリイミド・フッ化ポリイミド・シロキサン系ポ
リマ・PMMA・オレフィン系樹脂等の有機系光学材料
の有機溶媒溶液を下部クラッド層3およびコア部4が形
成された基板1に例えばスピンコート法等により所定厚
みに塗布し、熱処理することにより形成する。
After the core 4 is formed, the upper clad layer 4 is coated with an organic solvent solution of an organic optical material such as polyimide, fluorinated polyimide, siloxane-based polymer, PMMA, or olefin-based resin. The substrate 4 on which the substrate 4 is formed is formed by applying a predetermined thickness by, for example, a spin coating method or the like, and performing heat treatment.

【0025】ここで、コア部4の高さや幅・屈折率、下
部クラッド層3の厚さ・屈折率、上部クラッド層4の厚
さ・屈折率は、周知の光導波路理論を用いて所望の仕様
で設計すればよい。
Here, the height, width, and refractive index of the core portion 4, the thickness and refractive index of the lower cladding layer 3, and the thickness and refractive index of the upper cladding layer 4 are set to desired values using a known optical waveguide theory. What is necessary is just to design by specification.

【0026】以上のようにして、埋め込み型の三次元導
波路形状の光導波路を作製する。
As described above, an optical waveguide having a buried three-dimensional waveguide shape is manufactured.

【0027】本発明の光導波路基板において、下部クラ
ッド層3を形成する有機系光学材料としてシロキサン系
ポリマを用いた場合には、例えばシロキサン系ポリマの
有機溶媒をスピンコート法等により基板1に塗布した
後、100℃から300℃程度の低温熱処理によって下部クラ
ッド層3を形成することができ、また、屈折率を制御す
るために金属アルコキシドを混合して金属を含有したシ
ロキサン系ポリマを容易に作製することができ、それに
より所望の屈折率に精度良く制御できるので、光導波路
の作製が容易となる。さらに、層形成の際の収縮が小さ
いので、基板1表面に形成した層の表面の平坦化性・平
滑化性に優れており、基板1として表面粗さが大きな基
板や配線による大きな起伏がある電気配線基板を用いた
場合でもその上にも精度良く光導波路を作製することが
できる。
In the optical waveguide substrate of the present invention, when a siloxane-based polymer is used as the organic optical material for forming the lower cladding layer 3, for example, an organic solvent of the siloxane-based polymer is applied to the substrate 1 by spin coating or the like. After that, the lower cladding layer 3 can be formed by low-temperature heat treatment at about 100 ° C. to 300 ° C., and a metal-containing siloxane-based polymer can be easily produced by mixing a metal alkoxide to control the refractive index. Since the refractive index can be controlled to a desired refractive index with high accuracy, the fabrication of the optical waveguide becomes easy. Further, since the shrinkage during the formation of the layer is small, the surface of the layer formed on the surface of the substrate 1 is excellent in flatness and smoothness, and the substrate 1 has large undulations due to a substrate or wiring having a large surface roughness. Even when an electric wiring board is used, an optical waveguide can be manufactured thereon with high accuracy.

【0028】また、シロキサン系ポリマはシロキサン結
合を有しているため優れた熱的安定性を有する光導波路
を形成することができる。さらに、水酸基やアルキル基
を末端基とすることが容易であり、中間層2上に下部ク
ラッド層3となる膜を形成した場合に、中間層2の表面
の水酸基との脱水重合や脱アルコール重合によって中間
層2との大きな密着強度が得られる。
Since the siloxane-based polymer has a siloxane bond, an optical waveguide having excellent thermal stability can be formed. Further, it is easy to make a hydroxyl group or an alkyl group a terminal group, and when a film serving as the lower cladding layer 3 is formed on the intermediate layer 2, dehydration polymerization or dealcoholization polymerization with hydroxyl groups on the surface of the intermediate layer 2 is performed. Thereby, a large adhesion strength with the intermediate layer 2 is obtained.

【0029】このような光導波路のクラッド部3・5お
よびコア部4に用いるシロキサン系ポリマとしては、基
本的にポリマの骨格にシロキサン結合が含まれている樹
脂であればよく、例えばポリフェニルシルセスキオキサ
ン・ポリジフェニルシルセスキオキサン・ポリメチルフ
ェニルシルセスキオキサン等を用いることができる。
The siloxane-based polymer used for the cladding portions 3 and 5 and the core portion 4 of such an optical waveguide may be basically a resin containing a siloxane bond in the polymer skeleton, such as polyphenylsilyl. Sesquioxane, polydiphenylsilsesquioxane, polymethylphenylsilsesquioxane, and the like can be used.

【0030】[0030]

【実施例】次に、本発明の光導波路基板について具体例
を説明する。
Next, a specific example of the optical waveguide substrate of the present invention will be described.

【0031】<実施例1>スパッタリング法を用いて厚
さ10nmの酸化珪素層から成る中間層を形成した窒化ア
ルミニウム基板上に、ポリメチルフェニルシルセスキオ
キサン有機溶媒溶液をスピンコート法により塗布して、
250℃の熱処理を行ない、光導波路の下部クラッド層と
して厚さ5μmのポリメチルフェニルシルセスキオキサ
ンからなるシロキサンポリマ膜を形成した。このシロキ
サンポリマ膜と窒化アルミニウム基板との密着強度を測
定したところ、約15.7N/mm2程度の値であった。
Example 1 An organic solvent solution of polymethylphenylsilsesquioxane was applied by a spin coating method on an aluminum nitride substrate on which an intermediate layer made of a silicon oxide layer having a thickness of 10 nm was formed by a sputtering method. hand,
A heat treatment at 250 ° C. was performed to form a 5 μm-thick siloxane polymer film made of polymethylphenylsilsesquioxane as a lower cladding layer of the optical waveguide. When the adhesion strength between the siloxane polymer film and the aluminum nitride substrate was measured, it was about 15.7 N / mm 2 .

【0032】一方、酸化珪素層を形成していない窒化ア
ルミニウム基板とのシロキサンポリマ膜の密着強度は、
約5.9N/mm2以下であった。すなわち、本発明の実施
例における下部クラッド層の密着強度は、本発明のよう
に中間層を用いない従来のものに比べて2.5倍以上の値
であり、光導波路の加工工程やデバイス実装工程におい
て十分な値であるものであった。
On the other hand, the adhesion strength of the siloxane polymer film to the aluminum nitride substrate on which the silicon oxide layer is not formed is as follows:
It was about 5.9 N / mm 2 or less. That is, the adhesion strength of the lower cladding layer in the embodiment of the present invention is a value that is 2.5 times or more as compared with the conventional one that does not use the intermediate layer as in the present invention. It was a sufficient value.

【0033】<実施例2>スパッタリング法を用いて厚
さ10nmの酸化珪素層から成る中間層を形成した窒化ア
ルミニウム基板上に、クラッド部がシロキサン系ポリ
マ、コア部がチタン含有シロキサン系ポリマから成るス
テップインデックス型光導波路を形成した。このときコ
ア部、クラッド部の屈折率をそれぞれ1.444および1.440
として、コア部の幅を8μm、高さを8μmとし、コア
部の上部の上部クラッド層の厚さを4μmとした。ま
た、基板とコア部との間の下部クラッド層の厚さは12μ
mとした。
<Example 2> On an aluminum nitride substrate on which an intermediate layer made of a silicon oxide layer having a thickness of 10 nm was formed by a sputtering method, a cladding portion was made of a siloxane-based polymer and a core portion was made of a titanium-containing siloxane-based polymer. A step index optical waveguide was formed. At this time, the refractive indices of the core portion and the cladding portion were 1.444 and 1.440, respectively.
The width of the core portion was 8 μm, the height was 8 μm, and the thickness of the upper cladding layer above the core portion was 4 μm. The thickness of the lower cladding layer between the substrate and the core is 12μ.
m.

【0034】このとき、作製中に光導波路層の剥がれや
クラックの発生は見られなかった。また、光導波路形成
後のダイシングによるチップ切り分けにおいても光導波
路層の剥がれの発生は見られなかった。さらに、光導波
路の導波路特性にも何ら問題は見られなかった。
At this time, no peeling or cracking of the optical waveguide layer was observed during the fabrication. Also, in the chip separation by dicing after the formation of the optical waveguide, peeling of the optical waveguide layer was not observed. Further, no problem was found in the waveguide characteristics of the optical waveguide.

【0035】以上のように、本発明によれば、窒化アル
ミニウム基板上に十分な密着強度で有機系光導波路を作
製できる光導波路基板を提供できることが確認できた。
As described above, according to the present invention, it was confirmed that an optical waveguide substrate capable of fabricating an organic optical waveguide with sufficient adhesion strength on an aluminum nitride substrate could be provided.

【0036】なお、本発明は以上の例に限定されるもの
ではなく、本発明の要旨を逸脱しない範囲で種々の変更
・改良を加えることは何ら差し支えない。
It should be noted that the present invention is not limited to the above examples, and various changes and improvements can be made without departing from the spirit of the present invention.

【0037】[0037]

【発明の効果】以上のように、本発明の光導波路基板に
よれば、窒化アルミニウム基板上に酸化珪素または珪素
から成る中間層を介在させて、水酸基またはアルキル基
を有する有機系光学材料から成る層を下部クラッド層と
した有機系の光導波路を形成したことにより、中間層表
面の終端の水酸基と光導波路を構成する下部クラッド層
の水酸基またはアルキル基とが脱水重合や脱アルコール
重合によって結合することから、窒化アルミニウム基板
上に十分な密着強度で有機系光導波路を形成した光導波
路基板を得ることができた。
As described above, according to the optical waveguide substrate of the present invention, an organic optical material having a hydroxyl group or an alkyl group is formed on an aluminum nitride substrate with an intermediate layer made of silicon oxide or silicon interposed therebetween. By forming an organic optical waveguide using the layer as the lower cladding layer, the hydroxyl group at the end of the intermediate layer surface and the hydroxyl or alkyl group of the lower cladding layer constituting the optical waveguide are bonded by dehydration polymerization or dealcoholization polymerization. Thus, an optical waveguide substrate having an organic optical waveguide formed on an aluminum nitride substrate with sufficient adhesion strength was obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光導波路基板の実施の形態の一例を示
す断面図である。
FIG. 1 is a cross-sectional view showing an example of an embodiment of an optical waveguide substrate according to the present invention.

【符号の説明】[Explanation of symbols]

1・・・基板 2・・・中間層 3・・・光導波路の下部クラッド層 4・・・光導波路のコア部 5・・・光導波路の上部クラッド層 DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Intermediate layer 3 ... Lower cladding layer of optical waveguide 4 ... Core part of optical waveguide 5 ... Upper cladding layer of optical waveguide

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 窒化アルミニウム質焼結体から成る基板
上に、酸化珪素または珪素から成る中間層を介在させ
て、水酸基またはアルキル基を有する有機系光学材料か
ら成る層を下部クラッド層とした光導波路を形成したこ
とを特徴とする光導波路基板。
1. An optical waveguide comprising a substrate made of an aluminum nitride sintered body, an intermediate layer made of silicon oxide or silicon interposed, and a layer made of an organic optical material having a hydroxyl group or an alkyl group as a lower cladding layer. An optical waveguide substrate, wherein a waveguide is formed.
【請求項2】 前記有機系光学材料がシロキサン系ポリ
マであることを特徴とする請求項1記載の光導波路基
板。
2. The optical waveguide substrate according to claim 1, wherein said organic optical material is a siloxane polymer.
JP36344499A 1999-12-21 1999-12-21 Optical waveguide substrate Expired - Fee Related JP3690648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36344499A JP3690648B2 (en) 1999-12-21 1999-12-21 Optical waveguide substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36344499A JP3690648B2 (en) 1999-12-21 1999-12-21 Optical waveguide substrate

Publications (2)

Publication Number Publication Date
JP2001174651A true JP2001174651A (en) 2001-06-29
JP3690648B2 JP3690648B2 (en) 2005-08-31

Family

ID=18479329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36344499A Expired - Fee Related JP3690648B2 (en) 1999-12-21 1999-12-21 Optical waveguide substrate

Country Status (1)

Country Link
JP (1) JP3690648B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100847379B1 (en) 2006-11-10 2008-07-21 주식회사 큐닉스 optical waveguide structure and substrate structure and method of manufacturing the same
CN111586981A (en) * 2020-05-28 2020-08-25 深圳市博敏电子有限公司 Design and manufacturing method of integrated coupling printed board
CN113838974A (en) * 2021-09-24 2021-12-24 长江先进存储产业创新中心有限责任公司 Phase change memory and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100847379B1 (en) 2006-11-10 2008-07-21 주식회사 큐닉스 optical waveguide structure and substrate structure and method of manufacturing the same
CN111586981A (en) * 2020-05-28 2020-08-25 深圳市博敏电子有限公司 Design and manufacturing method of integrated coupling printed board
CN113838974A (en) * 2021-09-24 2021-12-24 长江先进存储产业创新中心有限责任公司 Phase change memory and preparation method thereof

Also Published As

Publication number Publication date
JP3690648B2 (en) 2005-08-31

Similar Documents

Publication Publication Date Title
JP2015527608A (en) Method for manufacturing a photonic circuit with active and passive structures
US8107777B2 (en) Polyimide substrate bonded to other substrate
JPH0792337A (en) Polymer core optical waveguide and its production
US20050163412A1 (en) Thin film electro-optical deflector device and a method of fabrication of such a device
US5238877A (en) Conformal method of fabricating an optical waveguide on a semiconductor substrate
JPWO2003027736A1 (en) Optical waveguide and method for manufacturing the same
JPH05507815A (en) Photoelectric device having an optical waveguide on a metallized substrate and method for forming the optical waveguide
CN112379480B (en) Preparation method of waveguide structure composite substrate, composite substrate and photoelectric crystal film
JP2002022984A (en) Optical waveguide and its manufacturing method
US9791621B2 (en) Integrated semiconductor optical coupler
US20240004133A1 (en) Co-Manufacturing of Silicon-on-Insulator Waveguides and Silicon Nitride Waveguides for Hybrid Photonic Integrated Circuits
US20040071426A1 (en) Method for manufacturing a waveguide component with several layers stacked on a substrate and a waveguide component obtained using said method
CN112540428B (en) Lithium niobate single crystal thin film chip and manufacturing method thereof
JP2006507537A (en) Embedded electrode integrated optical device and manufacturing method
JP3690648B2 (en) Optical waveguide substrate
JP3694630B2 (en) Optoelectric circuit board
JP2001166168A (en) Method for manufacturing optical device
CN204758962U (en) Hot photoswitch of waveguide
JP3559528B2 (en) Opto-electric circuit board
US5261022A (en) Optical waveguide of silica glass film on ceramic substrate
Chen et al. A universal approach to high‐index‐contrast flexible integrated photonics
JP4487297B2 (en) Resin optical waveguide provided with protective layer, method for manufacturing the same, and optical component
JP2002341162A (en) Optical waveguide substrate
CN112490349B (en) Electro-optic crystal film, preparation method and electronic component
JP3825227B2 (en) Photoelectric circuit board manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050609

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees