JP2001172707A - Method of operating blast furnace - Google Patents

Method of operating blast furnace

Info

Publication number
JP2001172707A
JP2001172707A JP35413299A JP35413299A JP2001172707A JP 2001172707 A JP2001172707 A JP 2001172707A JP 35413299 A JP35413299 A JP 35413299A JP 35413299 A JP35413299 A JP 35413299A JP 2001172707 A JP2001172707 A JP 2001172707A
Authority
JP
Japan
Prior art keywords
furnace
reaction
calculated
blast furnace
prediction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35413299A
Other languages
Japanese (ja)
Other versions
JP4244477B2 (en
Inventor
Masaru Ujisawa
優 宇治澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP35413299A priority Critical patent/JP4244477B2/en
Publication of JP2001172707A publication Critical patent/JP2001172707A/en
Application granted granted Critical
Publication of JP4244477B2 publication Critical patent/JP4244477B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • General Factory Administration (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an operating method of a blast furnace with which the operation is stably continued by accurately managing and controlling furnace heat. SOLUTION: The differential value between a calculated value of molten iron temperature at the starting time of prediction calculated by using the operational data in every moment while correcting the reaction speed of a mathematical model in the furnace and a calculated value of molten iron temperature at the completing time of the prediction in the case of holding the operational condition at the above starting time of the prediction, is obtained so that the reaction quantity in the furnace (calculated reaction quantity) calculated by inputting the operational data in every moment into the mathematical model in the blast furnace under consideration of reaction speeds in the main reaction (indirect reducing reaction of ore, hydrogen reducing reaction and indirect reducing reaction of ore) generated in the blast furnace agrees with the reaction quantity in the furnace (actual reaction quantity) calculated by further inputting the furnace top gas composition. Then in the case of predicting that this differential value is deviation from the range of preset control threshold value, the change of the operational condition for avoiding the lower of the furnace heat, is executed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炉熱の管理、制御
を高精度で行うことにより操業の安定維持を図る高炉操
業方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blast furnace operating method for maintaining and stabilizing the operation by controlling and controlling furnace heat with high accuracy.

【0002】[0002]

【従来の技術】近年の高炉操業は、原燃料コストの合理
化を追及すべく、PCI(微粉炭吹き込み)の実施等を
含め、厳しい条件下で行われている。このような状況下
においては、とりわけ日々の操業の安定維持管理、特に
炉熱の安定維持管理が重要となる。したがって、高炉の
安定操業確保のためには、炉熱低下予知技術の確立が重
要である。
2. Description of the Related Art In recent years, blast furnace operations have been performed under severe conditions, including the implementation of PCI (pulverized coal injection), in order to pursue rationalization of raw fuel costs. Under such a situation, it is especially important to maintain and maintain the stability of daily operations, especially the furnace heat. Therefore, in order to secure stable operation of the blast furnace, it is important to establish a technique for predicting furnace heat reduction.

【0003】従来、高炉における炉熱の予測は、一般
に、高炉操業者が過去に習得した経験や高炉に設置され
た種々のセンサーからの情報を基に、コンピューターシ
ステムを介した統計解析手法、あるいは化学工学的手法
に基づく簡略モデルを用いて行われてきた。例えば、特
公平6−35605号公報には、高炉操業中に求めたソ
リューションロスカーボン量および炉頂ガス成分中の窒
素量移動平均値を複数のいき値と比較した統計学的総合
評価に従い高炉炉熱低下を予測する方法が開示されてい
る。
Conventionally, the furnace heat in a blast furnace is generally predicted by a statistical analysis method via a computer system based on the experience acquired by a blast furnace operator in the past and information from various sensors installed in the blast furnace. This has been done using simplified models based on chemical engineering techniques. For example, Japanese Patent Publication No. 6-35605 discloses a blast furnace furnace according to a statistical comprehensive evaluation in which a solution loss carbon amount and a moving average nitrogen amount in a furnace gas component obtained during blast furnace operation are compared with a plurality of threshold values. A method for predicting heat loss is disclosed.

【0004】しかし、これら従来の方法では、高炉操業
者の能力や経験等による個人差があり、また過去におけ
る操業に関する膨大なデータの蓄積等が必要である。さ
らに、高炉の炉況は時の経過と共に変化するため、統計
解析の解析条件、ならびに簡略モデルの計算条件等も必
要に応じて改良していく必要がある。
[0004] However, in these conventional methods, there are individual differences due to the abilities and experiences of the blast furnace operators, and it is necessary to accumulate enormous data on past operations. Further, since the furnace condition of the blast furnace changes with time, it is necessary to improve the analysis conditions of the statistical analysis and the calculation conditions of the simplified model as necessary.

【0005】また、高炉内の反応および炉熱の動向は、
羽口への送風条件や原料の装入条件等の操作量の変化
や、原料性状の変化、荷下がり状況などの外乱因子等に
よって、時々刻々、非定常的に変化するものであり、上
記の方法、すなわち操業者の経験や各種センサーからの
情報に基づく統計解析手法等によるのでは、高炉内にお
ける反応の異常および炉熱状況を検知し、また、その時
間的変化を予測して、これに対処するための操業アクシ
ョンを時々刻々実行することは、極めて困難である。
[0005] In addition, trends in the reaction and furnace heat in the blast furnace are as follows.
Changes in manipulated variables such as air blowing conditions to the tuyere and charging conditions of raw materials, changes in raw material properties, disturbance factors such as unloading conditions, etc. According to the method, that is, the statistical analysis method based on the operator's experience and information from various sensors, etc., it is possible to detect abnormalities in the reaction in the blast furnace and the heat status of the furnace, and to predict their temporal changes, It is extremely difficult to execute operation actions to cope from time to time.

【0006】[0006]

【発明が解決しようとする課題】本発明はこのような状
況に鑑みなされたもので、炉熱の管理、制御を高精度で
行うことにより操業の安定維持を図る高炉操業方法を提
供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and an object of the present invention is to provide a blast furnace operating method for maintaining and stabilizing the operation by performing high-precision management and control of furnace heat. The purpose is.

【0007】[0007]

【課題を解決するための手段】本発明の要旨は、下記の
高炉操業方法にある。
The gist of the present invention resides in the following blast furnace operating method.

【0008】高炉内の流動、伝熱に加え、炉内で生じる
主要な反応の速度を考慮し、炉内の気体、固体および液
体の状態変化を追跡できる高炉数学モデルに刻々の操業
データとして装入物条件、送風条件および炉体伝熱条件
を入力して計算される炉内反応量が、操業データとして
さらに炉頂ガス組成を入力して算出される実績の炉内反
応量に一致するように、前記高炉数学モデルの炉内反応
速度を修正しつつ刻々の操業データを用いて計算した予
測開始時点における溶銑温度の計算値と、前記予測開始
時点における操業条件を維持した場合の予測完了時点に
おける溶銑温度の計算値との差分値を求め、この差分値
があらかじめ定めた管理いき値の範囲を逸脱すると予測
された場合、炉熱低下を回避するための操業条件の変更
を行う高炉操業方法。
In addition to the flow and heat transfer in the blast furnace, taking into account the speed of the main reactions occurring in the furnace, the blast furnace mathematical model capable of tracking changes in the state of gases, solids and liquids in the furnace is loaded as instantaneous operation data. The in-furnace reaction amount calculated by inputting the input condition, the blowing condition, and the furnace body heat transfer condition should match the actual in-furnace reaction amount calculated by inputting the furnace top gas composition as operation data. The calculated value of the hot metal temperature at the prediction start time calculated using the instantaneous operation data while correcting the in-furnace reaction rate of the blast furnace mathematical model, and the prediction completion time when the operating conditions at the prediction start time are maintained Calculating the difference between the hot metal temperature and the calculated value of the hot metal temperature, and if this difference is predicted to deviate from the range of the predetermined control threshold, the blast furnace operating method that changes the operating conditions to avoid furnace heat reduction .

【0009】なお、炉熱低下を回避するための操業条件
の変更の方法を前記高炉数学モデルを用いて計算し、そ
の方法に基づいて操業条件の変更を行ってもよい。
[0009] A method of changing operating conditions for avoiding a decrease in furnace heat may be calculated using the mathematical model of the blast furnace, and the operating conditions may be changed based on the method.

【0010】ここで、「炉内で生じる主要な反応」と
は、後に具体的に反応式で示すが、鉱石の間接還元反
応、水素還元反応および直接還元反応をいう。
[0010] Here, the "main reaction occurring in the furnace" refers to an indirect reduction reaction, a hydrogen reduction reaction, and a direct reduction reaction of ore, which are specifically shown in the reaction formulas below.

【0011】「刻々の操業データ」とは、前記の高炉内
で生じる反応の反応量を計算するために必要なデータ
で、これについても後述する。
"Every time operation data" is data necessary for calculating the reaction amount of the reaction occurring in the blast furnace, which will also be described later.

【0012】「予測開始時点」とは、通常は現時点、厳
密には、溶銑温度の予測計算が開始された最新の時点を
いう。
[0012] The "prediction start time point" usually means the current time point, more precisely, the latest time point when the prediction calculation of the hot metal temperature is started.

【0013】「予測完了時点」とは、予測開始時点か
ら、例えば4時間先、あるいは8時間先の時点をいう。
[0013] The "prediction completion time point" refers to a time point four hours or eight hours ahead of the prediction start time.

【0014】また、「管理いき値」とは、後に詳細に説
明するが、本発明の高炉操業方法に使用する高炉数学モ
デルの予測精度を示す指標である。
The "control threshold" is an index indicating the prediction accuracy of the blast furnace mathematical model used in the blast furnace operation method of the present invention, which will be described later in detail.

【0015】[0015]

【発明の実施の形態】以下に、本発明の高炉操業方法
(以下、「本発明方法」ともいう)について具体的に説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION The blast furnace operating method of the present invention (hereinafter, also referred to as “the method of the present invention”) will be specifically described below.

【0016】図1は本発明方法で使用するモデル(炉内
で生じる主要な反応を考慮した高炉数学モデルで、以
下、単に「高炉数学モデル」という)の構成を模式的に
示す図である。
FIG. 1 is a diagram schematically showing the structure of a model (a blast furnace mathematical model taking into account the main reactions occurring in the furnace, hereinafter simply referred to as a "blast furnace mathematical model") used in the method of the present invention.

【0017】図示したように、羽口8から吹き込まれた
熱風はコークス5と反応してその温度が上昇し、コーク
ス層1を通って炉頂へ到る間に、コークスをガス化する
(図中の「コークスガス化」参照)。ガス化により発生
するCOとH2 によって鉱石層2を形成する鉱石はFe
23 の状態からFe34 、FeOないしFeの状
態に還元される(図中の「間接還元」参照)。還元され
た鉱石は半溶融状態になり、逆V字状に堆積しているコ
ークス層1の表面に融着帯3を形成するが、高温の環境
下にあってさらに還元が進み(図中の「直接還元」参
照)、鉱石は溶銑となって(図中の「浸炭反応」参
照)、滴下帯4を通過して炉底に滴下し、湯溜まり部7
を形成する。
As shown in the figure, the hot air blown from the tuyere 8 reacts with the coke 5 and its temperature rises, and gasifies the coke while reaching the furnace top through the coke layer 1 (see FIG. 1). See "Coke gasification". The ore forming ore layer 2 by CO and H 2 generated by gasification is Fe
The state of 2 O 3 is reduced to a state of Fe 3 O 4 , FeO or Fe (see “indirect reduction” in the figure). The reduced ore is in a semi-molten state and forms a cohesive zone 3 on the surface of the coke layer 1 which is deposited in an inverted V-shape. However, the reduction proceeds further under a high temperature environment (see FIG. The ore is turned into hot metal (see “Carburizing reaction” in the figure), dropped through the drip zone 4 and dropped on the furnace bottom, and the ore pool 7
To form

【0018】この高炉数学モデルは、炉底の溶銑の湯留
まり部を除く有効反応部で生じる高炉内現象を取り扱
う。具体的には、高炉内の流動、伝熱に加え、前記の図
1に示した高炉内で生じる主要な反応(以下、単に「炉
内反応」ともいう)を考慮し、これを速度論的に取り扱
う。すなわち、刻々の操業データを用いてこれら個々の
反応の刻々の反応速度を求め、これらの反応の反応量
(炉内反応量)を計算する。ここで、高炉内の流動と
は、気体、固体および液体の流れを意味し、伝熱とは、
主に異相間(気体と固体間、気体と液体間、および固体
と液体間)における伝熱(つまり、熱交換)、各相内で
の熱移動、および前記の炉内反応に伴う反応熱の各相へ
の伝搬をいう。
This blast furnace mathematical model deals with phenomena in the blast furnace that occur in the effective reaction zone except for the hot metal pool at the bottom of the furnace. Specifically, in addition to the flow and heat transfer in the blast furnace, the main reaction (hereinafter simply referred to as "in-furnace reaction") occurring in the blast furnace shown in FIG. Handle it. That is, the instantaneous reaction rates of these individual reactions are obtained using the instantaneous operation data, and the reaction amounts of these reactions (reactor amounts in the furnace) are calculated. Here, the flow in the blast furnace means the flow of gas, solid and liquid, and the heat transfer is
Heat transfer (ie, heat exchange) mainly between different phases (between gas and solid, between gas and liquid, and between solid and liquid), heat transfer in each phase, and reaction heat associated with the above-mentioned furnace reaction Refers to propagation to each phase.

【0019】これら高炉内の流動、伝熱、および炉内反
応を考慮した物質移動は、一般に、微小時間におけるそ
れらの状態変化を組み込んだ支配方程式で記述される。
The mass transfer in consideration of the flow, heat transfer, and reaction in the blast furnace is generally described by a governing equation incorporating their state change in a minute time.

【0020】図2は本発明方法で使用する高炉数学モデ
ルの基本解析フローである。このモデルに、前記の刻々
の操業データとして、炉頂での装入物条件、羽口への送
風条件、および炉体壁での伝熱条件を与える。炉頂での
装入物条件とは、O/C比(装入原料における「鉱石/
コークス」質量比)、鉱石およびコークスの組成、なら
びに、鉱石およびコークスの粒径であり、羽口への送風
条件とは、送風量、送風温度、湿分、酸素富化量、なら
びに、補助燃料(微粉炭、タール等)量とその成分であ
り、また、炉体壁での伝熱条件とは、耐火物の厚みおよ
び物性(密度、比熱、熱伝導率)、ならびにステーブ等
を含めた炉体壁の強制冷却能力である。
FIG. 2 is a basic analysis flow of a blast furnace mathematical model used in the method of the present invention. This model is provided with the condition of the charge at the furnace top, the condition of air blowing to the tuyere, and the condition of heat transfer at the furnace body wall as the above-mentioned momentary operation data. The charge conditions at the furnace top are defined as the O / C ratio ("Ore /
(Mass ratio of coke), ore and coke composition, and ore and coke particle size, and the conditions for blowing air to the tuyere are: blowing rate, blowing temperature, moisture, oxygen enrichment, and auxiliary fuel (Pulverized coal, tar, etc.) and their components, and the heat transfer conditions on the furnace wall include the thickness and physical properties (density, specific heat, thermal conductivity) of the refractory, and the furnace including staves etc. It is the forced cooling capacity of the body wall.

【0021】これら刻々の操業データを与えると、モデ
ルに基づいて高炉内の流動、伝熱、および炉内反応を考
慮した物質移動に関する支配方程式の非定常計算が行わ
れ、高炉内の各相(気体、固体および液体)の炉内にお
ける状態分布(すなわち、炉内の温度分布、鉱石の還元
分布等)、炉頂ガス情報(すなわち、排ガスのガス組成
および排ガス温度)、出銑情報(すなわち、出銑量、出
銑(溶銑)温度および溶銑成分)、炉体壁内の温度分布
等が予測値として刻々出力される。換言すると、この高
炉数学モデルは実炉操業と基本的に同じ動作を行う完全
自立型のシミュレータとして構成されている。
Given these instantaneous operation data, an unsteady calculation of a governing equation relating to mass transfer in consideration of the flow, heat transfer, and reaction in the furnace in the blast furnace is performed based on the model, and each phase ( (Gas, solid and liquid) state distribution in the furnace (ie, furnace temperature distribution, ore reduction distribution, etc.), furnace top gas information (ie, gas composition and exhaust gas temperature of exhaust gas), tapping information (ie, The tapping amount, tapping (hot metal) temperature and hot metal component), the temperature distribution in the furnace wall, and the like are output as predicted values every moment. In other words, the blast furnace mathematical model is configured as a completely independent simulator that performs basically the same operation as actual furnace operation.

【0022】なお、湯留まり部は、コークスが充満し、
その間隙に溶銑が一定量滞留する湯留まり内部とそれを
囲む側壁および炉底の耐火物から構成されるとし、出銑
温度は、有効反応部からの出銑量および出銑温度を境界
条件として、湯留まり内部を均一混合槽で、熱放散のみ
が生起するとして算出される。
[0022] The pool is filled with coke,
It is assumed that it consists of the inside of the pool where a certain amount of hot metal stays in the gap, the side wall surrounding it and the refractory of the furnace bottom, and the tapping temperature is determined by the tapping amount and tapping temperature from the effective reaction zone Is calculated assuming that only heat dissipation occurs in the uniform mixing tank inside the basin.

【0023】この高炉数学モデルを用いて行う炉熱予測
方法を、図3に示した炉熱予測の解析ロジックに基づい
て説明する。
A furnace heat prediction method performed using the blast furnace mathematical model will be described based on the analysis logic of the furnace heat prediction shown in FIG.

【0024】高炉数学モデルでは、前記の図2で説明し
たように、実績の操業条件、すなわち装入物条件、送風
条件および炉体伝熱条件が刻々の操業データとして読み
込まれ、図1に示した主要な反応について速度論的に炉
内反応量の計算が行われ、それに基づいて炉内部状態
(各相の炉内温度分布、溶銑温度等)の計算が行われる
(「炉熱の将来予測のループ」参照)。なお、炉体伝熱
条件のうち、刻々の操業データとして読み込まれるの
は、強制冷却による炉体熱放散量である。
In the blast furnace mathematical model, as described with reference to FIG. 2, the actual operating conditions, that is, the charging conditions, the blowing conditions, and the furnace heat transfer conditions are read as instantaneous operating data and shown in FIG. The reaction volume in the furnace is kinetically calculated for the main reactions that have been performed, and the furnace internal conditions (furnace temperature distribution of each phase, hot metal temperature, etc.) are calculated based on that (see “Future heat future prediction”). Loop)). Of the furnace body heat transfer conditions, what is read in as the instantaneous operation data is the amount of furnace body heat dissipation due to forced cooling.

【0025】一方、モデルの基本機能としてモデルに取
り込まれていない未解明の現象(荷下がり降下不良、不
均一なガス流れ分布等)も含んだ実績の炉内状況変化を
モデルに反映させるために、実績の炉頂ガス情報(炉頂
ガス組成)が新たにモデルの入力データとして取り込ま
れ、実績の炉内反応量(以下、単に「実績反応量」とい
う)が算出される。そして、この実績反応量と、前記の
速度論的に計算された炉内反応量(これを、「計算反応
量」という)との比較がなされ、両者が一致するように
モデルの反応速度(高炉数学モデルで反応量の算出に使
用する反応速度で、「理論反応速度」という)が時々刻
々適応修正され、図示するように、前記の炉内反応量の
計算にフィードバックされる。
On the other hand, as a basic function of the model, actual model changes in the furnace including unexplained phenomena that are not included in the model (such as unloading failure, uneven gas flow distribution, etc.) are reflected in the model. The actual furnace top gas information (furnace gas composition) is newly taken in as input data of the model, and the actual furnace reaction amount (hereinafter, simply referred to as “actual reaction amount”) is calculated. The actual reaction amount is compared with the kinetically calculated reaction amount in the furnace (hereinafter referred to as “calculated reaction amount”), and the reaction speed of the model (blast furnace The reaction rate used for calculating the reaction amount in the mathematical model (referred to as “theoretical reaction rate”) is adaptively corrected from time to time, and is fed back to the calculation of the in-furnace reaction amount as shown in the figure.

【0026】ここで、モデルで取り扱う反応、つまり、
上記の時々刻々適応修正される反応は、下記の (1)式〜
(3)式に示す鉱石の間接還元反応、 (4)式〜 (6)式に示
す鉱石の水素還元反応、および (7)式〜 (9)式に示す鉱
石の直接還元反応である。なお、これら鉱石の間接還元
反応、水素還元反応および直接還元反応のトータルとし
ての反応量を(10)式〜(12)式に示した。
Here, the reaction handled in the model, that is,
The above reaction that is adaptively corrected every moment is expressed by the following equation (1)
The indirect reduction reaction of the ore represented by the formula (3), the hydrogen reduction reaction of the ore represented by the formulas (4) to (6), and the direct reduction reaction of the ore represented by the formulas (7) to (9). The total reaction amounts of the indirect reduction reaction, hydrogen reduction reaction, and direct reduction reaction of these ores are shown in equations (10) to (12).

【0027】 (鉱石の間接還元反応) Rh :3Fe23 +CO→2Fe34 +CO2 ・・・(1) Rm : Fe34 +CO→3FeO+CO2 ・・・(2) Rw : FeO +CO→ Fe +CO2 ・・・(3) (鉱石の水素還元反応) Rh′:3Fe23 +H2 →2Fe34 +H2 O ・・・(4) Rm′: Fe34 +H2 →3FeO+H2 O ・・・(5) Rw′: FeO +H2 → Fe +H2 O ・・・(6) (鉱石の直接還元反応) Rsr : FeO(liquid)+C→Fe(liquid)+CO ・・(7) (ソリューションロス反応) Rsl : CO2 +C→2CO ・・・(8) Rsl′: H2 O+C→ CO+H2 ・・・(9) (間接還元反応のトータル量) RI =Rh+Rm+Rw−Rsl ・・・(10) (水素還元反応のトータル量) RH =Rh′+Rm′+Rw′−Rsl′ ・・・(11) (直接還元反応のトータル量) RD =Rsr +Rsl +Rsl′ ・・・(12) また、前記の計算反応量と実績反応量とを一致させるよ
うに行う反応速度の修正は、上記の(10)式〜(12)式に示
した鉱石の間接還元反応のトータル量RI 、鉱石の水素
還元反応のトータル量RH および鉱石の直接還元反応の
トータル量RDが、実績の炉頂ガス情報(炉頂ガス組
成)と装入物条件、送風条件および炉体伝熱条件から算
出される実績の鉱石の間接還元反応のトータル量RI 、
鉱石の水素還元反応のトータル量RH および鉱石の直接
還元反応のトータル量RD にそれぞれ一致するように理
論反応速度(すなわち、前記 (1)〜 (9)の各反応の反応
速度)を修正しつつ収束計算を実施することにより行わ
れる。なお、反応速度の修正は、反応速度定数を修正す
ることにより行われる。
(Indirect reduction reaction of ore) Rh: 3Fe 2 O 3 + CO → 2Fe 3 O 4 + CO 2 (1) Rm: Fe 3 O 4 + CO → 3FeO + CO 2 (2) Rw: FeO + CO → Fe + CO 2 (3) (hydrogen reduction reaction of ore) Rh ′: 3Fe 2 O 3 + H 2 → 2Fe 3 O 4 + H 2 O (4) Rm ′: Fe 3 O 4 + H 2 → 3FeO + H 2 O (5) Rw ′: FeO + H 2 → Fe + H 2 O (6) (direct reduction reaction of ore) Rsr: FeO (liquid) + C → Fe (liquid) + CO (7) (Solution loss reaction) Rsl: CO 2 + C → 2CO (8) Rsl ′: H 2 O + C → CO + H 2 (9) (Total amount of indirect reduction reaction) RI = Rh + Rm + Rw−Rsl ... (10) (Total amount of hydrogen reduction reaction) RH = Rh '+ Rm' + Rw'-Rsl '(11) (Total amount of direct reduction reaction) RD = Rsr + Rsl + Rsl '(12) Further, the reaction rate is corrected so that the calculated reaction amount and the actual reaction amount coincide with each other by the ore shown in the above-described equations (10) to (12). Total amount RI of indirect reduction reaction, total amount RH of hydrogen reduction reaction of ore, and total amount RD of direct reduction reaction of ore are based on actual furnace top gas information (furnace top gas composition), charging conditions, and blowing conditions. And the actual total amount of indirect reduction reaction of ore RI calculated from furnace heat transfer conditions,
The theoretical reaction rate (that is, the reaction rate of each of the above (1) to (9)) is modified so as to match the total amount RH of the hydrogen reduction reaction of the ore and the total amount RD of the direct reduction reaction of the ore, respectively. This is performed by performing a convergence calculation. The modification of the reaction rate is performed by modifying the reaction rate constant.

【0028】上記の適応修正されたその都度の理論反応
速度を使用して、炉内状態、すなわち各相の炉内温度分
布、溶銑温度等が計算される。
Using the adaptively corrected respective theoretical reaction rates, the furnace conditions, ie, the furnace temperature distribution of each phase, the hot metal temperature, etc., are calculated.

【0029】以上述べた操作を、時々刻々、操業データ
に基づいて実行し、高炉内の熱的状態の代表値として溶
銑温度をとって炉熱の現状推定を行う。これを、図3中
に、「反応速度の修正と炉熱現状推定のループ」として
表示した。なお、上記の収束計算は、時間Δt(操業デ
ータのサンプリング周期)毎に行い、刻々の溶銑温度の
変化を予測する。
The above-described operation is executed from time to time based on the operation data, and the current state of the furnace heat is estimated by taking the hot metal temperature as a representative value of the thermal state in the blast furnace. This is shown in FIG. 3 as a “loop of correction of reaction rate and estimation of the current state of furnace heat”. The above-mentioned convergence calculation is performed for each time Δt (sampling cycle of operation data), and the change of the hot metal temperature every moment is predicted.

【0030】一方、同じく図3の「炉熱の将来予測のル
ープ」では、着目する時点(ここでは、溶銑温度の予測
計算が開始された時点を指す)における操業条件を維持
した場合の、すなわち、炉頂ガス情報は読み込まず、溶
銑温度の予測計算の開始時の操作条件と適応修正した反
応速度を維持した場合の炉内状態の変化を予測計算し、
着目した時点から例えば4時間後、あるいは8時間後ま
での溶銑温度を予測する。
On the other hand, in the “loop of future prediction of furnace heat” in FIG. 3, the operating condition at the time of interest (here, the time when the prediction calculation of the hot metal temperature is started) is maintained, that is, The furnace top gas information is not read, and the operating conditions at the start of the hot metal temperature prediction calculation and the change in the furnace state when the adaptively corrected reaction rate is maintained are predicted and calculated,
The hot metal temperature is predicted from, for example, 4 hours or 8 hours after the point of interest.

【0031】そして、本発明方法では、炉内反応速度を
修正しつつ計算した着目した時点(溶銑温度の予測計算
の開始時点)における溶銑温度の計算値と、前記着目し
た時点における操業状態を維持した場合の予測完了時点
(着目した時点から、例えば4時間先、あるいは8時間
先の時点)における計算値との差分値(すなわち、溶銑
温度(炉熱)の変化幅)を求め、この差分値があらかじ
め定めた管理いき値の範囲を逸脱すると予測された場
合、炉熱低下を回避するための操業条件の変更を行うの
である。具体的には、送風量、酸素富化量、調湿量、補
助燃料量、コークス比等を適宜変更する。
In the method of the present invention, the calculated value of the hot metal temperature at the time of interest (at the start of the hot metal temperature prediction calculation) calculated while correcting the reaction rate in the furnace and the operating state at the time of interest are maintained. And the difference from the calculated value at the time of completion of prediction (for example, 4 hours or 8 hours after the point of interest) (that is, the change width of the hot metal temperature (furnace heat)) is calculated. If it is predicted that the temperature will deviate from the range of the predetermined control threshold, the operating conditions are changed to avoid a decrease in the furnace heat. Specifically, the amount of air blow, the amount of oxygen enrichment, the amount of humidity control, the amount of auxiliary fuel, the coke ratio, and the like are appropriately changed.

【0032】前記の管理いき値とは、本発明方法で使用
する高炉数学モデルの予測精度を示す指標である。具体
的には、図4に一例を示すように、あらかじめ過去のあ
る一定操業期間における実績の溶銑温度とモデルを用い
て計算した予測の溶銑温度(この例では、8時間先まで
の予測溶銑温度)との差分値(溶銑温度の変化幅、つま
り誤差)を前記一定操業期間の各時点で算出し、この差
分値を集計して求めた標準偏差である。なお、この場合
は、標準偏差、つまり管理いき値は10である。
The above-mentioned control threshold is an index indicating the prediction accuracy of the mathematical model of the blast furnace used in the method of the present invention. Specifically, as shown in FIG. 4, as an example, the actual hot metal temperature calculated in advance using a model and the actual hot metal temperature in a past certain operation period (in this example, the predicted hot metal temperature up to eight hours ahead) ) Is calculated at each point in the fixed operating period, and the standard deviation is obtained by summing up the difference values. In this case, the standard deviation, that is, the management threshold value is 10.

【0033】図5は、この管理いき値の範囲を予測開始
時点から完了時点にわたって模式的に示した図である。
図中に示した±10℃の範囲内が管理いき値の範囲に相
当する。なお、実績の出銑(溶銑)温度は●印で示し
た。本発明方法では、予測開始時点における溶銑温度の
計算値と予測完了時点における計算値との差分値がこの
管理いき値の範囲から外れると予測された場合、炉熱低
下が起こる可能性が極めて高い(信頼度 70%の確か
らしさで可能性が高い)と判断して、炉熱低下回避のた
め操業条件を変更する。
FIG. 5 is a diagram schematically showing the range of the management threshold from the prediction start time to the completion time.
The range of ± 10 ° C. shown in the figure corresponds to the range of the control threshold. The actual tapping (hot metal) temperature is indicated by a circle. In the method of the present invention, when it is predicted that the difference between the calculated value of the hot metal temperature at the prediction start time and the calculation value at the prediction completion time is out of the range of the control threshold, the possibility of furnace heat drop is extremely high. (It is highly probable that the reliability is 70%), and the operating conditions are changed to avoid a decrease in furnace heat.

【0034】管理いき値の設定に際しては、過去の操業
データを基に実績の溶銑温度とモデルで計算される予測
溶銑温度との差分値のサンプル数(N数)をできるだけ
多く集計して、その標準偏差を求めることが望ましい。
When setting the control threshold, the number of samples (N number) of difference values between the actual hot metal temperature and the predicted hot metal temperature calculated by the model based on the past operation data are aggregated as much as possible. It is desirable to find the standard deviation.

【0035】上記本発明の高炉操業方法によれば、炉熱
の予測と炉熱低下の予知を時々刻々の操業データに基づ
いて行う(計算する)ので、精度よく炉熱低下を検知で
きるとともに、それを回避するための操業条件の変更を
迅速に実施することが可能となる。また、その操業条件
の変更が正しかったか否かをその後の計算結果から容易
に判断することができるので、操業者の操業操作、特に
炉熱制御に関する操作についての教育にも有効である。
According to the blast furnace operating method of the present invention, since the prediction of the furnace heat and the prediction of the furnace heat decrease are performed (calculated) based on the operation data every moment, the furnace heat decrease can be detected with high accuracy. It is possible to quickly change the operating conditions to avoid this. In addition, since it is possible to easily determine whether or not the change in the operating conditions has been correct from the subsequent calculation results, it is also effective for education of the operating operation of the operator, especially the operation related to the furnace heat control.

【0036】なお、前記の差分値が、管理いき値の範囲
を逸脱すると予測された場合、警告を発するようにして
おけば、差分値の前記の変化を見落とすおそれがなく、
その変化に常に注意を払う必要もなくなるので、望まし
い。
If a warning is issued when the difference value is predicted to deviate from the range of the management threshold, there is no danger of overlooking the change in the difference value.
This is desirable because it is not necessary to always pay attention to the change.

【0037】本発明方法では、さらに、炉熱低下を回避
するための操業条件の変更の方法を前記高炉数学モデル
を用いて計算し、操業者がその方法に基づいて操業条件
を変更できるようにすることも可能である。また、あら
かじめ高炉数学モデルを用いて計算された各操作量(送
風量、酸素富化量、調湿量、補助燃料量、コークス比
等)に対する溶銑温度の変化量およびそれに到達するま
での時間(応答時間)を基準データとして定量的に求め
ておき、この基準データを基に、溶銑温度をその管理目
標範囲内に納めるのに必要な操作変更量を求める方法を
採ってもよい。
In the method of the present invention, a method of changing operating conditions for avoiding a decrease in furnace heat is calculated using the blast furnace mathematical model, so that the operator can change the operating conditions based on the method. It is also possible. In addition, the amount of change in hot metal temperature with respect to each operation amount (blowing amount, oxygen enrichment amount, humidity control amount, auxiliary fuel amount, coke ratio, etc.) calculated in advance using the blast furnace mathematical model, and the time required to reach it ( Response time) may be quantitatively determined as reference data, and a method of determining an operation change amount necessary to keep the hot metal temperature within the management target range may be adopted based on the reference data.

【0038】なお、その場合、いずれの操作変更(すな
わち、操業条件の変更)の方法を実行するかは、操業者
の判断に委ねられる。ただし、操業条件の変更が自動的
に行われるようにあらかじめ定めておくことも可能であ
り、望ましい。
In this case, it is up to the operator to determine which method of operation change (ie, change of operating conditions) should be performed. However, it is possible and desirable to determine in advance that the operating conditions will be changed automatically.

【0039】本発明方法を実施するにあたっては、高炉
内の流動、伝熱、およびモデルで取り扱う反応に関する
支配方程式の非定常計算を時々刻々行う必要があるが、
現在のコンピュータの演算スピードをもってすれば、充
分可能である。
In carrying out the method of the present invention, it is necessary to carry out momentarily non-stationary calculations of governing equations for the flow, heat transfer, and reactions handled in the model in the blast furnace.
With the speed of the current computer, this is possible.

【0040】上記本発明方法によれば、炉熱低下を容易
に、時々刻々予知し、操業条件の変更を迅速に実施する
ことができるので、本発明方法を実炉の炉熱管理システ
ムに組み込めば、炉熱の安定に大きく寄与することがで
きる。
According to the above-mentioned method of the present invention, it is possible to easily and instantaneously predict a decrease in furnace heat and to quickly change operating conditions. Therefore, the method of the present invention can be incorporated into a furnace heat management system of an actual furnace. This can greatly contribute to stabilization of furnace heat.

【0041】[0041]

【実施例】実炉(炉内容積:5000m3 )において、
本発明方法の有効性を調査した。
[Example] In a real furnace (volume inside the furnace: 5000 m 3 )
The effectiveness of the method of the present invention was investigated.

【0042】結果の一例を図6に示す。FIG. 6 shows an example of the result.

【0043】溶銑温度の予測は2時間毎に実行し、炉内
反応速度を修正しつつ計算した予測開始時点における溶
銑温度の計算値と、前記予測開始時点における操業状態
を維持した場合の予測完了時点(8時間先の時点)にお
ける溶銑温度の計算値との差分値(図中にΔTとして表
示)を実績の溶銑温度の推移とともに示した。なお、こ
のΔTの推移を示した図において、縦軸のΔT=10
(℃)およびΔT=−10(℃)の位置から横軸に平行
に引いた破線は、管理いき値を示している。
The prediction of the hot metal temperature is executed every two hours, and the calculated value of the hot metal temperature at the time of the prediction start calculated while correcting the reaction rate in the furnace and the completion of the prediction when the operation state at the time of the prediction start is maintained The difference value (indicated as ΔT in the figure) from the calculated value of the hot metal temperature at the time point (8 hours ahead) is shown together with the transition of the actual hot metal temperature. In the graph showing the transition of ΔT, ΔT = 10 on the vertical axis
The broken lines drawn parallel to the horizontal axis from the positions of (° C.) and ΔT = −10 (° C.) indicate the control threshold.

【0044】図示した例は、炉熱、すなわち実績の溶銑
温度が低下したので(図中に矢印Aで表示)、操業条件
を変更してコークス比を増加(すなわち、O/C比(図
では、Ore/Cokeと表示)を減少)させた場合で
(図中に矢印Bで表示)、その後、矢印Cで示したよう
に、溶銑温度が上昇した。この場合、溶銑温度の低下を
確認して実際にコークス比を増加させた時点よりも早い
時点で、差分値(ΔT)に炉熱低下の兆しが見えてい
る。すなわち、ΔTの推移を示した図において、ΔTが
管理いき値の範囲を逸脱すると予測された時点(図中に
矢印Dで表示した時点)であり、この時点と実績の溶銑
温度の低下が始まった時点とはよく対応している。
In the illustrated example, since the furnace heat, that is, the actual hot metal temperature, decreased (indicated by an arrow A in the figure), the operating conditions were changed to increase the coke ratio (ie, the O / C ratio (in the figure, , Ore / Coke) (decreased) (represented by arrow B in the figure), and thereafter, as indicated by arrow C, the hot metal temperature increased. In this case, the difference value (ΔT) shows signs of a decrease in furnace heat at a time earlier than the time when the coke ratio is actually increased after confirming the decrease in the hot metal temperature. That is, in the diagram showing the transition of ΔT, it is the time when ΔT is predicted to deviate from the range of the control threshold value (the time indicated by arrow D in the diagram), and at this time, the decrease in the actual hot metal temperature starts. Well corresponded with the time.

【0045】この結果から、予測開始時点における溶銑
温度の計算値と予測完了時点における溶銑温度の計算値
との差分値により炉熱低下の予知が可能であることが明
らかであり、この手法を用いる本発明方法によれば、炉
熱低下を回避するための操業条件の変更を迅速に実施す
ることができる。
From these results, it is clear that the difference between the calculated value of the hot metal temperature at the start of the prediction and the calculated value of the hot metal temperature at the completion of the prediction makes it possible to predict the decrease in the furnace heat. According to the method of the present invention, it is possible to quickly change operating conditions for avoiding a decrease in furnace heat.

【0046】[0046]

【発明の効果】本発明の高炉操業方法によれば、炉熱低
下を容易に、時々刻々予知することができるので、炉熱
の管理を高精度で行い、炉熱低下に対する処置を迅速に
行うことが可能である。この高炉操業方法を炉熱管理シ
ステムに組み込めば、炉熱の安定に大きく寄与すること
ができる。
According to the blast furnace operating method of the present invention, a decrease in the furnace heat can be easily and momentarily predicted, so that the furnace heat can be managed with high accuracy and the measure against the decrease in the furnace heat can be promptly performed. It is possible. If this blast furnace operation method is incorporated into a furnace heat management system, it can greatly contribute to stabilization of the furnace heat.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法に使用する高炉数学モデルの構成図
である。
FIG. 1 is a configuration diagram of a blast furnace mathematical model used in the method of the present invention.

【図2】本発明方法に使用する高炉数学モデルの基本解
析フローである。
FIG. 2 is a basic analysis flow of a blast furnace mathematical model used in the method of the present invention.

【図3】炉内反応速度を考慮した高炉数学モデルによる
炉熱予測の解析ロジックを示す図である。
FIG. 3 is a diagram showing an analysis logic of a furnace heat prediction by a blast furnace mathematical model in consideration of a reaction rate in a furnace.

【図4】本発明方法に使用する管理いき値の定義を示す
図である。
FIG. 4 is a diagram showing a definition of a management threshold used in the method of the present invention.

【図5】本発明方法に使用する溶銑温度についての管理
いき値の範囲を予測開始時点から完了時点にわたって模
式的に示した図である。
FIG. 5 is a diagram schematically showing a range of a control threshold value for a hot metal temperature used in the method of the present invention from a prediction start time to a completion time.

【図6】本発明方法を実炉に適用した結果の一例を示す
図である。
FIG. 6 is a diagram showing an example of a result of applying the method of the present invention to an actual furnace.

【符号の説明】[Explanation of symbols]

1:コークス層 2:鉱石層 3:融着帯 4:滴下帯 5:コークス 6:炉心コークス 7:湯溜まり部 8:羽口 1: coke layer 2: ore layer 3: cohesive zone 4: dripping zone 5: coke 6: core coke 7: pool basin 8: tuyere

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】高炉内の流動、伝熱に加え、炉内で生じる
主要な反応の速度を考慮し、炉内の気体、固体および液
体の状態変化を追跡できる高炉数学モデルに刻々の操業
データとして装入物条件、送風条件および炉体伝熱条件
を入力して計算される炉内反応量が、操業データとして
さらに炉頂ガス組成を入力して算出される実績の炉内反
応量に一致するように、前記高炉数学モデルの炉内反応
速度を修正しつつ刻々の操業データを用いて計算した予
測開始時点における溶銑温度の計算値と、前記予測開始
時点における操業条件を維持した場合の予測完了時点に
おける溶銑温度の計算値との差分値を求め、この差分値
があらかじめ定めた管理いき値の範囲を逸脱すると予測
された場合、炉熱低下を回避するための操業条件の変更
を行うことを特徴とする高炉操業方法。
1. A blast furnace mathematical model that can track changes in the state of gases, solids, and liquids in the furnace in consideration of the flow rate and heat transfer in the blast furnace, as well as the speed of the main reactions occurring in the furnace. The reactor reaction volume calculated by inputting the charge conditions, air blowing conditions, and furnace body heat transfer conditions as the actual reactor reaction volume calculated by inputting the furnace gas composition as operation data As described above, the calculated value of the hot metal temperature at the prediction start time calculated using the instantaneous operation data while correcting the in-furnace reaction rate of the blast furnace mathematical model, and the prediction when the operating conditions at the prediction start time are maintained Determine the difference between the hot metal temperature and the calculated value of the hot metal temperature at the time of completion.If this difference is predicted to deviate from the range of the predetermined control threshold, change the operating conditions to avoid furnace heat reduction. Features Blast furnace operation how to.
JP35413299A 1999-12-14 1999-12-14 Blast furnace operation method Expired - Fee Related JP4244477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35413299A JP4244477B2 (en) 1999-12-14 1999-12-14 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35413299A JP4244477B2 (en) 1999-12-14 1999-12-14 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2001172707A true JP2001172707A (en) 2001-06-26
JP4244477B2 JP4244477B2 (en) 2009-03-25

Family

ID=18435518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35413299A Expired - Fee Related JP4244477B2 (en) 1999-12-14 1999-12-14 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP4244477B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018024936A (en) * 2016-08-02 2018-02-15 Jfeスチール株式会社 Molten iron temperature prediction method, molten iron temperature prediction device, operation method of blast furnace, operation guidance device, molten iron temperature control method and molten iron temperature control device
JP2020029596A (en) * 2018-08-23 2020-02-27 Jfeスチール株式会社 Molten iron temperature prediction method, molten iron temperature prediction device, blast furnace operation method, operation guidance device, molten iron temperature control method, and molten iron temperature control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018024936A (en) * 2016-08-02 2018-02-15 Jfeスチール株式会社 Molten iron temperature prediction method, molten iron temperature prediction device, operation method of blast furnace, operation guidance device, molten iron temperature control method and molten iron temperature control device
JP2020029596A (en) * 2018-08-23 2020-02-27 Jfeスチール株式会社 Molten iron temperature prediction method, molten iron temperature prediction device, blast furnace operation method, operation guidance device, molten iron temperature control method, and molten iron temperature control device

Also Published As

Publication number Publication date
JP4244477B2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
CN103439999B (en) Method for controlling abnormal furnace temperature of blast furnace according to temperature changes of cooling wall
US20150337404A1 (en) Method and device for predicting, controlling and/or regulating steelworks processes
Azadi et al. Nonlinear prediction model of blast furnace operation status
JPH11335710A (en) Method for predicting furnace heat in blast furnace
Upadhyay et al. Drain rate and liquid level simulation in blast furnace hearth using plant data
JP4244477B2 (en) Blast furnace operation method
JP3287242B2 (en) Blast furnace heat prediction method
JPH11323412A (en) Detection of furnace temperature drop in blast furnace
JP7140305B1 (en) Supplied heat amount estimation method, supplied heat amount estimation device, supplied heat amount estimation program, and method of operating blast furnace
Azadi et al. Model predictive control of molten iron and slag quality indices in a large-scale ironmaking blast furnace using a hybrid dynamic model
Azadi et al. Improved operation of a large-scale blast furnace using a hybrid dynamic model based optimizing control scheme
JP7193032B1 (en) Supplied heat amount estimation method, supplied heat amount estimation device, and blast furnace operation method
Rathaba Model fitting for electric arc furnace refining
JPH10121118A (en) Detection of abnormality of reaction in blast furnace
JP7384150B2 (en) Operation guidance method, blast furnace operation method, hot metal production method and operation guidance device
Rogozhnikov et al. Mathematical model for estimating the optimal distribution of ore charge along the blast furnace radius based on zonal balances
CN104805240A (en) Method for judging liquid permeability of lower part of blast furnace
JP7115663B1 (en) Supplied heat amount estimation method, supplied heat amount estimation device, supplied heat amount estimation program, and method of operating blast furnace
WO2023276357A1 (en) Supplied heat quantity estimation method, supplied heat quantity estimation device, supplied heat quantity estimation program, and operation method for blast furnace
Bigeev et al. Adapting a mathematical model of the end of the blow of a converter heat to existing conditions in the oxygen-converter shop at the Magnitogorsk Metallurgical Combine
JP7115665B1 (en) Supplied heat amount estimation method, supplied heat amount estimation device, supplied heat amount estimation program, and method of operating blast furnace
EP4343006A1 (en) Molten iron temperature prediction method, operation guidance method, molten iron production method, molten iron temperature prediction device, operation guidance device, blast furnace operation guidance system, blast furnace operation guidance server, and terminal device
WO2023008170A1 (en) Blast furnace slag level estimation method, operation guidance method, hot metal production method, blast furnace slag level estimation device, and operation guidance device
JP5862470B2 (en) Blast furnace resting method
WO2002070760A1 (en) A furnace and a method of controlling a furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060719

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081229

R150 Certificate of patent or registration of utility model

Ref document number: 4244477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees