JP2001172939A - Fender - Google Patents

Fender

Info

Publication number
JP2001172939A
JP2001172939A JP36135899A JP36135899A JP2001172939A JP 2001172939 A JP2001172939 A JP 2001172939A JP 36135899 A JP36135899 A JP 36135899A JP 36135899 A JP36135899 A JP 36135899A JP 2001172939 A JP2001172939 A JP 2001172939A
Authority
JP
Japan
Prior art keywords
fender
support portion
thickness
reaction force
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36135899A
Other languages
Japanese (ja)
Other versions
JP3429720B2 (en
Inventor
Hiroshi Tajima
啓 田島
Yasushi Kozono
泰史 小園
Akira Kamikoro
明 神頃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP36135899A priority Critical patent/JP3429720B2/en
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to KR1020000078462A priority patent/KR100640030B1/en
Priority to SG200007523A priority patent/SG96592A1/en
Priority to MYPI20005956A priority patent/MY126856A/en
Priority to SE0004704A priority patent/SE522901C2/en
Priority to US09/739,804 priority patent/US6572307B2/en
Priority to AU72441/00A priority patent/AU780181B2/en
Publication of JP2001172939A publication Critical patent/JP2001172939A/en
Application granted granted Critical
Publication of JP3429720B2 publication Critical patent/JP3429720B2/en
Priority to AU2005200291A priority patent/AU2005200291B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/30Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways

Landscapes

  • Body Structure For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel fender capable of bringing a strain-reaction characteristic curve within an allowable distortion rate to an ideal shape as much as possible. SOLUTION: A step 14 projectings the outer peripheral face of a second support part 12 one step outward from the outer peripheral face of a first supporting part 11 is provided at the outer peripheral face of the boundary between the cylindrical first support part 11 and a hollow conical second support part 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、防舷材に関するも
のである。
[0001] The present invention relates to a fender.

【0002】[0002]

【従来の技術】船舶の、岸壁などへの接舷時のエネルギ
ーを吸収して衝撃を緩和することで、当該船舶の船体を
保護するいわゆる防舷材9として、たとえば図8(a)に
その断面形状を示すように、図示していないが、その先
端に受衝板などの受衝部材が取り付けられる、外径およ
び厚みの一定な円筒状の第1支衝部91と、この第1支
衝部の基端側から岸壁などの取付面Qへ向けてテーパー
状に広がる、厚みの一定な中空円錐状の第2支衝部92
とを、ゴムなどの弾性材料により一体に形成した、いわ
ゆるサークル型と呼ばれるものが広く一般に使用されて
いる。
2. Description of the Related Art As a so-called fender 9 for protecting the hull of a ship by absorbing energy at the time of berthing to a quay or the like and mitigating an impact, FIG. Although not shown in the drawing, a receiving member such as a receiving plate is attached to the tip of the first supporting portion 91 having a constant outer diameter and a constant thickness. A hollow cone-shaped second support portion 92 having a constant thickness and extending in a tapered shape from the base end side of the collision portion toward the mounting surface Q such as a quay wall.
And a so-called circle type formed integrally with an elastic material such as rubber are widely used.

【0003】かかるサークル型の防舷材9は、船舶の接
舷によって圧縮力を受けるとまず、上記圧縮力に対して
反力を生じながら、第1支衝部91と第2支衝部92と
の境界部分、および第2支衝部92の途中の、高さ方向
のほぼ中心位置で屈曲を開始して、最終的に圧縮力に抗
し切れなくなった段階で座屈する。ついで、図8(b)に
示すようにその全体がほぼ隙間なく折り畳まれるまで変
形したのち、さらに1つのゴムの塊となって圧縮変形さ
れる。
[0003] When receiving the compressive force due to the berthing of a ship, the circle type fender 9 first generates a reaction force against the compressive force, and generates a first support portion 91 and a second support portion 92. The bending starts at a boundary portion between the first and second support portions 92 and at a substantially central position in the height direction, and finally buckles at a stage where it cannot finally resist the compressive force. Next, as shown in FIG. 8 (b), the whole is deformed until it is folded almost without any gap, and then further compressed into a single rubber mass.

【0004】この経過を、圧縮による防舷材9の歪み量
と、その際に防舷材9に生じる反力とを示す歪み−反力
特性曲線で表すと図9に示す結果となる。すなわち図8
(a)の平常状態から、屈曲部分が座屈する直前までが、
図9で説明すると原点Oから極大点Aまでに相当し、こ
の間は、圧縮力を受けることによって屈曲された防舷材
9が元に戻ろうとする反力を生じるため、反力が上昇す
る。
[0004] This process is represented by a distortion-reaction characteristic curve showing the amount of distortion of the fender 9 due to compression and the reaction force generated in the fender 9 at that time, and the result is shown in FIG. 9. That is, FIG.
From the normal state of (a) until immediately before the bent portion buckles,
In FIG. 9, it corresponds from the origin O to the maximum point A. During this time, the bent fender 9 generates a reaction force to return to the original position by receiving the compressive force, and therefore the reaction force increases.

【0005】ところが防舷材9は、座屈すると上記の反
力をほとんど失うために、その全体が押しつぶされて図
8(b)に示す折り畳まれた状態となるまでの間、防舷材
9の反力は低下する。すなわち極大点Aから極小点Cま
での経過をたどる。そして図8(b)の状態となると今度
は、防舷材9の全体が、前記のように1つのゴムの塊と
して挙動して再び大きな反力を生じるため、上記極小点
Cからあとは、点Bを経由して反力が一方的に上昇す
る。
However, when the fender 9 buckles, the above-mentioned reaction force is almost lost, so that the fender 9 is crushed as a whole until the folded state shown in FIG. Reaction force decreases. That is, the course from the maximum point A to the minimum point C is traced. Then, when the state of FIG. 8B is reached, the entire fender 9 behaves as one rubber mass as described above and again generates a large reaction force. The reaction force unilaterally increases via the point B.

【0006】[0006]

【発明が解決しようとする課題】このような特性曲線を
持つ防舷材を実際に使用できる範囲は通常、原点Oか
ら、C点以降、再び反力が増加に転じて、極大点Aと同
じ反力値を示すB点までの、歪み量で言えば原点Oから
歪み量Dまでの範囲に規制される。これは、歪み量D以
降では反力が高くなりすぎて、船体を損傷するなどの問
題を生じるおそれがあるからである。
Generally, the range in which the fender having such a characteristic curve can be actually used is the same as that of the maximum point A since the reaction force starts to increase again from the point O from the point C. The amount of distortion up to point B indicating the reaction force value is restricted to a range from the origin O to the amount of distortion D in terms of the amount of distortion. This is because, after the distortion amount D, the reaction force becomes too high, which may cause a problem such as damaging the hull.

【0007】そして上記防舷材が、許容された歪み量D
の範囲内で吸収できるエネルギー量は、上記の特性曲線
と、原点Oを通る横軸と、点Bを通る縦軸とで仕切られ
た領域の面積S1に相当する分となる。防舷材は、上記
面積S1に、特性曲線と、点A−B間を結ぶ横軸とで仕
切られた領域の面積S2を加えた分に相当する量のエネ
ルギーを吸収できるのが理想的であるが、実際には上記
面積S2分だけ、吸収できるエネルギー量が小さくな
り、エネルギー吸収の効率が低下するのである。
[0007] The above-mentioned fender has an allowable distortion D
The amount of energy that can be absorbed within the range is the amount corresponding to the area S 1 of the region divided by the above characteristic curve, the horizontal axis passing through the origin O, and the vertical axis passing through the point B. Fender is in the area S 1, a characteristic curve can absorb the energy of an amount corresponding to a partial addition of the horizontal axis and the area S 2 region divided by connecting the points A-B Ideally is a basis, in practice only the area S 2 minutes, the amount of energy that can be absorbed is reduced, the efficiency of energy absorption is lowered.

【0008】それゆえ防舷材の歪み−反力特性曲線は、
極大点A以降の部分ができるだけ水平に近い、つまり極
大点A以降の反力が、ほぼ一定に近い値を示すのが理想
的である。本発明の目的は、許容された歪み量の範囲内
での歪み−反力特性曲線をできるだけ理想形に近づける
ことができる、新規な防舷材を提供することにある。
Therefore, the distortion-reaction characteristic curve of the fender is
Ideally, the portion after the maximum point A is as horizontal as possible, that is, the reaction force after the maximum point A shows a value almost constant. SUMMARY OF THE INVENTION An object of the present invention is to provide a novel fender capable of making a strain-reaction characteristic curve within an allowable strain range as close to an ideal shape as possible.

【0009】[0009]

【課題を解決するための手段および発明の効果】上記課
題を解決するために発明者らは、サークル型の防舷材の
断面形状を種々、検討した。その結果、図8(a)に示し
た従来の防舷材9では、上記第1支衝部91と第2支衝
部92との境界部分の外周面がきれいに連続していたも
のを、第2支衝部92の外周面を第1支衝部91の外周
面より一段外方へ突出させるべく段差が設けられるよう
に断面形状を調整すると、極大点A以降の反力の落ち込
みを抑えて、特性曲線をできるだけ理想形に近づけると
ともに、防舷材が吸収できるエネルギー量を大きくし、
かつエネルギー吸収の効率を向上できることを見出し
た。
Means for Solving the Problems and Effects of the Invention In order to solve the above problems, the inventors studied various cross-sectional shapes of a circle-shaped fender. As a result, in the conventional fender 9 shown in FIG. 8A, the outer peripheral surface of the boundary portion between the first supporting portion 91 and the second supporting portion 92 was neatly continuous. When the cross-sectional shape is adjusted so that a step is provided so that the outer peripheral surface of the two supporting portions 92 protrudes outward by one step from the outer peripheral surface of the first supporting portion 91, the drop of the reaction force after the maximum point A is suppressed. , While making the characteristic curve as close as possible to the ideal form, and increasing the amount of energy that the fender can absorb,
It has been found that the efficiency of energy absorption can be improved.

【0010】すなわち本発明の防舷材は、先端に受衝部
材が取り付けられる、外径の一定な円筒状の第1支衝部
と、この第1支衝部の基端側から岸壁などの取付面へ向
けてテーパー状に広がる中空円錐状の第2支衝部とを弾
性材料により一体に形成してなり、上記第1支衝部と第
2支衝部との境界部分の外周面に、第2支衝部の外周面
を第1支衝部の外周面より一段外方へ突出させるべく段
差が設けられたことを特徴とするものである。
That is, the fender of the present invention comprises a cylindrical first supporting portion having a constant outer diameter to which a receiving member is attached at the tip, and a quay or the like from the base end side of the first supporting portion. A hollow cone-shaped second support portion expanding in a tapered shape toward the mounting surface is integrally formed of an elastic material, and is formed on an outer peripheral surface of a boundary portion between the first support portion and the second support portion. A step is provided so that the outer peripheral surface of the second support portion projects one step outward from the outer peripheral surface of the first support portion.

【0011】図8(a)に示した従来の、両支衝部91、
92の境界部分の外周面がきれいに連続した防舷材9
は、屈曲時に、両支衝部91、92の屈曲部に空隙Cを
生じ、この空隙Cが原因となって、極大点Aでの反力が
低下するとともに、極大点A以降の、座屈後の反力の落
ち込みが大きくなる。これに対し、たとえば図1(a)(b)
に示したように第1支衝部11と第2支衝部12との境
界部分の外周面に、第2支衝部12の外周面を第1支衝
部11の外周面より一段外方へ突出させるべく段差14
を設けた本発明の防舷材1では、上記屈曲部に生じる空
隙を小さくできるか、あるいは全くなくしてしまうこと
ができるために、極大点Aでの反力を向上できる上、極
大点A以降の反力の落ち込みを抑えることができる。
FIG. 8 (a) shows a conventional double support portion 91,
Fender 9 with a beautifully continuous outer peripheral surface at the boundary of 92
In the bending, a gap C is formed at the bent portion of the both supporting portions 91 and 92, and the gap C causes a decrease in the reaction force at the maximum point A and a buckling after the maximum point A. The drop in the reaction force afterwards increases. On the other hand, for example, FIG.
As shown in the figure, the outer peripheral surface of the second support portion 12 is one step outward from the outer peripheral surface of the first support portion 11 on the outer peripheral surface at the boundary between the first support portion 11 and the second support portion 12. Step 14 to project to
In the fender 1 of the present invention provided with, the gap generated in the bent portion can be reduced or eliminated altogether, so that the reaction force at the maximum point A can be improved, and Of the reaction force can be suppressed.

【0012】また従来の防舷材9は、座屈後に、両支衝
部91、92の外周面同士が接触するタイミングが早い
ために、反力が増加に転じて、極大点Aと同じ反力値を
示すB点に達するまでの歪み量Dが小さくなる。これに
対し、上記本発明の防舷材においては、座屈後に、両支
衝部の外周面同士が接触するタイミングを遅らせること
ができるために、反力が増加に転じて、極大点Aと同じ
反力値を示すB点に達するまでの歪み量Dを大きくする
ことができる。
In the conventional fender 9, after the buckling, the timing at which the outer peripheral surfaces of the two supporting portions 91 and 92 come into contact with each other is early. The amount of distortion D until reaching the point B indicating the force value decreases. On the other hand, in the fender according to the present invention, after the buckling, the timing at which the outer peripheral surfaces of the two supporting portions come into contact with each other can be delayed, so that the reaction force starts to increase, and the maximum point A is reached. It is possible to increase the amount of distortion D until reaching the point B showing the same reaction force value.

【0013】それゆえ本発明の防舷材によれば、これら
の相乗効果によって、特性曲線をできるだけ理想形に近
づけるとともに、防舷材が吸収できるエネルギー量を大
きくし、かつエネルギー吸収の効率を向上することが可
能となる。
Therefore, according to the fender of the present invention, due to the synergistic effect, the characteristic curve can be made as close as possible to the ideal shape, the amount of energy that can be absorbed by the fender can be increased, and the efficiency of energy absorption can be improved. It is possible to do.

【0014】[0014]

【発明の実施の形態】以下に本発明の防舷材を、その実
施の形態の一例を示す図1(a)(b)を参照しつつ説明す
る。これらの図に見るようにこの例の防舷材1は、図示
していないが、その先端に受衝板などの受衝部材が取り
付けられる、外径および厚みの一定な円筒状の第1支衝
部11と、この第1支衝部11の基端側から岸壁などの
取付面Qへ向けてテーパー状に広がる、厚みの一定な中
空円錐状の第2支衝部12と、この第2支衝部12の最
も広がった基端部から外方へ延設された、上記取付面Q
への取付部となる円形鍔状のフランジ13とを、ゴムな
どの弾性材料により一体に形成したものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A fender according to the present invention will be described below with reference to FIGS. As shown in these figures, the fender 1 of this example is not shown, but a receiving member such as a receiving plate is attached to the tip thereof, and a cylindrical first support having a constant outer diameter and thickness is provided. A second support portion 12 having a constant thickness and a hollow cone shape, which extends in a tapered shape from a base end side of the first support portion 11 toward a mounting surface Q such as a quay; The mounting surface Q extending outward from the most widened base end of the support portion 12.
And a flange 13 having a circular flange shape, which serves as a mounting portion, is integrally formed of an elastic material such as rubber.

【0015】そして本発明では、上記各部のうち第1支
衝部11と第2支衝部12との境界部分の外周面に、第
2支衝部12の外周面を第1支衝部11の外周面より一
段外方へ突出させるべく段差14を設けている。段差1
4の大きさは特に限定されないが、図の例のように両支
衝部11、12の境界部分の内周面をきれいに連続させ
ている場合は、両支衝部11、12の厚みT1、T2の比
によって、段差14の大きさを規定することができる。
具体的には、第1支衝部11の厚みT1が、第2支衝部
12の厚みT2の0.8〜0.9倍となるように、段差
14の大きさを設定するのが好ましい。
In the present invention, the outer peripheral surface of the second support portion 12 is attached to the outer peripheral surface of the boundary portion between the first support portion 11 and the second support portion 12 among the above-mentioned portions. A step 14 is provided so as to protrude outward by one step from the outer peripheral surface of. Step 1
Although the size of the support 4 is not particularly limited, when the inner peripheral surfaces of the boundary portions of the support 11 and 12 are made to be clean and continuous as shown in the example of the figure, the thickness T 1 of the support 11 and 12 is large. , can be by the ratio of T 2, it defines the size of the step 14.
Specifically, the size of the step 14 is set so that the thickness T 1 of the first support portion 11 is 0.8 to 0.9 times the thickness T 2 of the second support portion 12. Is preferred.

【0016】第1支衝部11の厚みT1が上記の範囲未
満では段差14が大きくなりすぎるとともに、相対的
に、第2支衝部12の厚みが大きくなりすぎて、座屈後
に、当該第2支衝部12の、高さ方向のほぼ中心位置で
屈曲した上下の部分の内周面同士が接触するタイミング
が早くなるために却って、反力が増加に転じて、極大点
Aと同じ反力値を示すB点に達するまでの歪み量Dが小
さくなってしまうという問題を生じるおそれがある。
If the thickness T 1 of the first supporting portion 11 is less than the above range, the step 14 becomes too large, and the thickness of the second supporting portion 12 becomes relatively too large. Since the timing at which the inner peripheral surfaces of the upper and lower portions of the second support portion 12 that are bent at substantially the center position in the height direction come into contact with each other earlier is increased, the reaction force starts increasing and the same as the maximum point A There is a possibility that the problem that the amount of distortion D until reaching the point B indicating the reaction force value becomes small may occur.

【0017】また逆に、第1支衝部11の厚みT1が上
記の範囲を超えた場合には段差14の大きさが十分に得
られないために、当該段差14による、前述した、屈曲
部に生じる空隙を小さくするかまたは全くなくしてしま
って、極大点Aでの反力を向上し、かつ極大点A以降の
反力の落ち込みを抑える効果や、あるいは座屈後に、両
支衝部11、12の外周面同士が接触するタイミングを
遅らせることで、反力が増加に転じて、極大点Aと同じ
反力値を示すB点に達するまでの歪み量Dを大きくする
効果が得られないという問題を生じるおそれがある。
Conversely, if the thickness T 1 of the first support portion 11 exceeds the above range, the size of the step 14 cannot be sufficiently obtained, so that the bending The effect of improving the reaction force at the maximum point A and suppressing the drop of the reaction force after the maximum point A, or after buckling, By delaying the timing at which the outer peripheral surfaces of the eleventh and twelve come into contact with each other, the reaction force starts to increase and the effect of increasing the amount of distortion D until reaching the point B showing the same reaction force value as the maximum point A can be obtained. There is a possibility that the problem that there is not.

【0018】なおこれらの特性を考慮すると、第1支衝
部11の厚みT1は前記の範囲内でも小さいほど、つま
り第2支衝部12の厚みT2の0.8倍に近いほど好ま
しい。前記図において符号13a…は、防舷材1を取付
面Qに固定するボルト(図示せず)などを挿通するため
に、前記フランジ13に形成された通孔である。フラン
ジ13内には、図示していないが、たとえば鋼板など
の、補強のための剛体部材を埋設してもよい。また第1
支衝部11の先端部(図において上端部)には、やはり
補強のためと、そして受衝板などの受衝部材取付のため
に、たとえば鋼板などの、補強のための剛体部材を埋設
してもよい。
In consideration of these characteristics, it is preferable that the thickness T 1 of the first supporting portion 11 is smaller within the above range, that is, as close to 0.8 times the thickness T 2 of the second supporting portion 12 as possible. . In the figures, reference numerals 13a ... are through holes formed in the flange 13 for inserting bolts (not shown) for fixing the fender 1 to the mounting surface Q and the like. Although not shown, a rigid member for reinforcement such as a steel plate may be embedded in the flange 13. Also the first
A rigid member for reinforcement, such as a steel plate, is buried at the tip (the upper end in the figure) of the support portion 11 for reinforcement and for attaching a receiving member such as a receiving plate. You may.

【0019】本発明の防舷材1の、上記以外の形状や寸
法についてはとくに限定されないが、第1支衝部11の
高さH1は、両支衝部11、12の高さの合計値であ
る、全体の高さH0の0.1〜0.3倍であるのが好ま
しい。また第2支衝部12のテーパーの、取付面Qに対
する角度θ1は、70〜80°であるのが好ましい。上
記高さH1と角度θ1は、全体の高さH0が一定で、かつ
取付面Qへの取付面積を規定するフランジ13の外径D
2が一定である場合、相関関係を示す。すなわち図4、
5に示したように第1支衝部11の高さH1の、全体の
高さH0に占める割合が大きくなるほど第2支衝部12
の角度θ1は小さくなり、逆に高さH1の割合が小さくな
るほど第2支衝部12の角度θ1は大きくなる。
Although the shape and dimensions of the fender 1 of the present invention other than those described above are not particularly limited, the height H 1 of the first supporting portion 11 is the sum of the heights of the both supporting portions 11 and 12. the value is preferably 0.1 to 0.3 times the total height H 0. The angle θ 1 of the taper of the second support portion 12 to the mounting surface Q is preferably 70 to 80 °. The height H 1 and the angle θ 1 are such that the overall height H 0 is constant and the outer diameter D of the flange 13 that defines the mounting area on the mounting surface Q.
If 2 is constant, it indicates a correlation. That is, FIG.
As shown in FIG. 5, as the ratio of the height H 1 of the first support 11 to the total height H 0 increases, the second support 12 becomes larger.
Angle theta 1 is small, the angle theta 1 of the second支衝portion 12 as the ratio of the height H 1 is reduced conversely increases.

【0020】そして第1支衝部11の高さH1が上記の
範囲未満であるか、または角度θ1が上記の範囲を超え
た場合には、相対的に第2支衝部12の占める割合が大
きくなるため、屈曲および座屈時の反力が大きくなると
ともに、第2支衝部12が屈曲を開始するタイミング
や、座屈するタイミング、そしてそれ以上、座屈しなく
なるタイミングが遅れるため、全体としての吸収エネル
ギーは増加するものの、特性上、第1支衝部11が担う
定荷重領域、つまり前記特性曲線において、極大点A以
降、B点までの、反力がほぼ一定である領域が小さくな
りすぎて、防舷材としての使用に適さなくなるおそれが
ある。
When the height H 1 of the first support 11 is less than the above range or the angle θ 1 exceeds the above range, the second support 12 occupies relatively. Since the ratio increases, the reaction force at the time of bending and buckling increases, and the timing at which the second support portion 12 starts bending, the timing at which it buckles, and the timing at which it no longer buckles, are delayed. Although the absorbed energy increases, the constant load region carried by the first support portion 11, that is, the region where the reaction force is substantially constant from the maximum point A to the point B in the characteristic curve is small due to the characteristic. It may become too suitable to be used as a fender.

【0021】また逆に、第1支衝部11の高さH1が上
記の範囲を超えるか、または角度θ1が上記の範囲未満
であった場合には、相対的に第2支衝部12の占める割
合が小さくなるため、屈曲および座屈時の反力が小さく
なる上、第2支衝部12が屈曲を開始するタイミング
や、座屈するタイミング、そしてそれ以上、座屈しなく
なるタイミングが早まるため、全体としての吸収エネル
ギーが減少する傾向を示す。
Conversely, if the height H 1 of the first support portion 11 exceeds the above range or the angle θ 1 is less than the above range, the second support portion 11 will relatively move. Since the ratio occupied by the second support portion 12 becomes small, the reaction force at the time of bending and buckling becomes small, and the timing at which the second support portion 12 starts bending, the timing at which it buckles, and the timing at which it no longer buckles is advanced. Therefore, the absorbed energy as a whole tends to decrease.

【0022】なおこれらの特性のバランスを考慮する
と、第1支衝部11の高さH1は、全体の高さH0の0.
25倍前後であるのがさらに好ましく、また第2支衝部
12のテーパーの角度θ1は、72.5°前後であるの
がさらに好ましい。上記各部からなるこの例の防舷材1
は、たとえば未加硫のゴムコンパウンドと、必要に応じ
て第1支衝部11の先端部やフランジ13内に埋設され
る板状の剛体部材とを、防舷材1の形状に対応した型内
に仕込み、加熱、加圧してゴムを加硫することによって
製造される。
In consideration of the balance of these characteristics, the height H 1 of the first support 11 is equal to the height H 0 of the entire height H 0.
More preferably, it is about 25 times, and the angle θ 1 of the taper of the second support portion 12 is more preferably about 72.5 °. Fender 1 of this example composed of the above parts
For example, an unvulcanized rubber compound and, if necessary, a plate-shaped rigid member embedded in the tip end of the first support portion 11 or the flange 13 are formed into a mold corresponding to the shape of the fender 1. It is manufactured by vulcanizing the rubber by charging it inside, heating and pressing.

【0023】なお本発明の防舷材の構成は、以上で説明
した図の例のものには限定されず、本発明の要旨を変更
しない範囲で、種々の設計変更を施すことができる。
The configuration of the fender according to the present invention is not limited to the example shown in the drawings described above, and various design changes can be made without changing the gist of the present invention.

【0024】[0024]

【実施例】以下に本発明を、実施例、比較例に基づいて
説明する。 実施例1 天然ゴムとブタジエンゴムとの、重量比6:4の混合ゴ
ムを基材ゴムとするゴムコンパウンドと、厚み28m
m、外径650mm、内径270mmの1枚の円形鍔状
の鋼板(第1支衝部11の先端部に埋設する剛体部材)
と、厚み28mm、外径1470mm、内径710mm
の1枚の円形鍔状の鋼板(フランジ13に埋設する剛体
部材)とを型内に仕込み、加熱、加圧して基材ゴムを加
硫することにより、図2(a)に示す断面形状を有し、か
つ各部が下記の寸法および角度を有するサークル型の防
舷材1を製造した。 〈寸法および角度〉 第1支衝部11の厚みT1=220mm 第2支衝部12の厚みT2=244mm 厚みの比T1/T2=0.9 第1支衝部11の高さH1=250mm 全体の高さH0=1000mm 高さの比H1/H0=0.25 第2支衝部12の角度θ1=72.5° 第1支衝部11の外径D1=680mm フランジ13の外径D2=1500mm 実施例2 上記実施例1で使用したのと同じゴムコンパウンドと、
円形鍔状の鋼板2枚とを用いて、図3(a)に示す断面形
状を有し、かつ各部が下記の寸法および角度を有するサ
ークル型の防舷材1を製造した。 〈寸法および角度〉 第1支衝部11の厚みT1=220mm 第2支衝部12の厚みT2=275mm 厚みの比T1/T2=0.8 第1支衝部11の高さH1=250mm 全体の高さH0=1000mm 高さの比H1/H0=0.25 第2支衝部12の角度θ1=72.5° 第1支衝部11の外径D1=680mm フランジ13の外径D2=1500mm 実施例3 前記実施例1で使用したのと同じゴムコンパウンドと、
円形鍔状の鋼板2枚とを用いて、図4(a)に示す断面形
状を有し、かつ各部が下記の寸法および角度を有するサ
ークル型の防舷材1を製造した。 〈寸法および角度〉 第1支衝部11の厚みT1=220mm 第2支衝部12の厚みT2=244mm 厚みの比T1/T2=0.9 第1支衝部11の高さH1=300mm 全体の高さH0=1000mm 高さの比H1/H0=0.30 第2支衝部12の角度θ1=70.0° 第1支衝部11の外径D1=680mm フランジ13の外径D2=1500mm 実施例4 前記実施例1で使用したのと同じゴムコンパウンドと、
円形鍔状の鋼板2枚とを用いて、図5(a)に示す断面形
状を有し、かつ各部が下記の寸法および角度を有するサ
ークル型の防舷材1を製造した。 〈寸法および角度〉 第1支衝部11の厚みT1=220mm 第2支衝部12の厚みT2=244mm 厚みの比T1/T2=0.9 第1支衝部11の高さH1=100mm 全体の高さH0=1000mm 高さの比H1/H0=0.10 第2支衝部12の角度θ1=80.0° 第1支衝部11の外径D1=680mm フランジ13の外径D2=1500mm 比較例1 前記実施例1で使用したのと同じゴムコンパウンドと、
円形鍔状の鋼板2枚とを用いて、図8(a)に示す従来の
断面形状を有し、かつ各部が下記の寸法および角度を有
するサークル型の防舷材9を製造した。なお第1支衝部
91の先端部に埋設する鋼板としては、厚み28mm、
外径670mm、内径270mmのものを使用した。 〈寸法および角度〉 第1支衝部91の厚みT1=230mm 第2支衝部92の厚みT2=230mm 厚みの比T1/T2=1.0 第1支衝部91の高さH1=250mm 全体の高さH0=1000mm 高さの比H1/H0=0.25 第2支衝部92の角度θ1=72.5° 第1支衝部91の外径D1=700mm フランジ93の外径D2=1500mm 比較例2 前記実施例1で使用したのと同じゴムコンパウンドと、
円形鍔状の鋼板とを用いて、図6(a)に示す断面形状を
有し、かつ各部が下記の寸法および角度を有するサーク
ル型の防舷材7を製造した。なお第1支衝部71の先端
部に埋設する鋼板としては、厚み28mm、外径690
mm、内径270mmのものを使用した。 〈寸法および角度〉 第1支衝部71の先端側(図では上端側)の厚みT11
240mm 第1支衝部71の基端側(下端側)の厚みT12=216
mm 第2支衝部72の厚みT2=240mm 厚みの比T11/T2=1.0 厚みの比T12/T2=0.9 第1支衝部71の高さH1=250mm 全体の高さH0=1000mm 高さの比H1/H0=0.25 第2支衝部72の角度θ1=72.5° 第1支衝部71の外径D1=720mm フランジ73の外径D2=1500mm 上記各実施例、比較例の防舷材の主要寸法を表1にまと
めた。
The present invention will be described below based on examples and comparative examples. Example 1 Rubber compound using a mixed rubber of natural rubber and butadiene rubber at a weight ratio of 6: 4 as a base rubber, and a thickness of 28 m
m, one circular flange-shaped steel plate having an outer diameter of 650 mm and an inner diameter of 270 mm (a rigid member embedded at the tip of the first support portion 11)
And thickness 28mm, outer diameter 1470mm, inner diameter 710mm
A single circular flange-shaped steel plate (a rigid member embedded in the flange 13) is charged into a mold and heated and pressed to vulcanize the base rubber, thereby obtaining the cross-sectional shape shown in FIG. A circular fender 1 having the following dimensions and angles was manufactured. <Dimensions and Angles> Thickness T 1 of first supporting portion 11 = 220 mm Thickness T 2 of second supporting portion 12 = 244 mm Ratio of thickness T 1 / T 2 = 0.9 Height of first supporting portion 11 H 1 = 250 mm Overall height H 0 = 1000 mm Height ratio H 1 / H 0 = 0.25 Angle θ 1 of second support section 12 = 72.5 ° Outer diameter D of first support section 11 1 = 680 mm Outer diameter D 2 of flange 13 = 1500 mm Example 2 Same rubber compound as used in Example 1 above,
A circular fender 1 having the cross-sectional shape shown in FIG. 3A and having the following dimensions and angles was manufactured using two circular flange-shaped steel plates. <Dimensions and Angles> Thickness T 1 of first support portion 11 = 220 mm Thickness T 2 of second support portion 12 = 275 mm Ratio of thickness T 1 / T 2 = 0.8 Height of first support portion 11 H 1 = 250 mm Overall height H 0 = 1000 mm Height ratio H 1 / H 0 = 0.25 Angle θ 1 of second support section 12 = 72.5 ° Outer diameter D of first support section 11 1 = 680 mm Outer diameter D 2 of flange 13 = 1500 mm Example 3 Same rubber compound as used in Example 1 above,
A circular fender 1 having the cross-sectional shape shown in FIG. 4A and each part having the following dimensions and angles was manufactured using two circular flange-shaped steel plates. <Dimensions and Angles> Thickness T 1 of first supporting portion 11 = 220 mm Thickness T 2 of second supporting portion 12 = 244 mm Ratio of thickness T 1 / T 2 = 0.9 Height of first supporting portion 11 H 1 = 300 mm Overall height H 0 = 1000 mm Height ratio H 1 / H 0 = 0.30 Angle θ 1 of second support section 12 = 70.0 ° Outer diameter D of first support section 11 1 = 680 mm Outer diameter D 2 of flange 13 = 1500 mm Example 4 Same rubber compound as used in Example 1 above,
A circular fender 1 having a cross-sectional shape shown in FIG. 5A and each part having the following dimensions and angles was manufactured using two circular flange-shaped steel plates. <Dimensions and Angles> Thickness T 1 of first supporting portion 11 = 220 mm Thickness T 2 of second supporting portion 12 = 244 mm Ratio of thickness T 1 / T 2 = 0.9 Height of first supporting portion 11 H 1 = 100 mm Overall height H 0 = 1000 mm Height ratio H 1 / H 0 = 0.10 Angle θ 1 of second support section 12 = 80.0 ° Outer diameter D of first support section 11 1 = 680 mm Outer diameter D 2 of flange 13 = 1500 mm Comparative Example 1 Same rubber compound as used in Example 1 above
A circular fender 9 having the conventional cross-sectional shape shown in FIG. 8A and each part having the following dimensions and angles was manufactured using two circular flange-shaped steel plates. In addition, as a steel plate embedded at the tip of the first support portion 91, a thickness of 28 mm,
Those having an outer diameter of 670 mm and an inner diameter of 270 mm were used. <Dimensions and Angles> Thickness T 1 of first support portion 91 = 230 mm Thickness T 2 of second support portion 92 = 230 mm Thickness ratio T 1 / T 2 = 1.0 Height of first support portion 91 H 1 = 250 mm Overall height H 0 = 1000 mm Height ratio H 1 / H 0 = 0.25 Angle θ 1 of second support portion 92 = 72.5 ° Outer diameter D of first support portion 91 1 = 700 mm Outer diameter D 2 of flange 93 = 1500 mm Comparative Example 2 Same rubber compound as used in Example 1 above
A circular fender 7 having the cross-sectional shape shown in FIG. 6A and each part having the following dimensions and angles was manufactured using a circular flange-shaped steel plate. The steel plate buried at the tip of the first supporting portion 71 has a thickness of 28 mm and an outer diameter of 690.
mm and an inner diameter of 270 mm were used. <Dimensions and Angles> Thickness T 11 of the tip end side (upper end side in the figure) of the first support part 71
240 mm Thickness T 12 = 216 on the base end side (lower end side) of the first support portion 71
mm Thickness T 2 of the second support portion 72 = 240 mm Ratio T 11 / T 2 = 1.0 of thickness T 12 / T 2 = 0.9 Height H 1 of the first support portion 71 = 250 mm Overall height H 0 = 1000 mm Height ratio H 1 / H 0 = 0.25 Angle θ 1 of second support portion 72 = 72.5 ° Outer diameter D 1 of first support portion 71 = 720 mm Flange outer diameter D 2 = 1500 mm above embodiments of 73, the major dimension of the fender of the comparative example are summarized in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】圧縮試験 上記各実施例、比較例の防舷材を、第1支衝部の先端
に、受衝板に擬した、当該第1支衝部と同径でかつ厚み
が200mmのスペーサを取り付けた状態で、500ト
ン油圧プレスのヘッドに固定して圧縮した際の歪み(圧
縮率)−反力特性を測定した。なお圧縮率は、下記の式
によって求めた。 圧縮率(%)=(H0−H0′)/H0×100 〔ただしH0は初期形状における全体の高さ、H0′は圧
縮状態での全体の高さである。〕 結果を図7に示す。
Compression test The fender of each of the above embodiments and the comparative example was attached to the tip of the first supporting portion by a spacer simulating a receiving plate, having the same diameter as the first supporting portion and having a thickness of 200 mm. Was attached to the head of a 500-ton hydraulic press, and compression (compression ratio) -reaction characteristics when compressed were measured. The compression ratio was determined by the following equation. Compression ratio (%) = (H 0 -H 0 ') / H 0 × 100 [However H 0 is the total of the initial shape height, H 0' is the height of the whole in a compressed state. The results are shown in FIG.

【0027】図より、従来例である、第1支衝部91の
厚みT1と、第2支衝部92の厚みT2とを等しくして段
差を無くした比較例1の防舷材9は、屈曲時に、極大点
Aでの反力が低下するとともに、極大点A以降の、座屈
後の反力の落ち込みが大きくなることがわかった。そこ
で屈曲状態での断面形状を調べたところ、図8(b)に示
すように両支衝部91、92の屈曲部に大きな空隙Cを
生じているのが確認された。
[0027] From the figure, the conventional example, the first and the thickness T 1 of the支衝portion 91, fender 9 of Comparative Example 1 without a step to equal the thickness T 2 of the second支衝92 It was found that, when bending, the reaction force at the maximum point A decreased, and the drop of the reaction force after buckling after the maximum point A increased. Then, when the cross-sectional shape in the bent state was examined, it was confirmed that a large gap C was formed in the bent portions of both the support portions 91 and 92 as shown in FIG. 8B.

【0028】また上記比較例1の防舷材9は、図8(b)
に示すように座屈後に、両支衝部91、92の外周面9
1a、92aが接触するタイミングが早いために、反力
が増加に転じて、極大点Aと同じ反力値を示すB点に達
するまでの歪み量Dに相当する圧縮率が60%と小さい
ことも確認された。また第1支衝部71を、その外周面
が、基端側(図では下端側)から先端側(上端側)へ向
けてテーパー状に広がっているとともに、上記先端側の
厚みT11が、テーパーの分だけ基端側の厚みT12より大
きい断面形状とした比較例2の防舷材7は、図6(b)に
示すように屈曲状態において、両支衝部71、72の屈
曲部に空隙Cを生じないため、座屈後の反力の落ち込み
は小さいものの、座屈後に、両支衝部71、72の外周
面71a、72aが接触するタイミングが早いために、
反力が増加に転じて、極大点Aと同じ反力値を示すB点
に達するまでの歪み量Dに相当する圧縮率が58%と小
さいことも確認された。
The fender 9 of Comparative Example 1 is shown in FIG.
After buckling, as shown in FIG.
Since the contact timing of 1a and 92a is early, the reaction force starts to increase and the compression ratio corresponding to the distortion amount D until reaching point B showing the same reaction force value as the maximum point A is as small as 60%. Was also confirmed. The first支衝portion 71, the outer peripheral surface thereof, with (in the figure the lower end side) the base end side extends toward the distally (upper side) tapered, the thickness T 11 of the leading end side, fender 7 of Comparative example 2 and minutes only the proximal side of the thickness T 12 is greater than the cross-sectional shape of the taper at the bent state as shown in FIG. 6 (b), the bent portions of the支衝portions 71 and 72 Since the gap C is not generated, the drop of the reaction force after buckling is small, but the timing at which the outer peripheral surfaces 71a and 72a of the both support portions 71 and 72 come into contact after buckling is early.
It was also confirmed that the compression ratio corresponding to the amount of distortion D until the reaction force started to increase and reached the point B showing the same reaction force value as the maximum point A was as small as 58%.

【0029】これに対し、実施例1〜4の防舷材1はい
ずれも、図2(b)〜図5(b)に示すように屈曲状態におい
て、両支衝部11、12の屈曲部に空隙Cを生じないた
め、座屈後の反力の落ち込みが小さいことが確認され
た。また各実施例の防舷材はいずれも、座屈後に、両支
衝部11、12の外周面同士や、第2支衝部12の、高
さ方向のほぼ中心位置で屈曲した上下の部分の内周面同
士が接触するタイミングを、比較例1〜3に比べて遅く
できるために、反力が増加に転じて、極大点Aと同じ反
力値を示すB点に達するまでの歪み量Dに相当する圧縮
率を62〜67%程度まで大きくできることも確認され
た。
On the other hand, all the fenders 1 of Examples 1 to 4 are bent in the bent state as shown in FIGS. 2 (b) to 5 (b). Since no void C is formed in the buckle, it was confirmed that the drop of the reaction force after buckling was small. In addition, the fenders of the respective embodiments are all buckled, and the upper and lower portions of the outer peripheral surfaces of the two support portions 11 and 12 and the second support portion 12 which are bent substantially at the center in the height direction. Because the timing at which the inner peripheral surfaces of the contact points come into contact with each other can be delayed as compared with Comparative Examples 1 to 3, the amount of distortion before the reaction force starts to increase and reaches the point B showing the same reaction force value as the maximum point A It was also confirmed that the compression ratio corresponding to D can be increased to about 62 to 67%.

【0030】また各実施例のうち、両支衝部11、12
の厚みの比T1/T2のみが異なる実施例1、2を比較す
ると、上記比が小さいほど、僅かではあるが吸収エネル
ギー量を増加できることがわかった。さらに上記比T1
/T2は同じで、第1支衝部11の高さの比H1/H
0と、第2支衝部12の角度θ1とが異なる実施例1、3
および4を比較すると、比H1/H 0が大きく、かつ角度
θ1が小さいほど、全体としての吸収エネルギーが減少
する傾向を示し、逆に比H1/H0が小さく、かつ角度θ
1が大きいほど、第1支衝部11が担う定荷重領域が小
さくなる傾向を示すことが確認された。
In each of the embodiments, both the support units 11 and 12
Thickness ratio T1/ TTwoExample 1 and Example 2 differing only in
Therefore, the smaller the above ratio, the smaller the absorption energy
Energy can be increased. Further, the above ratio T1
/ TTwoAre the same, and the ratio H of the height of the first support 11 is1/ H
0And the angle θ of the second support portion 121Examples 1 and 3 differing from
And 4, the ratio H1/ H 0Is large and the angle
θ1Is smaller, the overall absorbed energy decreases
And the ratio H1/ H0Is small and the angle θ
1Is larger, the constant load area carried by the first support 11 is smaller.
It was confirmed that it had a tendency to decrease.

【図面の簡単な説明】[Brief description of the drawings]

【図1】同図(a)は、本発明の防舷材の、実施の形態の
一例を示す縦方向断面図、同図(b)は、上記例の防舷材
の、部分切り欠き斜視図である。
FIG. 1 (a) is a longitudinal sectional view showing an example of an embodiment of a fender of the present invention, and FIG. 1 (b) is a partially cutaway perspective view of the fender of the above example. FIG.

【図2】同図(a)は、本発明の実施例1の防舷材の、圧
縮しない平常状態での断面形状を示す縦方向断面図、同
図(b)は、上記実施例1の防舷材の、圧縮して屈曲させ
た状態を拡大して示す縦方向断面図である。
FIG. 2 (a) is a longitudinal sectional view showing a cross-sectional shape of the fender according to the first embodiment of the present invention in a normal state without compression, and FIG. 2 (b) is a longitudinal sectional view of the first embodiment. It is a longitudinal cross-sectional view which expands and shows the state which compressed and bent the fender.

【図3】同図(a)は、本発明の実施例2の防舷材の、圧
縮しない平常状態での断面形状を示す縦方向断面図、同
図(b)は、上記実施例2の防舷材の、圧縮して屈曲させ
た状態を拡大して示す縦方向断面図である。
FIG. 3 (a) is a longitudinal sectional view showing a cross-sectional shape of a fender according to a second embodiment of the present invention in a normal state without compression, and FIG. 3 (b) is a longitudinal sectional view of the second embodiment. It is a longitudinal cross-sectional view which expands and shows the state which compressed and bent the fender.

【図4】同図(a)は、本発明の実施例3の防舷材の、圧
縮しない平常状態での断面形状を示す縦方向断面図、同
図(b)は、上記実施例3の防舷材の、圧縮して屈曲させ
た状態を拡大して示す縦方向断面図である。
FIG. 4A is a longitudinal sectional view showing a cross-sectional shape of a fender according to a third embodiment of the present invention in an uncompressed normal state; FIG. 4B is a longitudinal sectional view of the third embodiment; It is a longitudinal cross-sectional view which expands and shows the state which compressed and bent the fender.

【図5】同図(a)は、本発明の実施例4の防舷材の、圧
縮しない平常状態での断面形状を示す縦方向断面図、同
図(b)は、上記実施例4の防舷材の、圧縮して屈曲させ
た状態を拡大して示す縦方向断面図である。
FIG. 5A is a longitudinal sectional view showing a cross-sectional shape of a fender according to a fourth embodiment of the present invention in an uncompressed normal state, and FIG. 5B is a longitudinal sectional view of the fourth embodiment. It is a longitudinal cross-sectional view which expands and shows the state which compressed and bent the fender.

【図6】同図(a)は、比較例2の防舷材の、圧縮しない
平常状態での断面形状を示す縦方向断面図、同図(b)
は、上記比較例2の防舷材の、圧縮して屈曲させた状態
を拡大して示す縦方向断面図である。
FIG. 6 (a) is a longitudinal sectional view showing a cross-sectional shape of the fender of Comparative Example 2 in a normal state without compression, and FIG. 6 (b).
FIG. 4 is an enlarged longitudinal sectional view showing a state in which the fender of Comparative Example 2 is compressed and bent.

【図7】本発明の各実施例、比較例の防舷材における、
歪み量(圧縮率)−反力特性を示すグラフである。
FIG. 7 is a view illustrating a fender of each embodiment and a comparative example of the present invention.
It is a graph which shows the amount of distortion (compression rate)-reaction force characteristic.

【図8】同図(a)は、従来例である比較例1の防舷材
の、圧縮しない平常状態での断面形状を示す縦方向断面
図、同図(b)は、上記比較例1の防舷材の、圧縮して屈
曲させた状態を拡大して示す縦方向断面図である。
FIG. 8 (a) is a longitudinal sectional view showing a cross-sectional shape of a fender of Comparative Example 1 which is a conventional example in an uncompressed normal state, and FIG. 8 (b) is a longitudinal sectional view of Comparative Example 1; FIG. 4 is an enlarged longitudinal sectional view showing a state in which the fender is compressed and bent.

【図9】従来の防舷材の歪み量−反力特性と、そこから
求められる吸収エネルギー量とを説明するグラフであ
る。
FIG. 9 is a graph illustrating the relationship between the amount of strain and the reaction force of a conventional fender and the amount of energy absorbed therefrom.

【符号の説明】[Explanation of symbols]

1 防舷材 11 第1支衝部 12 第2支衝部 14 段差 Q 取付面(岸壁など) DESCRIPTION OF SYMBOLS 1 Fender 11 First support part 12 Second support part 14 Step Q Mounting surface (quay, etc.)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】先端に受衝部材が取り付けられる、外径の
一定な円筒状の第1支衝部と、この第1支衝部の基端側
から岸壁などの取付面へ向けてテーパー状に広がる中空
円錐状の第2支衝部とを弾性材料により一体に形成して
なり、上記第1支衝部と第2支衝部との境界部分の外周
面に、第2支衝部の外周面を第1支衝部の外周面より一
段外方へ突出させるべく段差が設けられたことを特徴と
する防舷材。
1. A cylindrical first supporting portion having a constant outer diameter, to which a receiving member is attached at a distal end, and a tapered shape from a base end side of the first supporting portion to a mounting surface such as a quay. And a hollow conical second support portion formed integrally with an elastic material. The outer peripheral surface of the boundary between the first support portion and the second support portion is provided with a second support portion. A fender, wherein a step is provided so that an outer peripheral surface protrudes one step outward from an outer peripheral surface of the first support portion.
JP36135899A 1999-12-20 1999-12-20 Fender Expired - Fee Related JP3429720B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP36135899A JP3429720B2 (en) 1999-12-20 1999-12-20 Fender
SG200007523A SG96592A1 (en) 1999-12-20 2000-12-19 Fender
MYPI20005956A MY126856A (en) 1999-12-20 2000-12-19 Fender with step and/or projection
SE0004704A SE522901C2 (en) 1999-12-20 2000-12-19 Fender attached to a doll
KR1020000078462A KR100640030B1 (en) 1999-12-20 2000-12-19 Fender
US09/739,804 US6572307B2 (en) 1999-12-20 2000-12-20 Fender with step and/or projection
AU72441/00A AU780181B2 (en) 1999-12-20 2000-12-20 Fender
AU2005200291A AU2005200291B2 (en) 1999-12-20 2005-01-24 Fender

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36135899A JP3429720B2 (en) 1999-12-20 1999-12-20 Fender

Publications (2)

Publication Number Publication Date
JP2001172939A true JP2001172939A (en) 2001-06-26
JP3429720B2 JP3429720B2 (en) 2003-07-22

Family

ID=18473261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36135899A Expired - Fee Related JP3429720B2 (en) 1999-12-20 1999-12-20 Fender

Country Status (1)

Country Link
JP (1) JP3429720B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051135A (en) * 2006-08-22 2008-03-06 Kurashiki Kako Co Ltd Damper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051135A (en) * 2006-08-22 2008-03-06 Kurashiki Kako Co Ltd Damper

Also Published As

Publication number Publication date
JP3429720B2 (en) 2003-07-22

Similar Documents

Publication Publication Date Title
US5458077A (en) Marine fenders
US4277055A (en) Cushioning fender
US6572307B2 (en) Fender with step and/or projection
US5975000A (en) Rubbery marine fenders
JP2001172939A (en) Fender
JPH05139338A (en) Hood impact absorbing device
JPH0421006B2 (en)
JP2008051135A (en) Damper
JP2001172940A (en) Fender
JP4190816B2 (en) Fender
JPH0649826A (en) Fender
JP3528290B2 (en) Energy absorber with local reinforcement jig
GB2032050A (en) Cushioning fender structure
JPH10176321A (en) Fender
JPS6319279Y2 (en)
JPH04287741A (en) Energy absorber of bumper for vehicle
JPH0380927B2 (en)
JP2001026918A (en) Fender
JPS60169353A (en) Impact energy absorbing structural body
JPS6183707A (en) Fender made of rubber
AU2005200291B2 (en) Fender
JPH09277954A (en) Tapered impact absorbing member
JP2001073346A (en) Fender
JPH0718643A (en) Fender
JPH07229129A (en) Rubber cylindrical fender

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees