JP2001172419A - Method for producing new fiber-reinforced fluororesin composite material - Google Patents

Method for producing new fiber-reinforced fluororesin composite material

Info

Publication number
JP2001172419A
JP2001172419A JP35608599A JP35608599A JP2001172419A JP 2001172419 A JP2001172419 A JP 2001172419A JP 35608599 A JP35608599 A JP 35608599A JP 35608599 A JP35608599 A JP 35608599A JP 2001172419 A JP2001172419 A JP 2001172419A
Authority
JP
Japan
Prior art keywords
fiber
polytetrafluoroethylene
fibers
irradiation
ionizing radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35608599A
Other languages
Japanese (ja)
Other versions
JP4512770B2 (en
Inventor
Akihiro Oshima
明博 大島
Takashi Udagawa
▲昂▼ 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP35608599A priority Critical patent/JP4512770B2/en
Publication of JP2001172419A publication Critical patent/JP2001172419A/en
Application granted granted Critical
Publication of JP4512770B2 publication Critical patent/JP4512770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a fiber-reinforced plastic by crosslinking a polytetrafluoroethylene of a polytetrafluoroethylene composite with an ionizing radiation wherein the composite is obtained by using carbon fiber, glass fiber, silicon carbide fiber, silicon nitride fiber, PBO fiber, aramid fiber, or the like as a reinforcing fiber. SOLUTION: The fiber-reinforced crosslinked polytetrafluoroethylene is obtained by crosslinking a preform of the fiber-reinforced polytetrafluoroethylene by irradiating the ionizing radiation thereto and then laminating the preform under a condition of heating and pressurizing at 100-400 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、繊維強化プラスチ
ックの製造方法において、該母材としてポリテトラフル
オロエチレン(PTFE)を用いてこれを電離放射線に
より架橋せしめ、ポリテトラフルオロエチレンの特性を
承継する繊維強化プラスチックの製造方法に関する。
The present invention relates to a method for producing a fiber-reinforced plastic, wherein polytetrafluoroethylene (PTFE) is used as the base material, which is cross-linked by ionizing radiation to inherit the properties of polytetrafluoroethylene. The present invention relates to a method for producing a fiber-reinforced plastic.

【0002】すなわち本発明は炭素繊維、ガラス繊維、
炭化珪素繊維、窒化珪素繊維、PBO繊維、アラミド繊
維などを補強繊維として用いるポリテトラフルオロエチ
レン複合材料の該ポリテトラフルオロエチレンを電離放
射線により架橋して繊維強化プラスチックを製造する方
法において、薄いシート状にするなど、あらかじめ厚み
を抑えて調製した予備成形体に電離放射線を照射せしめ
て架橋させ、しかる後に該予備成形体を加熱積層加工す
ることにより所望の成形体と成すことを特長とする改良
された繊維強化架橋ポリテトラフルオロエチレンの製造
する方法に関する。
That is, the present invention relates to carbon fibers, glass fibers,
In a method of producing a fiber-reinforced plastic by cross-linking polytetrafluoroethylene of a polytetrafluoroethylene composite material using ionizing radiation with a polytetrafluoroethylene composite material using silicon carbide fiber, silicon nitride fiber, PBO fiber, aramid fiber, etc. It is characterized in that the preformed body prepared with a reduced thickness is irradiated with ionizing radiation to crosslink, and then the preformed body is heated and laminated to form a desired formed body. And a method for producing a fiber-reinforced crosslinked polytetrafluoroethylene.

【0003】[0003]

【従来の技術】ポリテトラフルオロエチレンは耐熱性、
耐薬品性、撥水性、防汚性、潤滑性、耐摩擦性を有する
優れたプラスチックであり、これらの特長を利用しパッ
キン、ガスケット、チューブ、絶縁テープ、軸受け、エ
アドームの屋根膜など従来から産業用、民生用として利
用が拡大されつつある樹脂材料である。
2. Description of the Related Art Polytetrafluoroethylene has heat resistance,
Excellent plastic with chemical resistance, water repellency, antifouling property, lubricity, and abrasion resistance.By using these features, it has been used in traditional industries such as packing, gaskets, tubes, insulating tapes, bearings, and air dome roof membranes. It is a resin material that is being increasingly used for consumer and consumer use.

【0004】しかしながら、ポリテトラフルオロエチレ
ンは放射線に対する感受性が高く、1kGyを超えると
力学特性が低下することから、原子力施設など放射線環
境下での利用はできない樹脂である。また、ポリテトラ
フルオロエチレンは結晶性高分子であるため可視光領域
での光透過性が悪く、エアドームの屋根膜とした場合も
採光性が悪い欠点がある。
[0004] However, polytetrafluoroethylene is a resin that cannot be used in a radiation environment such as a nuclear facility because polytetrafluoroethylene has high sensitivity to radiation and its mechanical properties deteriorate when it exceeds 1 kGy. In addition, polytetrafluoroethylene is a crystalline polymer, and therefore has poor light transmittance in the visible light region, and has a disadvantage in that it has poor lighting properties even when used as a roof film of an air dome.

【0005】これらの欠点を放射線架橋法により克服す
る努力が成されているものの、成形体の放射線架橋法は
著しい変形を伴うために実用が困難であり、粉体で放射
線架橋処理したのち再び焼結して成形する方法を余儀な
くされている。さらに、ポリテトラフルオロエチレンは
これを溶かす適当な溶媒がなく、引張り強度や弾性率が
他の樹脂材料に比べて低く、溶融粘度が380℃の高温
でも1011Pと高いこと、炭素繊維やガラス繊維などの
基材繊維との接着性が低いことなどから、繊維強化複合
材料のマトリックスとしては一般に利用されていないの
が現状である。
Although efforts have been made to overcome these drawbacks by the radiation crosslinking method, the radiation crosslinking method of molded articles is difficult to be practically used because of significant deformation, and after the radiation crosslinking treatment with a powder, the powder is fired again. A method of tying and molding is required. Furthermore, polytetrafluoroethylene has no suitable solvent for dissolving it, has a lower tensile strength and elastic modulus than other resin materials, and has a melt viscosity as high as 10 11 P even at a high temperature of 380 ° C., carbon fiber or glass. At present, it is not generally used as a matrix of a fiber-reinforced composite material because of its low adhesiveness to base fibers such as fibers.

【0006】かかる実情を考慮し本発明者らは、これら
の問題を一挙に解決すべく、電離放射線による繊維強化
架橋ポリテトラフルオロエチレンの製造方法を考案し、
すでに特願平10−359340号として出願してあ
る。当該製造方法は電離放射線の照射を行うに際し、無
酸素雰囲気中で均一な線量と温度の制御を達成する必要
があり、技術的にこれを達成しようとすれば自ずと成形
体の大きさに制約を受ける難点がある。とりわけ、電子
加速器を用いて照射を行う場合、該放射線の飛程が短い
ために肉厚な大型成形体の製造プロセスを構築するに困
難を伴うことは免れない。
In view of such circumstances, the present inventors have devised a method for producing fiber-reinforced crosslinked polytetrafluoroethylene by ionizing radiation in order to solve these problems at once.
An application has already been filed as Japanese Patent Application No. 10-359340. In the production method, when irradiating with ionizing radiation, it is necessary to achieve uniform dose and temperature control in an oxygen-free atmosphere, and if this is technically achieved, the size of the compact is naturally restricted. There are drawbacks. In particular, when irradiation is performed using an electron accelerator, it is unavoidable that it is difficult to construct a manufacturing process for a thick large molded product due to a short range of the radiation.

【0007】[0007]

【発明が解決しようとする課題】本発明は、照射線源な
らびにポリテトラフルオロエチレンを架橋するために必
要な照射雰囲気を整える設備が簡単で、低エネルギー加
速器などの小型照射設備によって繊維強化架橋ポリテト
ラフルオロエチレンを製造できる方法を提供することに
ある。
SUMMARY OF THE INVENTION The present invention provides a simple irradiation equipment and a facility for preparing an irradiation atmosphere necessary for cross-linking polytetrafluoroethylene. An object of the present invention is to provide a method capable of producing tetrafluoroethylene.

【0008】そのためには照射に供する成形体の厚みを
好ましくは2mm以下に抑える必要があり、鋭意検討を
重ねた結果、従来繊維強化プラスチックの成形において
用いられているプリプレグあるいはプリフォームに相当
する加工用材料を調製することにより、照射後に任意の
大きさに成形できる繊維強化架橋ポリテトラフルオロエ
チレンを製造する方法を見い出すに至った。
For this purpose, it is necessary to suppress the thickness of the molded body to be irradiated to preferably 2 mm or less, and as a result of diligent studies, it has been found that a prepreg or a preform corresponding to a prepreg or a preform conventionally used in molding of fiber-reinforced plastics is used. By preparing materials for use, they have found a method for producing a fiber-reinforced crosslinked polytetrafluoroethylene that can be formed into an arbitrary size after irradiation.

【0009】[0009]

【課題を解決するための手段】本発明者らによれば、ポ
リテトラフルオロエチレンは結晶融点下においても樹脂
が流れ出すほどの溶融状態はとらず、電離放射線により
架橋した後でも結晶融点下において、なお同様の溶融状
態を保ち、樹脂は互いに溶け合って接着する能力を保持
することがわかり、本発明に達した。
According to the present inventors, polytetrafluoroethylene does not have a molten state at a temperature lower than the crystal melting point such that the resin flows out. In addition, it was found that the same molten state was maintained, and that the resins retained the ability to melt and adhere to each other, thereby achieving the present invention.

【0010】すなわち、本発明は電離放射線を均一に照
射できる厚さにするため、先ずポリテトラフルオロエチ
レンを含浸した連続長繊維を厚さ2mm以下のシート状
に、また短繊維にあってはポリテトラフルオロエチレン
と混合・溶融してフレーク状、もしくは直径2mm以下
の塊状または粒状に成形する。これらの成形体では、照
射中の該成形体の温度制御を容易にして、架橋反応を円
滑に進めるための好手段となる。該成形体は、ポリテト
ラフルオロエチレンの結晶融点下に電離放射線を照射す
ることによって架橋を行い、プリプレグあるいはプリフ
ォームとして製造される。しかる後にこれを加工用の原
料として架橋ポリテトラフルオロエチレンの結晶融点以
上の温度で所望の形に積層し、加熱・加圧成形すること
により達成される。
That is, according to the present invention, continuous long fibers impregnated with polytetrafluoroethylene are first formed into a sheet having a thickness of 2 mm or less, and short fibers are formed into a sheet so as to have a thickness capable of uniformly irradiating ionizing radiation. It is mixed and melted with tetrafluoroethylene and formed into flakes, or lumps or granules having a diameter of 2 mm or less. In these molded articles, temperature control of the molded articles during irradiation is facilitated, which is a favorable means for smoothly promoting a crosslinking reaction. The molded article is crosslinked by irradiating it with ionizing radiation below the crystalline melting point of polytetrafluoroethylene to produce a prepreg or preform. Thereafter, this is achieved by laminating this into a desired shape at a temperature equal to or higher than the crystal melting point of the crosslinked polytetrafluoroethylene as a raw material for processing, and then heating and pressing.

【0011】これにより本発明の最も重要とされる照射
雰囲気、すなわち無酸素雰囲気中でポリテトラフルオロ
エチレンを該結晶融点下に温度制御する方法ならびに、
低エネルギー電子加速器による飛程の短い電離放射線の
照射を無理なく施すことが可能となる。
Thus, a method for controlling the temperature of polytetrafluoroethylene below the crystal melting point in an irradiation atmosphere, which is the most important of the present invention, ie, an oxygen-free atmosphere, and
Irradiation with short-range ionizing radiation by the low-energy electron accelerator can be performed without difficulty.

【0012】[0012]

【発明の実施の形態】すでに特願平10−359340
号として出願してあるところの炭素繊維、ガラス繊維、
炭化珪素繊維、窒化珪素繊維、PBO繊維、アラミド繊
維などの連続繊維または短繊維を補強材として用いるポ
リテトラフルオロエチレン複合材料の該ポリテトラフル
オロエチレンを電離放射線により架橋して繊維強化プラ
スチックを製造する方法において、厚さ2mm以下の薄
いシート状あるいはフレーク状、もしくは直径2mm以
下の塊状または粒状にするなど、あらかじめ厚みを抑え
て調製した予備成形体を無酸化雰囲気下に置き、300
℃〜400℃、好ましくはポリテトラフルオロエチレン
の結晶融点以上の327℃〜350℃の温度範囲に保ち
ながら電離放射線を用いて1kGy〜20MGyの線量
範囲で照射することにより、従来繊維強化プラスチック
の成形において用いられているプリプレグあるいはプリ
フォームに相当する加工用材料として製造する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Japanese Patent Application No. 10-359340 has already been disclosed.
Carbon fiber, glass fiber,
A fiber-reinforced plastic is produced by cross-linking polytetrafluoroethylene of a polytetrafluoroethylene composite material using a continuous fiber or short fiber such as silicon carbide fiber, silicon nitride fiber, PBO fiber, or aramid fiber as a reinforcing material by ionizing radiation. In the method, a preformed body prepared with a reduced thickness, such as a thin sheet or flake having a thickness of 2 mm or less, or a lump or granule having a diameter of 2 mm or less, is placed in a non-oxidizing atmosphere,
C. to 400.degree. C., preferably from 327.degree. C. to 350.degree. C., which is higher than the crystalline melting point of polytetrafluoroethylene, and is irradiated with ionizing radiation in a dose range of 1 kGy to 20 MGy to form a conventional fiber-reinforced plastic. It is manufactured as a processing material corresponding to the prepreg or preform used in the above.

【0013】なお、厚さ2mm以下の薄いシート状ある
いはフレーク状、もしくは直径2mm以下の塊状または
粒状にするなど、あらかじめ厚みを抑えた該予備成形体
の調製は、ディスパージョンと呼ばれるポリテトラフル
オロエチレンの粉体が均一に分散した液体に繊維を浸す
か、または該粉体が均一に分散した液体を繊維に塗布す
るか、あるいは、ポリテトラフルオロエチレンの微粉末
と繊維を混合することにより行われる。
The preparation of the preformed body having a reduced thickness, such as a thin sheet or flake having a thickness of 2 mm or less, or a lump or granule having a diameter of 2 mm or less, is carried out by preparing a polytetrafluoroethylene called dispersion. This is performed by immersing the fibers in a liquid in which the powder of the powder is uniformly dispersed, or by applying a liquid in which the powder is uniformly dispersed to the fibers, or by mixing the fine powder of the polytetrafluoroethylene with the fibers. .

【0014】なお、粉体を効率よく分散するための液
体、すなわち分散媒は水と乳化剤あるいは水とアルコー
ル、水とアセトン、または水とアルコールおよびアセト
ンの混合溶媒など分散媒を熟知したその道の専門家によ
り容易に選択調製し得、しかもこのときのポリテトラフ
ルオロエチレンの粉体粒径は、好ましくは0.1μm〜
50μmの範囲にあり、繊維のモノフィラメント間に十
分に含浸できる大きさであることが望ましい。
The liquid for efficiently dispersing the powder, that is, the dispersion medium is water and an emulsifier, water and alcohol, water and acetone, or a mixed solvent of water, alcohol and acetone. It can be easily selected and prepared by a house, and the powder particle size of polytetrafluoroethylene at this time is preferably 0.1 μm to
It is desirable that the diameter be in the range of 50 μm and sufficiently impregnated between the monofilaments of the fiber.

【0015】かくしてポリテトラフルオロエチレンの粉
体を含浸せしめた繊維を風乾あるいは熱風乾燥すること
により分散媒を除去したもの、あるいは、粒径数百μm
のポリテトラフルオロエチレンの微粉末と繊維を混合し
たものを、直ちに300℃〜400℃、好ましくはポリ
テトラフルオロエチレンの結晶融点以上の327℃〜3
80℃の温度範囲で焼成することによってあらかじめ厚
みを抑えた該予備成形体となすことができる。もちろ
ん、焼成と放射線照射は同時に実施してもよい。
The fiber impregnated with the polytetrafluoroethylene powder is air-dried or hot-air-dried to remove the dispersing medium, or the particle diameter is several hundred μm.
A mixture of the fine powder of polytetrafluoroethylene and the fiber is immediately mixed at 300 ° C. to 400 ° C., preferably at 327 ° C.
By firing in a temperature range of 80 ° C., the preformed body having a reduced thickness can be obtained. Of course, baking and radiation irradiation may be performed simultaneously.

【0016】本発明の繊維強化複合材の製造方法は、係
る該プリプレグあるいは該プリフォームに相当する該加
工用材料を100℃〜400℃、好ましくは該母材とな
る架橋ポリテトラフルオロエチレンの結晶融点以上の温
度範囲で加熱・加圧下に積層加工することにより所望の
成形体と成すことによって容易に達成される。
The method for producing a fiber-reinforced composite material according to the present invention is characterized in that the prepreg or the processing material corresponding to the preform is formed at a temperature of 100 ° C. to 400 ° C., preferably a crystal of cross-linked polytetrafluoroethylene serving as the base material. This is easily achieved by forming a desired molded product by laminating under heat and pressure in a temperature range not lower than the melting point.

【0017】かくして製造される繊維強化複合材の繊維
とマトリックスの比、すなわち繊維体積含有率は、ディ
スパージョンの粉体濃度、含浸時間を制御するか、もし
くは含浸、乾燥を繰り返し操作することにより必要に応
じて任意に調製できる。
The ratio of the fiber to the matrix of the fiber reinforced composite material thus produced, that is, the fiber volume content, is required by controlling the powder concentration of the dispersion and the impregnation time, or by repeating the impregnation and drying operations. Can be arbitrarily prepared.

【0018】本発明における電離放射線とは、電子線、
X線、中性子線、高エネルギーイオンの単独あるいはこ
れらの混合放射線をいう。また、電離放射線を照射する
際の温度制御は、通常の気体循環式の恒温槽、赤外線ヒ
ーターあるいはパネルヒーターなどで間接あるいは直接
的な熱源を利用して加熱するほか、電子加速器から得ら
れる電子線のエネルギーを制御することによる発熱をそ
のまま熱源として利用しても何ら差し支えない。
The ionizing radiation in the present invention is an electron beam,
X-rays, neutron rays, high-energy ions alone or a mixture thereof. In addition, temperature control when irradiating with ionizing radiation is performed by heating using an indirect or direct heat source in a normal gas circulation type thermostat, infrared heater or panel heater, and electron beam obtained from an electron accelerator. The heat generated by controlling the energy of the heat can be used as a heat source without any problem.

【0019】さらに、本発明の無酸素雰囲気下における
照射とは、真空下のほかヘリウム、窒素などの不活性ガ
スで大気を置き換えた雰囲気などをいい、照射中にポリ
テトラフルオロエチレンの架橋反応が抑制され、逆に酸
化分解が起こることを防ぐことができる措置を講じるこ
とを意味する。
The irradiation in an oxygen-free atmosphere of the present invention refers to an atmosphere in which the atmosphere is replaced with an inert gas such as helium or nitrogen in addition to a vacuum, and the crosslinking reaction of polytetrafluoroethylene during the irradiation. This means taking measures that can be suppressed and, conversely, prevent oxidative degradation from occurring.

【0020】本発明で強化基材として用いる繊維は、炭
素繊維、ガラス繊維、炭化珪素、窒化珪素繊維、PBO
繊維、アラミド繊維などの耐熱性が350℃以上である
従来の繊維強化プラスチックで用いられる全ての繊維が
適用される。
The fibers used as the reinforcing substrate in the present invention include carbon fibers, glass fibers, silicon carbide, silicon nitride fibers, and PBO.
All fibers used in conventional fiber-reinforced plastics having heat resistance of 350 ° C. or higher, such as fibers and aramid fibers, are applied.

【0021】[0021]

【実施例】以下に実施例を挙げて本発明を具体的に説明
するが、本発明はこれらの実施例によって制限されるも
のではない。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

【0022】実施例1 水および乳化剤系の分散媒100部に対し、平均粒径
0.3μmのポリテトラフルオロエチレンパウダー60
部を分散させた液体に炭素繊維織布1枚を浸しては乾燥
する操作を6回繰り返し、炭素繊維織布100部に対し
ポリテトラフルオロエチレンパウダー100部を含浸せ
しめ、340℃で焼成した厚さ0.2mmの予備成形体
を12枚用意した。
Example 1 A polytetrafluoroethylene powder 60 having an average particle diameter of 0.3 μm was added to 100 parts of water and an emulsifier-based dispersion medium.
The operation of immersing one piece of carbon fiber woven cloth in the liquid in which the parts were dispersed and then drying was repeated six times, so that 100 parts of carbon fiber woven cloth was impregnated with 100 parts of polytetrafluoroethylene powder and fired at 340 ° C. Twelve preforms having a thickness of 0.2 mm were prepared.

【0023】しかる後、これらを340℃、アルゴンガ
ス雰囲気の照射容器に移して300kV級低エネルギー
電子加速器から電子線を500kGy照射し、加工用プ
リプレグを得た。該プリプレグ12枚を300℃に加熱
し加圧積層して厚さ2mmの成形体を得た。該成形体の
三点曲げ試験を実施したところ、その強度は、未架橋の
炭素繊維強化ポリテトラフルオロエチレン積層成形体と
比較して、表1のごとく著しく向上した。
Thereafter, these were transferred to an irradiation container at 340 ° C. in an argon gas atmosphere, and irradiated with 500 kGy of an electron beam from a 300 kV class low energy electron accelerator to obtain a prepreg for processing. Twelve prepregs were heated to 300 ° C. and laminated under pressure to obtain a molded product having a thickness of 2 mm. When a three-point bending test was performed on the molded product, the strength was remarkably improved as shown in Table 1 as compared with the uncrosslinked carbon fiber reinforced polytetrafluoroethylene laminated molded product.

【0024】また、これらは、同様の方法で含浸し、積
層して厚さ2mmに調製した成形体を加速電圧2MVの
電子加速器から電子線を500kGy照射して架橋させ
て得た試料の強度と比べてなんら違いは生じていなかっ
た。
These are impregnated by the same method, laminated and adjusted to a thickness of 2 mm, and irradiated with an electron beam of 500 kGy from an electron accelerator having an acceleration voltage of 2 MV and crosslinked to obtain a sample. No difference was made.

【0025】[0025]

【表1】 [Table 1]

【0026】実施例2 水および乳化剤系の分散媒100部に対し、平均粒径
0.25μmのポリテトラフルオロエチレンパウダー6
0部を分散させた液体にガラス繊維織布1枚を浸しては
乾燥する操作を5回繰り返し、ガラス繊維織布100部
に対しポリテトラフルオロエチレンパウダー100部を
含浸せしめ、340℃で焼成した厚さ0.14mmの予
備成形体を18枚用意した。
Example 2 Polytetrafluoroethylene powder 6 having an average particle size of 0.25 μm was added to 100 parts of water and an emulsifier-based dispersion medium.
The operation of immersing one glass fiber woven fabric in the liquid in which 0 part was dispersed and drying was repeated five times, and 100 parts of the glass fiber woven fabric was impregnated with 100 parts of polytetrafluoroethylene powder, and fired at 340 ° C. Eighteen preformed bodies having a thickness of 0.14 mm were prepared.

【0027】しかる後、これらを340℃、窒素ガス雰
囲気の照射容器に移して250kV級低エネルギー電子
加速器から電子線を450kGy照射し、加工用プリプ
レグを得た。該プリプレグ18枚を310℃に加熱し加
圧積層して厚さ2.2mmの成形体を得た。
Thereafter, these were transferred to an irradiation container in a nitrogen gas atmosphere at 340 ° C., and irradiated with 450 kGy of electron beams from a 250 kV class low energy electron accelerator to obtain a working prepreg. The 18 prepregs were heated to 310 ° C. and laminated under pressure to obtain a molded body having a thickness of 2.2 mm.

【0028】該成形体の三点曲げ試験を実施したところ
その強度は、未架橋のガラス繊維強化ポリテトラフルオ
ロエチレン積層成形体と比較して、表2のごとく著しく
向上した。
The molded article was subjected to a three-point bending test. The strength was remarkably improved as shown in Table 2 as compared with the uncrosslinked glass fiber reinforced polytetrafluoroethylene laminated molded article.

【0029】また、これらは同様の方法で含浸し、積層
して厚さ2.2mmに調製した成形体を加速電圧2MV
の電子加速器から電子線を450kGy照射して架橋さ
せて得た試料の強度と比べてなんら違いは生じていなか
った。
Further, these were impregnated in the same manner and laminated to prepare a molded body having a thickness of 2.2 mm, and an acceleration voltage of 2 MV was applied.
No difference was found in comparison with the intensity of the sample obtained by irradiating 450 kGy of an electron beam from the electron accelerator and crosslinking.

【0030】[0030]

【表2】 [Table 2]

【0031】実施例3 水および乳化剤系の分散媒100部に対し、平均粒径
0.25μmのポリテトラフルオロエチレンパウダー6
0部を分散させた液体にPBO繊維織布1枚を浸しては
乾燥する操作を6回繰り返し、PBO繊維織布100部
に対しポリテトラフルオロエチレンパウダー120部を
含浸せしめ、340℃で焼成した厚さ0.4mmの予備
成形体を7枚用意した。
Example 3 Water and an emulsifier-based dispersion medium (100 parts) were mixed with polytetrafluoroethylene powder 6 having an average particle size of 0.25 μm.
The operation of immersing one PBO fiber woven fabric in the liquid in which 0 part was dispersed and then drying was repeated six times, so that 100 parts of the PBO fiber woven fabric was impregnated with 120 parts of polytetrafluoroethylene powder, and baked at 340 ° C. Seven preforms having a thickness of 0.4 mm were prepared.

【0032】しかる後、これらを340℃、窒素ガス雰
囲気の照射容器に移して電子加速器から加速電圧1MV
で電子線を1MGy照射し、加工用プリプレグを得た。
該プリプレグ7枚を285℃に加熱し加圧積層して厚さ
2.4mmの成形体を得た。
Thereafter, these were transferred to an irradiation container at 340 ° C. in a nitrogen gas atmosphere, and an acceleration voltage of 1 MV was applied from an electron accelerator.
Then, an electron beam was irradiated with 1 MGy to obtain a working prepreg.
Seven prepregs were heated to 285 ° C. and laminated under pressure to obtain a molded body having a thickness of 2.4 mm.

【0033】該成形体の三点曲げ試験を実施したところ
その強度は、未架橋のPBO繊維強化ポリテトラフルオ
ロエチレン積層成形体と比較して、表3のごとく著しく
向上した。
When the molded product was subjected to a three-point bending test, the strength was remarkably improved as shown in Table 3 as compared with the uncrosslinked PBO fiber reinforced polytetrafluoroethylene laminated molded product.

【0034】また、これらは同様の方法で含浸し、積層
して厚さ2.4mmに調製した成形体を加速電圧2MV
の電子加速器から電子線を1MGy照射して架橋させて
得た試料の強度と比べてなんら違いは生じていなかっ
た。
Further, these were impregnated in the same manner and laminated to form a molded body having a thickness of 2.4 mm.
No difference occurred in comparison with the intensity of a sample obtained by irradiating an electron beam with 1 MGy from the electron accelerator and crosslinking the sample.

【0035】[0035]

【表3】 [Table 3]

【0036】実施例4 実施例3と同様の方法により調製した厚さ0.4mmの
加工用プリプレグ10枚を290℃で加熱して加圧積層
して厚さ3.3mmの成形体を得た。該試料を対象にし
て摩擦係数及び摩耗係数の測定を実施した。試験には、
スラスト型摩擦摩耗試験装置を使用し、JISK721
8に準じ、S45C製の円筒状リング(外径φ25.6
mm、内径φ20.6mm)により、被試験体に対して
20kgf/cm2 の圧力を加え、速度10m/min
の条件の下で行った。
Example 4 Ten prepregs for processing having a thickness of 0.4 mm prepared in the same manner as in Example 3 were heated at 290 ° C. and laminated under pressure to obtain a molded product having a thickness of 3.3 mm. . The coefficient of friction and the coefficient of wear were measured for the sample. The exam includes
Using a thrust type friction and wear tester, JISK721
8 and S45C cylindrical ring (outer diameter φ25.6
mm, inner diameter φ20.6 mm), a pressure of 20 kgf / cm 2 is applied to the test object, and the speed is 10 m / min.
Performed under the following conditions.

【0037】得られた結果は、表4のごとく良好な潤滑
性を裏付ける低い摩擦係数を示し、且つ優れた耐摩耗性
を有していた。また、同様の方法で含浸し、積層して厚
さ3mmに調製した成形体を加速電圧2MVの電子加速
器から電子線を1MGy照射して架橋させて得た試料の
強度と比べてなんら違いは生じていなかった。
The results obtained showed a low coefficient of friction supporting good lubrication as shown in Table 4, and had excellent wear resistance. In addition, there is no difference in comparison with the strength of a sample obtained by impregnating in a similar manner, laminating, and preparing a molded body having a thickness of 3 mm by irradiating an electron beam with 1 MGy from an electron accelerator having an acceleration voltage of 2 MV and cross-linking it. I didn't.

【0038】[0038]

【表4】 [Table 4]

【0039】実施例5 平均粒径500μmのポリテトラフルオロエチレンパウ
ダーに長さ1mmのPBO繊維の短繊維を2wt%混合
して340℃で焼成して調製した直径2mmの塊状の予
備成形体を50gを用意した。しかる後、これらを34
0℃、ヘリウムガス雰囲気の照射容器に移して加速電圧
2MVの電子加速器から電子線を100kGy照射し、
加工用プリプレグを得た。該プリプレグ40gを330
℃に加熱して加圧積層して厚さ0.5mmの成形体を得
た。
Example 5 50 g of a 2 mm diameter massive preform prepared by mixing 2 wt% of 1 mm long short PBO fibers with polytetrafluoroethylene powder having an average particle diameter of 500 μm and firing at 340 ° C. Was prepared. After that, these are 34
It is transferred to an irradiation container in a helium gas atmosphere at 0 ° C. and irradiated with 100 kGy of an electron beam from an electron accelerator having an acceleration voltage of 2 MV.
A prepreg for processing was obtained. 40 g of the prepreg is 330
The mixture was heated to ℃ and laminated under pressure to obtain a molded body having a thickness of 0.5 mm.

【0040】該成形体の引張試験を実施したところその
強度は、未架橋のPBO繊維強化ポリテトラフルオロエ
チレン積層成形体と比較して、表5のごとく著しく向上
した。 また、これらは同様の方法で混合し、あらかじ
め積層して厚さ0.5mmに調製した成形体を加速電圧
2MVの電子加速器から電子線を100kGy照射して
架橋させて得た試料の強度と比べてなんら違いは生じて
いなかった。
When the molded product was subjected to a tensile test, the strength was remarkably improved as shown in Table 5 as compared with the uncrosslinked PBO fiber reinforced polytetrafluoroethylene laminated molded product. These materials were mixed in the same manner, and were previously laminated to a thickness of 0.5 mm. The molded body was irradiated with 100 kGy of electron beam from an electron accelerator having an acceleration voltage of 2 MV and crosslinked to obtain a sample obtained by crosslinking. There was no difference.

【0041】[0041]

【表5】 [Table 5]

【0042】実施例6 実施例4と同様の方法により調製した直径2mmの塊状
の加工用プリプレグ40gを330℃で加熱して加圧積
層して厚さ3.1mmの成形体を得た。該試料を対象に
して摩擦係数及び摩耗係数の測定を実施した。試験に
は、スラスト型摩擦摩耗試験装置を使用し、JISK7
218に準じ、S45C製の円筒状リング(外径φ2
5.6mm、内径φ20.6mm)により、被試験体に
対して20kgf/cm2 の圧力を加え、速度10m/
minの条件の下で行った。
Example 6 40 g of a 2 mm-diameter lump for processing prepared in the same manner as in Example 4 were heated at 330 ° C. and laminated under pressure to obtain a molded product having a thickness of 3.1 mm. The coefficient of friction and the coefficient of wear were measured for the sample. For the test, a thrust-type friction and wear tester was used.
218, an S45C cylindrical ring (outer diameter φ2
5.6 mm, inner diameter φ20.6 mm), a pressure of 20 kgf / cm 2 was applied to the test object, and a speed of 10 m / cm 2 was applied.
min.

【0043】得られた結果は、表6のごとく良好な潤滑
性を裏付ける低い摩擦係数を示し、且つ優れた耐摩耗性
を有していた。また、これらは同様の方法で混合し、あ
らかじめ積層して厚さ3mmに調製した成形体を加速電
圧2MVの電子加速器から電子線を100kGy照射し
て架橋させて得た試料の強度と比べてなんら違いは生じ
ていなかった。
As shown in Table 6, the results showed a low coefficient of friction supporting good lubricity and excellent abrasion resistance. These were mixed in the same manner, and were previously laminated to a thickness of 3 mm. The molded body was irradiated with 100 kGy of an electron beam from an electron accelerator having an acceleration voltage of 2 MV and crosslinked to obtain a sample. There was no difference.

【0044】[0044]

【表6】 [Table 6]

【0045】[0045]

【発明の効果】この方法によれば、照射線源ならびにポ
リテトラフルオロエチレンを架橋するために必要な照射
雰囲気を整える設備が簡単で、低エネルギー加速器など
の小型照射設備によってプリプレグあるいはプリフォー
ムに相当する加工用材料を調製することにより、照射後
に任意の形状に積層成形できる繊維強化架橋ポリテトラ
フルオロエチレンを製造することができる。
According to this method, the irradiation radiation source and the equipment for preparing the irradiation atmosphere necessary for cross-linking polytetrafluoroethylene are simple, and are equivalent to a prepreg or a preform by a small irradiation equipment such as a low energy accelerator. By preparing a processing material to be processed, a fiber-reinforced crosslinked polytetrafluoroethylene which can be laminated and formed into an arbitrary shape after irradiation can be produced.

フロントページの続き Fターム(参考) 4F072 AA02 AA04 AB05 AB06 AB08 AB09 AB10 AC01 AD07 AG03 AG04 AG05 AG16 AJ16 AK04 AK05 AL03 AL09 AL17 4F073 AA05 BA16 BA47 BB01 BB02 CA42 Continued on the front page F term (reference) 4F072 AA02 AA04 AB05 AB06 AB08 AB09 AB10 AC01 AD07 AG03 AG04 AG05 AG16 AJ16 AK04 AK05 AL03 AL09 AL17 4F073 AA05 BA16 BA47 BB01 BB02 CA42

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維、ガラス繊維、炭化珪素繊維、
窒化珪素繊維、PBO繊維、アラミド繊維などの連続繊
維または短繊維を補強材として用いるポリテトラフルオ
ロエチレン複合材料の該ポリテトラフルオロエチレンを
電離放射線により架橋して繊維強化プラスチックを製造
する方法において、予備成形体に電離放射線を照射せし
めて架橋させ、しかる後に該予備成形体を100℃〜4
00℃の温度範囲で加熱・加圧下に積層加工することに
より所望の成形体と成すことを特徴とする方法。
1. Carbon fiber, glass fiber, silicon carbide fiber,
In a method for producing a fiber-reinforced plastic by cross-linking polytetrafluoroethylene of a polytetrafluoroethylene composite material using continuous fibers or short fibers such as silicon nitride fibers, PBO fibers, and aramid fibers as a reinforcing material by ionizing radiation, The molded body is irradiated with ionizing radiation to crosslink, and then the preformed body is heated to 100 ° C to 4 ° C.
A method comprising forming a desired molded product by laminating under heat and pressure in a temperature range of 00 ° C.
【請求項2】 予備成形体が厚さ2mm以下のシート状
あるいはフレーク状、もしくは直径2mm以下の塊状ま
たは粒状であることを特徴とする請求項1記載の方法。
2. The method according to claim 1, wherein the preform is in the form of a sheet or flake having a thickness of 2 mm or less, or a lump or granule having a diameter of 2 mm or less.
【請求項3】 電離放射線の照射が無酸素雰囲気下に3
00℃〜400℃の温度範囲で行われ、かつ照射に要す
る線量範囲が1kGy〜20MGyであることを特徴と
する請求項1記載の方法。
3. Irradiation with ionizing radiation is performed under an oxygen-free atmosphere.
2. The method according to claim 1, wherein the irradiation is performed in a temperature range of 00 to 400 [deg.] C., and a dose range required for irradiation is 1 kGy to 20 MGy.
JP35608599A 1999-12-15 1999-12-15 Method for producing a novel fiber-reinforced fluororesin composite material Expired - Fee Related JP4512770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35608599A JP4512770B2 (en) 1999-12-15 1999-12-15 Method for producing a novel fiber-reinforced fluororesin composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35608599A JP4512770B2 (en) 1999-12-15 1999-12-15 Method for producing a novel fiber-reinforced fluororesin composite material

Publications (2)

Publication Number Publication Date
JP2001172419A true JP2001172419A (en) 2001-06-26
JP4512770B2 JP4512770B2 (en) 2010-07-28

Family

ID=18447259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35608599A Expired - Fee Related JP4512770B2 (en) 1999-12-15 1999-12-15 Method for producing a novel fiber-reinforced fluororesin composite material

Country Status (1)

Country Link
JP (1) JP4512770B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363304A (en) * 2001-06-13 2002-12-18 Nitto Denko Corp Composite sheet of polytetrafluoroethylene resin, and ion-exchange membrane
JP2011001450A (en) * 2009-06-18 2011-01-06 Hitachi Cable Fine Tech Ltd Modified fluorocarbon resin composition and molded product
CN111499997A (en) * 2020-05-28 2020-08-07 亚天顿(廊坊)复合材料科技有限公司 Method for manufacturing novel high-wave-transmission thermoplastic composite prepreg

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363304A (en) * 2001-06-13 2002-12-18 Nitto Denko Corp Composite sheet of polytetrafluoroethylene resin, and ion-exchange membrane
JP2011001450A (en) * 2009-06-18 2011-01-06 Hitachi Cable Fine Tech Ltd Modified fluorocarbon resin composition and molded product
CN101942162A (en) * 2009-06-18 2011-01-12 日立电线精密技术株式会社 Modified fluorocarbon resin composition and molded products
US8901197B2 (en) 2009-06-18 2014-12-02 Hitachi Metals, Ltd. Modified fluorocarbon resin composition and molded products
CN101942162B (en) * 2009-06-18 2014-12-10 日立金属株式会社 Modified fluorocarbon resin composition and molded products
CN111499997A (en) * 2020-05-28 2020-08-07 亚天顿(廊坊)复合材料科技有限公司 Method for manufacturing novel high-wave-transmission thermoplastic composite prepreg

Also Published As

Publication number Publication date
JP4512770B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
JP3641377B2 (en)   Method for producing fiber-reinforced polytetrafluoroethylene composite molded body
JP5371437B2 (en) Composite material and manufacturing method thereof
US3356761A (en) Melt processable polyphenylene ether and process
JP5713677B2 (en) Polytetrafluoroethylene resin that can be molded, applied products, and manufacturing method thereof
EP0100934B1 (en) Polymer-coated reinforcements
Shin et al. An overview of new oxidation methods for polyacrylonitrile-based carbon fibers
CN105694372B (en) A kind of carbon-fibre reinforced epoxy resin composite material and preparation method thereof
CN111218119A (en) Self-repairing, high-strength and antibacterial soybean protein film and preparation method thereof
JP2001172419A (en) Method for producing new fiber-reinforced fluororesin composite material
WO2021200793A1 (en) Fiber-reinforced plastic molding material
CN113321901A (en) Resin foaming composite material
JP3948313B2 (en) Sliding member
CN112079967A (en) Irradiation crosslinked nylon material and preparation method thereof
JP3679043B2 (en) Cross-linked fluororesin composite material and method for producing the same
CN111825995A (en) Self-expanding lignin foam compositions and lignin foams made therefrom
JP4665149B2 (en) Method for producing a modified fluororesin molding
CN113956528B (en) High-crosslinking ultrahigh molecular weight polyethylene and preparation method and application thereof
Saunders et al. Radiation‐curable carbon fiber prepreg composites
JPH11172065A (en) Molded fluororesin article having high cut-through resistance, insulated wire, and hose
RU2734608C2 (en) Method of producing block articles from polytetrafluoroethylene and based composites
Rao Radiation processing of polymers
CN109929344B (en) Low-surface-energy polymer material composite structure with high cohesiveness and preparation method thereof
JP2005113116A (en) Tetrafluoroethylene polymer alloy and method for producing the same
JP3731536B2 (en) Crosslinked tetrafluoroethylene / hexafluoropropylene copolymer fine powder and method for producing the same
JP2019178185A (en) Method for production of polyamide type carbon fiber-reinforced resin

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100308

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees