JP2001172203A - Medicinal composition for transpulmonary administration - Google Patents

Medicinal composition for transpulmonary administration

Info

Publication number
JP2001172203A
JP2001172203A JP35731499A JP35731499A JP2001172203A JP 2001172203 A JP2001172203 A JP 2001172203A JP 35731499 A JP35731499 A JP 35731499A JP 35731499 A JP35731499 A JP 35731499A JP 2001172203 A JP2001172203 A JP 2001172203A
Authority
JP
Japan
Prior art keywords
drug
pharmaceutical composition
gelatin
hormone
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35731499A
Other languages
Japanese (ja)
Other versions
JP4387018B2 (en
Inventor
Kazuhiro Morimoto
一洋 森本
Yasuhiko Tabata
泰彦 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP35731499A priority Critical patent/JP4387018B2/en
Publication of JP2001172203A publication Critical patent/JP2001172203A/en
Application granted granted Critical
Publication of JP4387018B2 publication Critical patent/JP4387018B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide medicinal composition for transpulmonary administration that can increase the transpulmonary absorption of macromolecular drugs by administering a composition comprising a biodegradable cationic gelatin and a polymer drug. SOLUTION: This medicinal composition for transpulmonary administration comprises a polymer drug and superfine particles of cationic gelatin.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は経肺投与用医薬品組
成物に関する。詳しくは、肺上皮からの高分子薬物の吸
収を増大させる経肺投与用医薬品組成物に関する。更に
詳しくは、カチオン化されたゼラチン微粒子とともに高
分子薬物を投与することにより、高分子薬物の経肺吸収
が増大する経肺投与用医薬品組成物に関する。
[0001] The present invention relates to a pharmaceutical composition for pulmonary administration. More specifically, the present invention relates to a pharmaceutical composition for transpulmonary administration which increases the absorption of a macromolecular drug from the lung epithelium. More specifically, the present invention relates to a pharmaceutical composition for transpulmonary administration in which administration of a polymer drug together with cationized gelatin microparticles increases pulmonary absorption of the polymer drug.

【0002】[0002]

【従来の技術】肺上皮は表面積が大きく粘膜下に豊富な
血管系が発達しており、さらにタンパク等の分解酵素活
性も比較的低いため、近年生理活性ペプチド類、蛋白質
等の高分子薬物を全身血流へ移行させるルートとして検
討されており、これら薬物の経肺投与は注射に代わる非
侵襲的な投与方法として注目を集めている。高分子薬物
の非侵襲的な投与方法としては、他に経鼻、経眼、経
皮、経直腸投与などが知られているが、経肺投与はこれ
らのルートと比較してさらに高分子量の薬物の吸収に有
利であり、造血系サイトカインなどの分子量10,000以上
の蛋白質などの投与にも有望である。
2. Description of the Related Art Since the lung epithelium has a large surface area and an abundant vasculature under the mucosa, and has a relatively low activity of degrading enzymes such as proteins, recently, high molecular drugs such as bioactive peptides and proteins have been used. Pulmonary administration of these drugs has been attracting attention as a noninvasive alternative to injection. Other non-invasive methods of administering high molecular drugs include nasal, ocular, transdermal, and rectal administration, but pulmonary administration has a higher molecular weight than these routes. It is advantageous for the absorption of drugs and is also promising for the administration of proteins with a molecular weight of 10,000 or more, such as hematopoietic cytokines.

【0003】高分子薬物の経肺投与製剤は、液剤の形態
で気管支内視鏡を用いた気管支内注入法でも投与可能で
あるが、通常は、肺局所での作用を目的とした吸入ステ
ロイド剤等と同様に、吸入剤の形態をとりなんらかの吸
入器によって肺胞に送達される。吸入剤の剤型として、
吸入液剤、フロンまたは代替フロン製剤、粉末吸入剤の
3つがある。吸入液剤は通常薬物の水溶液であり、ネブ
ライザーにより霧化されて微少の液滴となって患者の自
発呼吸下で吸入され、気道内に液滴の形で沈着する。フ
ロンまたは代替フロン製剤は、フロンまたは代替フロン
に加圧下で薬物が分散または溶解された製剤であり、加
圧式定量噴霧吸入器(Metered Dose Inhaler; MDI)と呼
ばれる加圧容器に充填されて用いられる。投与時は、加
圧下のMDIから開放されるとフロンまたは代替フロンが
気化し、溶解・分散していた薬物が通常薬物の微粒子粉
末となって気道内に沈着する。また、粉末吸入剤は薬物
を主とする微粒子粉末を例えば粉末状組成物として賦形
剤などとともにブリスター等の容器に充填し、通常患者
自身の吸気により適当な投与器から該容器内の微粒子粉
末が粉末エアロゾル化されて吸入され、薬物粉末として
肺内に沈着する。これらの吸入剤をそれぞれの吸入器を
用いて実際に投与した場合、通常は製剤中薬物の10〜30
重量%、工夫された吸入器でも50重量%程度しか気道内
に沈着しない。通常気道内沈着分の薬物のみ吸収するこ
とから、治療上必要な血液中濃度を実現するためには製
剤中の薬物量を増量する必要があり、このため特に高分
子薬物の場合にはコスト面で問題が大きい。
[0003] Transpulmonary preparations of high molecular drugs can be administered in the form of a liquid by intrabronchial infusion using a bronchoscope, but usually, inhaled steroids intended for local pulmonary action. Similarly, they are delivered to the alveoli by any inhaler in the form of an inhalant. As a dosage form for inhalants,
There are three types: inhalation solutions, chlorofluorocarbon or alternative chlorofluorocarbon formulations, and powdered inhalants. An inhalation solution is usually an aqueous solution of a drug, atomized by a nebulizer into fine droplets, inhaled under spontaneous respiration of the patient, and deposited in the airway in the form of droplets. CFCs or CFC substitutes are preparations in which a drug is dispersed or dissolved in CFCs or CFCs under pressure, and are used after being filled in a pressurized container called a metered dose inhaler (Metered Dose Inhaler; MDI). . At the time of administration, when released from the MDI under pressure, CFCs or CFC substitutes are vaporized, and the dissolved / dispersed drug is usually deposited as fine drug powder in the respiratory tract. The powder inhalant is prepared by filling a fine particle powder mainly containing a drug, for example, as a powdery composition in a container such as a blister together with an excipient, etc., and injecting the fine particle powder in the container from an appropriate dispenser by inhalation of the patient. Is aerosolized into a powder, inhaled, and deposited in the lungs as a drug powder. When these inhalants are actually administered using respective inhalers, usually 10 to 30
Only about 50% by weight of the inhaler is deposited in the respiratory tract. Usually, only the drug deposited in the respiratory tract is absorbed, so that it is necessary to increase the amount of the drug in the preparation to achieve the therapeutically necessary blood concentration. The problem is big.

【0004】経肺投与製剤で薬物の吸収を促進するため
の工夫はあまりなされていない。その理由には肺粘膜の
透過性の高さと肺上皮の面積が大きいために、吸収促進
の工夫なく高分子薬物が吸収できると考えられてきたこ
とにある。その一方、山本ら(Journal of Pharmacy an
d Pharmacology Vol.46, 14-18, 1994)は、いくつかの
吸収促進剤や酵素阻害剤の共投与によりインスリンの肺
からの吸収が向上したと報告している。しかし、同報告
で用いている吸収促進剤や酵素阻害剤は、粘膜への障害
性やコスト等の面で実用化には課題が多い。
There have been few attempts to enhance drug absorption in pulmonary formulations. The reason is that it has been considered that the high permeability of the lung mucosa and the large area of the lung epithelium allow the absorption of the high molecular drug without devising the absorption promotion. Meanwhile, Yamamoto et al. (Journal of Pharmacy an
d Pharmacology Vol. 46, 14-18, 1994) report that co-administration of several absorption enhancers and enzyme inhibitors improved the absorption of insulin from the lungs. However, the absorption promoters and enzyme inhibitors used in this report have many problems for practical use in terms of mucosal damage and cost.

【0005】Illumら(WO89/03207号明細書; 特表平3-5
03160号公報)は、スターチ、ゼラチン、アルブミンな
どのマイクロスフェアとペプチド薬物からなる薬物送達
組成物により、薬物の粘膜吸収を促進する高吸収性経粘
膜用製剤を提供している。さらに同公報中には、生体接
着性を有する、もしくは生体接着性高分子をコーティン
グしたマイクロスフェアで、何らかの手段で放出制御の
工夫をすれば、高分子薬物のバイオアベイラビリティを
増加させる旨記載されている。しかし、同公報等では、
マイクロスフェアへのコーティング以外の生体接着性付
与の方法や放出制御の具体的な方法についてはなんら記
載されていない。
Illum et al. (WO 89/03207; JP-T-Hei 3-5)
No. 03160) provides a highly absorbable transmucosal preparation that promotes mucosal absorption of a drug by a drug delivery composition comprising a microsphere such as starch, gelatin, albumin and a peptide drug. In addition, the publication states that microspheres having bioadhesive properties or coated with bioadhesive polymers can increase the bioavailability of polymer drugs by devising release control by any means. I have. However, in the same publication,
There is no description of a method of imparting bioadhesiveness other than coating to microspheres or a specific method of controlling release.

【0006】特公平3-17014号公報に記載されているよ
うに、ポリ乳酸のような合成生分解性高分子マイクロス
フェアの生分解に基づく放出制御によって薬効持続化を
図る技術が公知であるが、この方法ではマイクロスフェ
ア自体の下気道粘膜への付着が考慮されていないために
喉咽頭部へのクリアランスを防ぐことはできず、また高
分子薬物の吸収性に与える影響については何ら具体的な
記載はない。WO96/09814号明細書には、噴霧乾燥により
アルブミンをはじめとした水溶性材料の1〜10μmのマイ
クロパーティクルについて記載されているが、特公平3-
17014号公報と同様にマイクロパーティクル自体の粘液
線毛輸送によるクリアランスについては考慮されていな
い。WO93/25198号明細書では、生体接着性を有するヒド
ロキシプロピルセルロースもしくはヒドロキシプロピル
メチルセルロースのマイクロスフェアにより薬効持続化
を図る技術について記載されている。安全性の上から吸
入用基剤としてより好ましい形態は下気道中で分解し、
吸収しうる材料であるが、同明細書ではこの点について
は考慮されていない。さらにWO96/31198号明細書におい
て、天然多糖ガムの吸入用組成物により、生体付着性か
つ生分解性の多糖によるマイクロスフェアによる薬効持
続化についての技術が開示されているが、下気道中での
分解および吸収(生体吸収性)が疑われる材料が含まれ
ること、およびその至適使用量が多いという安全面での
問題点を有し、また高分子薬物の吸収性に与える影響に
ついては何ら具体的な記載はない。
[0006] As described in Japanese Patent Publication No. 3-17014, there is known a technique for maintaining drug efficacy by controlling release based on biodegradation of a synthetic biodegradable polymer microsphere such as polylactic acid. However, this method does not consider the adhesion of the microsphere itself to the lower respiratory tract mucosa, so it cannot prevent clearance into the laryngeal pharynx, and there is no specific information about the effect on the absorption of high molecular drugs. There is no description. WO 96/09814 describes 1 to 10 μm microparticles of a water-soluble material such as albumin by spray drying.
No consideration is given to the clearance of the microparticles themselves due to mucociliary transport as in the case of 17014. WO93 / 25198 describes a technique for maintaining drug efficacy by using hydroxypropylcellulose or hydroxypropylmethylcellulose microspheres having bioadhesive properties. A more preferable form as a base for inhalation from the viewpoint of safety decomposes in the lower respiratory tract,
Although it is a material that can be absorbed, this specification does not consider this point. Further, WO96 / 31198 discloses a technique for sustaining the efficacy of microspheres using a bioadhesive and biodegradable polysaccharide by using a composition for inhaling natural polysaccharide gum. There is a safety problem in that it contains materials suspected to be degraded and absorbed (bioabsorbable), and its optimal use is large, and its effect on the absorbability of high molecular drugs is not specified. There is no typical description.

【0007】しかるに吸収性の向上した経肺投与用医薬
品組成物は機能の点からは生体接着性を有することが望
ましいが、安全性の観点からは蓄積性が許容される範囲
である必要がある。そこで生体接着性の微粒子(マイク
ロスフェア)により薬物の吸収向上を図る時、該微粒子
構成材料に生体吸収性がない場合にはその分子量などの
調節により低粘度化して蓄積されないように設計するこ
とが検討されている。一方、生体吸収性がある場合には
蓄積されても生分解され吸収されるためその安全性はよ
り高いと考えられ、生体吸収性生体接着性材料よりなる
経肺投与用医薬品組成物が望まれている。
[0007] However, the pharmaceutical composition for transpulmonary administration having improved absorbability is desirably bioadhesive from the viewpoint of function, but it is necessary that the accumulation is within an allowable range from the viewpoint of safety. . Therefore, when improving the absorption of a drug by using bioadhesive microparticles (microspheres), if the material constituting the microparticles does not have bioabsorbability, it is necessary to design such that the viscosity is reduced by adjusting the molecular weight and the like to prevent accumulation. Are being considered. On the other hand, if it is bioabsorbable, it is considered that its safety is higher because it is biodegraded and absorbed even if it is accumulated, and a pharmaceutical composition for transpulmonary administration comprising a bioabsorbable bioadhesive material is desired. ing.

【0008】[0008]

【発明が解決しようとする課題】しかして本発明の目的
は、生分解性を有するカチオン化ゼラチンと高分子薬物
からなる組成物の投与により、高分子薬物の経肺吸収を
増大させる経肺投与用医薬品組成物を提供することにあ
る。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to increase the pulmonary absorption of a polymer drug by administering a composition comprising cationic biodegradable gelatin and a polymer drug. An object of the present invention is to provide a pharmaceutical composition.

【0009】本発明者らは上記の課題を解決するべく鋭
意研究した結果、カチオン化ゼラチン微粒子(マイクロ
スフェア)と高分子薬物の組成物、好ましくは微粒子中
に高分子薬物を封入した組成物において、該高分子薬物
の経肺吸収が向上することを見出し本発明に到達したも
のである。
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that a composition of cationized gelatin microparticles (microspheres) and a high molecular drug, preferably a composition in which the high molecular drug is encapsulated in the fine particles. The present inventors have found that pulmonary absorption of the polymer drug is improved, and reached the present invention.

【0010】[0010]

【課題を解決するための手段】すなわち本発明は、高分
子薬物と、カチオン化されたゼラチン微粒子とからなる
経肺投与用医薬品組成物を提供するものである。
That is, the present invention provides a pharmaceutical composition for pulmonary administration comprising a polymer drug and cationized gelatin microparticles.

【0011】[0011]

【発明の実施の形態】本発明の薬物は高分子薬物であれ
ばいずれでもよいが、循環血中に入って作用する分子量
500〜200,000である高分子薬物としては、たとえばバゾ
プレッシン類、黄体形成ホルモン放出ホルモン類、成長
ホルモン放出因子ホルモン類、ソマトスタチン誘導体
類、オキシトシン類、ヒルジン誘導体類、エンケファリ
ン類、副腎皮質刺激ホルモン類、ブラジキニン類、カル
シトニン類、インスリン類、グルカゴン類、成長ホルモ
ン類、黄体形成ホルモン類、インスリン様成長因子類、
カルシトニン遺伝子関連ペプチド類、心房性ナトリウム
利尿ペプチド誘導体類、インターフェロン類、エリスロ
ポエチン、顆粒球コロニー形成刺激因子、マクロファー
ジ形成刺激因子、副甲状腺ホルモン、プロラクチン、甲
状腺刺激ホルモン放出ホルモン、アンギオテンシン類、
ワクチン類、抗体などが挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION The drug of the present invention may be any high molecular drug, but has a molecular weight that acts in the circulating blood.
Examples of high molecular drugs having a molecular weight of 500 to 200,000 include vasopressins, luteinizing hormone-releasing hormones, growth hormone-releasing factor hormones, somatostatin derivatives, oxytocins, hirudin derivatives, enkephalins, corticosteroids, and bradykinin. , Calcitonins, insulins, glucagons, growth hormones, luteinizing hormones, insulin-like growth factors,
Calcitonin gene-related peptides, atrial natriuretic peptide derivatives, interferons, erythropoietin, granulocyte colony formation stimulating factor, macrophage formation stimulating factor, parathyroid hormone, prolactin, thyroid stimulating hormone releasing hormone, angiotensin,
Vaccines, antibodies and the like.

【0012】本発明の医薬品組成物の成分のうちカチオ
ン化ゼラチン微粒子は、カチオン化の工程と微粒子生成
工程を経て製造される。
[0012] Among the components of the pharmaceutical composition of the present invention, cationized gelatin microparticles are produced through a cationization step and a microparticle generation step.

【0013】カチオン化の工程は、生理条件下でカチオ
ン化する官能基(カチオン性官能基)を導入する方法で
あればいずれでも良いが、温和な条件下でカルボキシル
基等をカチオン化できることからアミノ基またはアンモ
ニウム基を導入する方法が好ましい。例えばエチレンジ
アミン、N,N-ジメチル-1,3-ジアミノプロパンなどのな
どのアルキルジアミンや、トリメチルアンモニウムアセ
トヒドラジド、スペルミン、スペルミジン、またはジエ
チルアミド塩化物などを反応させる方法がある。中でも
エチレンジアミンを反応させる方法が簡便かつ汎用性が
あり好適である。またカチオン化反応は通常は微粒子生
成工程の前に実施するが、微粒子生成工程後に実施して
もよい。
The step of cationization may be any method as long as it introduces a functional group (cationic functional group) that can be cationized under physiological conditions. A method of introducing a group or an ammonium group is preferred. For example, there is a method of reacting an alkyldiamine such as ethylenediamine or N, N-dimethyl-1,3-diaminopropane, or a reaction with trimethylammonium acetohydrazide, spermine, spermidine, or diethylamide chloride. Among them, a method of reacting ethylenediamine is preferred because it is simple and versatile. The cationization reaction is usually performed before the fine particle generation step, but may be performed after the fine particle generation step.

【0014】カチオン化ゼラチンの微粒子生成工程は、
例えば、油中でW/Oエマルジョン調製の後、水中に滴下
して架橋させる方法(W/O形成法)がある。架橋させる方
法として、カルボジイミド類やジエポキシ類を反応させ
る方法、加熱させる方法、紫外線等を照射する方法があ
る。また、微粒子が生成する限りは架橋反応はなくても
よく、ポリエチレングリコールなどを用いたコアセルベ
ーション法、噴霧乾燥法、噴霧冷却法、超臨界流体沈殿
法などの方法も適用できる。これらの中でも球形微粒子
が簡便に得られる点でW/O形成法が好適である。W/O形成
法による製造例を以下に示す。なお特に記載したもの以
外は、試薬は和光純薬工業株式会社製のものを用いた。
[0014] The step of producing fine particles of cationized gelatin is as follows.
For example, there is a method in which a W / O emulsion is prepared in oil and then dropped into water to perform crosslinking (W / O formation method). As a method of crosslinking, there are a method of reacting carbodiimides and diepoxy compounds, a method of heating, and a method of irradiating ultraviolet rays or the like. Further, as long as fine particles are generated, there is no need for a crosslinking reaction, and a method such as a coacervation method using polyethylene glycol or the like, a spray drying method, a spray cooling method, and a supercritical fluid precipitation method can be applied. Among these, the W / O forming method is preferable because spherical fine particles can be easily obtained. An example of production by the W / O forming method is shown below. The reagents used were those manufactured by Wako Pure Chemical Industries, Ltd., except for those specifically described.

【0015】製造例カチオン化ゼラチンの製造 等電点9.0のゼラチン(新田ゼラチン株式会社製)1.0g
を50mLの0.1Mリン酸緩衝水溶液(pH5.0)に溶解させ
た。その溶液中へ280mgのエチレンジアミンを添加、さ
らに5.4gの1-エチル-3-(3ージメチルアミノプロピル)カ
ルボジイミド塩酸塩を添加した。この混合溶液を12時間
攪拌した後、水に対して2日間透析し、凍結乾燥して1.2
gのカチオン化ゼラチン粉末を得た。カチオン化ゼラチン微粒子の製造 得られたカチオン化ゼラチン粉末を100mg/mLとなるよう
0.2mLの精製水に溶解させ、40℃に加温した状態で5mLの
オリーブオイル中に添加、振動攪拌してW/Oエマルジョ
ンを得た。得られたW/Oエマルジョンをプローブ型スー
パーソニケーターにて超音波照射(7mm径、40μA、2分
間)。その後直ちに氷冷してゼラチンをゲル化し、アセ
トンを加え1時間攪拌した。生成したゼラチン粒子を遠
心処理して回収しアセトンで洗浄、10重量%となるよ
う、37.5μg/mLのグルタルアルデヒド水溶液中に分散
し、4℃、40時間架橋反応させた。反応後グリシンで処
理し、精製水で洗浄、その後の遠心処理により、平均粒
子径3.0μm(90重量%が0.5〜10μm)の架橋カチオン化
ゼラチン微粒子を回収した。
Production Example Production of cationized gelatin 1.0 g of gelatin having an isoelectric point of 9.0 (manufactured by Nitta Gelatin Co., Ltd.)
Was dissolved in 50 mL of a 0.1 M aqueous phosphate buffer solution (pH 5.0). 280 mg of ethylenediamine was added to the solution, and 5.4 g of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride was further added. After stirring this mixed solution for 12 hours, it was dialyzed against water for 2 days, freeze-dried and dried.
g of cationized gelatin powder was obtained. Preparation of cationized gelatin microparticles The obtained cationized gelatin powder was adjusted to 100 mg / mL.
The resultant was dissolved in 0.2 mL of purified water, heated to 40 ° C., added to 5 mL of olive oil, and shaken to obtain a W / O emulsion. The obtained W / O emulsion was irradiated with ultrasonic waves by a probe type super sonicator (7 mm diameter, 40 μA, 2 minutes). Immediately thereafter, gelatin was gelatinized by cooling with ice, acetone was added, and the mixture was stirred for 1 hour. The generated gelatin particles were collected by centrifugation, washed with acetone, dispersed in a 37.5 μg / mL aqueous glutaraldehyde solution to a concentration of 10% by weight, and subjected to a crosslinking reaction at 4 ° C. for 40 hours. After the reaction, the mixture was treated with glycine, washed with purified water, and then centrifuged to collect crosslinked cationized gelatin microparticles having an average particle diameter of 3.0 μm (90% by weight of 0.5 to 10 μm).

【0016】本発明で「カチオン化」とは、通常得られ
るゼラチン(等電点5または9)に、生理的条件下(こ
の場合肺表面相当のpH6.8付近)でカチオン化するカチ
オン性官能基が化学反応で導入されることをいう。カチ
オン性官能基の導入によって、生体接着性が付与される
こと、さらに生体接着性だけでは説明できない吸収促進
効果も発明者によって知見された(実施例参照)。本発
明組成物は経肺投与用であるが、肺上皮と比較的同様の
組織である鼻粘膜上皮でも同様の吸収促進作用を有する
と考えられる。カチオン化の比率は高分子薬物の吸収性
を向上させるためには高いほうが良く、カルボキシル基
と反応させる場合、ゼラチンの全カルボキシル基のうち
カチオン基を導入する比率は、少なくとも30%以上、好
ましくは50%以上、より好ましくは80%以上である。
In the present invention, "cationization" refers to a cationic function which cationizes normally obtainable gelatin (isoelectric point 5 or 9) under physiological conditions (in this case, pH 6.8 corresponding to the lung surface). A group is introduced by a chemical reaction. The inventors have found that the introduction of a cationic functional group imparts bioadhesiveness, and furthermore, an absorption promoting effect that cannot be explained only by bioadhesiveness (see Examples). Although the composition of the present invention is for pulmonary administration, it is considered that the nasal mucosal epithelium, which is a tissue relatively similar to the lung epithelium, has the same absorption promoting effect. The ratio of cationization is preferably higher in order to improve the absorbability of the polymer drug, and when reacting with a carboxyl group, the ratio of introducing a cationic group among all carboxyl groups of gelatin is at least 30% or more, preferably It is at least 50%, more preferably at least 80%.

【0017】本発明におけるカチオン化ゼラチン微粒子
の粒子径は0.1〜50μmであることが好ましく、80重量%
が0.5〜10μmであると、高分子薬物の肺への沈着向上及
び薬物の吸収向上の点からさらに好ましい。
The particle size of the cationized gelatin fine particles in the present invention is preferably 0.1 to 50 μm, and is preferably 80% by weight.
Is more preferably 0.5 to 10 μm from the viewpoints of improving the deposition of the polymer drug in the lungs and improving the absorption of the drug.

【0018】本発明における高分子薬物は、カチオン化
ゼラチン微粒子に封入されていても封入されなくてもよ
いが、通常は封入された状態で組成物が製造される。高
分子薬物のカチオン化ゼラチンへの封入は、例えば、カ
チオン化ゼラチンを高分子薬物溶液中に膨潤させること
で達成できる。
The polymer drug of the present invention may or may not be encapsulated in cationic gelatin microparticles, but the composition is usually produced in an encapsulated state. The encapsulation of the polymer drug in the cationized gelatin can be achieved by, for example, swelling the cationized gelatin in the polymer drug solution.

【0019】本発明において、高分子薬物とカチオン化
ゼラチンの組成は必要な吸収量に応じていかようにも設
定できるが、通常は、高分子薬物とカチオン化ゼラチン
が重量比で0.1:99.9〜1.0:99.0であることが好ましい。
In the present invention, the composition of the polymer drug and the cationized gelatin can be set in accordance with the required absorption amount. 1.0: 99.0 is preferred.

【0020】本発明の経肺投与組成物は賦形剤などとと
もに粉末状もしくは水等への分散液状の医薬品組成物に
製造される。
The composition for transpulmonary administration of the present invention is prepared into a pharmaceutical composition in the form of powder or dispersed in water or the like together with excipients.

【0021】本発明に用いられる賦形剤としては例えば
乳糖、ブドウ糖、マンニトール、果糖、蔗糖、アラビノ
ース、キシリトール、デキストロース、麦芽糖およびト
レハロースおよびこれらの1水和物や、デキストラン、
デキストリン等多糖類が挙げられる。この中でも乳糖が
好ましい。
The excipients used in the present invention include, for example, lactose, glucose, mannitol, fructose, sucrose, arabinose, xylitol, dextrose, maltose and trehalose and their monohydrates, dextran,
And polysaccharides such as dextrin. Among them, lactose is preferred.

【0022】本発明の医薬品組成物に用いられる賦形剤
以外の添加物としては例えば塩化ベンザルコニウムのよ
うな防腐剤やdl-メントール、l-メントールなどの矯味
剤、芳香剤などが挙げられる。このような成分は、ごく
微量、例えば組成物の10重量%未満で存在するのが好ま
しく、さらに5重量%未満で存在するのが好ましい。
Examples of additives other than the excipient used in the pharmaceutical composition of the present invention include preservatives such as benzalkonium chloride, flavoring agents such as dl-menthol and l-menthol, and fragrances. . Preferably, such components are present in trace amounts, for example, less than 10% by weight of the composition, more preferably less than 5% by weight.

【0023】[0023]

【発明の効果】かくして本発明により、生体内吸収性組
成物が臨床の場に使用されることは高分子薬物を肺から
血中へ効率的に吸収させることによる全身療法上その意
義は高い。
Thus, the use of the bioabsorbable composition in a clinical setting according to the present invention is of great significance in systemic therapy by efficiently absorbing a macromolecular drug from the lungs into the blood.

【0024】[0024]

【実施例】以下の実施例は本発明を詳細に説明するため
に示すのであって、本発明を限定するものではない。
The following examples are provided to illustrate the present invention in detail, but are not intended to limit the present invention.

【0025】[実施例1]サケカルシトニン経肺吸収に
おけるカチオン化ゼラチン微粒子の効果 本実施例は高分子薬物経肺吸収におけるカチオン化ゼラ
チン微粒子共投与の効果を、ラット気管支内投与後の薬
効を指標に、微粒子非存在下、およびカチオン化してい
ないゼラチン微粒子の共投与の場合と比較したものであ
る。以下の3組成物について検討した。なおサケカルシ
トニンはBachem AG製を用いた。 (1)サケカルシトニン溶液(対照組成物1) (2)サケカルシトニン/ゼラチン微粒子分散液(対照
組成物2) (3)サケカルシトニン/カチオン化ゼラチン微粒子分
散液(本発明組成物1) <対照組成物1>はpH7.0等張リン酸緩衝液にサケカル
シトニン溶解させて調製した。<対照組成物2>のゼラ
チン微粒子は等電点9のゼラチンを用いて、製造例中の
「カチオン化微粒子の製造」と同じ工程で製造した(平
均粒子径3.4μm)。<本発明組成物1>は製造例に示す
工程で製造した(平均粒子径3.0μm)。<対照組成物2
><本発明組成物1>ともpH7.0等張リン酸緩衝溶液で2
25単位/mLに調製したサケカルシトニン溶液0.1mL中に微
粒子10.5mgを加え、0℃、3時間で膨潤させサケカルシト
ニンを微粒子に封入した。いずれも以下に示す投与量と
なるようpH7.0等張リン酸緩衝溶液で希釈するなどして
調製した。
Example 1 Effect of Cationic Gelatin Fine Particles on Pulmonary Absorption of Salmon Calcitonin This example shows the effect of co-administration of cationic cationic microparticles on pulmonary absorption of a high molecular weight drug and the drug efficacy after intrabronchial administration in rats. The results are compared with the case of co-administration of gelatin microparticles in the absence of microparticles and non-cationized gelatin microparticles. The following three compositions were studied. The salmon calcitonin used was from Bachem AG. (1) Salmon calcitonin solution (control composition 1) (2) Salmon calcitonin / gelatin microparticle dispersion (control composition 2) (3) Salmon calcitonin / cationized gelatin microparticle dispersion (composition 1 of the present invention) <control composition Compound 1> was prepared by dissolving salmon calcitonin in a pH 7.0 isotonic phosphate buffer. The gelatin fine particles of <Control composition 2> were produced using gelatin having an isoelectric point of 9 in the same process as in "Production of cationized fine particles" in the production examples (average particle diameter: 3.4 μm). <Inventive composition 1> was produced by the steps shown in Production Examples (average particle diameter: 3.0 μm). <Control composition 2
><Inventive composition 1> both with a pH 7.0 isotonic phosphate buffer solution
10.5 mg of microparticles were added to 0.1 mL of the salmon calcitonin solution adjusted to 25 units / mL, and swelled at 0 ° C. for 3 hours to encapsulate salmon calcitonin in the microparticles. All were prepared by diluting with a pH 7.0 isotonic phosphate buffer solution to give the following dosages.

【0026】3組成物の経肺吸収評価は8週齢SDラット
(各組成物につき8匹)を用いて実施した。投与はSchan
kerの方法として知られている気管支注入法にて実施
し、どの組成物も3単位/0.2mL/kgラット体重となるよう
に調製してペントバルビタール麻酔下に投与した。大腿
静脈にカニュレーションを施し、投与前、投与後6時間
まで経時的に採血し、血中のカルシウム濃度をオルトク
レゾールフタレインコンプレキソン法(カルシウム C
−テストワコー:和光純薬工業(株)を使用)にて血中カ
ルシウム濃度を測定した。血中カルシウムの減少率の経
時変化を図1に示す。またサケカルシトニンのpH7.0等
張リン酸緩衝溶液を0.5単位/kgラット体重を静脈注射に
て投与したときの血中カルシウム濃度の経時変化を同様
に測定し、各組成物の薬理学的利用率として求めた値を
表1に示す。表1より(1)<(2)<(3)であり、
本発明組成物がサケカルシトニンの経肺吸収を向上させ
ている。
The pulmonary absorption of the three compositions was evaluated using 8-week-old SD rats (8 rats for each composition). Dosing is Schan
The composition was prepared by bronchial injection known as the ker method, and each composition was prepared so as to have a concentration of 3 units / 0.2 mL / kg rat body weight and administered under pentobarbital anesthesia. The femoral vein is cannulated, blood is collected with time before administration and up to 6 hours after administration, and the calcium concentration in the blood is determined by the ortho-cresol phthalein complexone method (calcium C).
-Test Wako: using Wako Pure Chemical Industries, Ltd.) to measure the blood calcium concentration. FIG. 1 shows the change over time in the rate of decrease in blood calcium. In addition, the time course of blood calcium concentration when a salmon calcitonin pH 7.0 isotonic phosphate buffer solution was administered by intravenous injection of 0.5 unit / kg rat body weight was similarly measured, and the pharmacological utilization of each composition was similarly measured. Table 1 shows the values obtained as the ratios. From Table 1, (1) <(2) <(3),
The composition of the present invention improves pulmonary absorption of salmon calcitonin.

【0027】[0027]

【表1】 [Table 1]

【0028】[実施例2]サケカルシトニン経肺吸収に
おけるカチオン化ゼラチン微粒子の粒度の違いの効果本
実施例はカチオン化ゼラチン微粒子による高分子薬物の
経肺吸収向上の効果発現のためには至適な粒子径が存在
することを示したものである。以下の4組成物を検討し
た。 (1)サケカルシトニン溶液(対照組成物1) (2)サケカルシトニン/カチオン化ゼラチン微粒子分
散液:平均粒子径3.0μm(本発明組成物1) (3)サケカルシトニン/カチオン化ゼラチン微粒子分
散液:平均粒子径53.1μm(本発明組成物2) (4)サケカルシトニン/カチオン化ゼラチン微粒子分
散液:平均粒子径102.1μm(対照組成物3) <対照組成物1>および<本発明組成物1>は実施例1
と同じである。<本発明製剤2>および<対照製剤3>
は、以下のようにして製造した。
[Example 2] Effect of difference in particle size of cationized gelatin microparticles on salmon calcitonin transpulmonary absorption This example is optimal for expressing the effect of cationized gelatin microparticles to improve the pulmonary absorption of a high molecular drug. It is shown that there are various particle sizes. The following four compositions were studied. (1) Salmon calcitonin solution (control composition 1) (2) Salmon calcitonin / cationized gelatin fine particle dispersion: average particle diameter 3.0 μm (composition 1 of the present invention) (3) Salmon calcitonin / cationized gelatin fine particle dispersion: Average particle diameter 53.1 μm (composition 2 of the present invention) (4) Salmon calcitonin / cationized gelatin fine particle dispersion: average particle diameter 102.1 μm (control composition 3) <Control composition 1> and <composition 1 of the present invention> Is Example 1
Is the same as <Inventive Formulation 2> and <Control Formulation 3>
Was manufactured as follows.

【0029】カチオン化ゼラチンを5mLのオリーブオイ
ル中に添加、振動攪拌してW/Oエマルジョンを得た後、
直ちに氷冷してゼラチンをゲル化し、アセトンを加え1
時間攪拌した。生成したゼラチン粒子を遠心処理して回
収しアセトンで洗浄、再度イソプロパノールに分散さ
せ、適度な開口のふるいで粒子径をそろえた。その後10
重量%となるよう、37.5μg/mLのグルタルアルデヒド水
溶液中に分散し、4℃、40時間架橋反応させた。反応後
グリシンで処理し、精製水で洗浄、その後の遠心処理に
よりを回収し、平均粒子径53.1および102.1μmの架橋カ
チオン化ゼラチン微粒子を得た。
[0029] Cationized gelatin is added to 5 mL of olive oil and shaken to obtain a W / O emulsion.
Immediately cool on ice to gel the gelatin, add acetone and add
Stirred for hours. The generated gelatin particles were collected by centrifugation, washed with acetone, dispersed again in isopropanol, and the particle diameter was adjusted by sieving an appropriate opening. Then 10
The resulting mixture was dispersed in a 37.5 μg / mL aqueous glutaraldehyde solution so as to obtain a weight%, and subjected to a crosslinking reaction at 4 ° C. for 40 hours. After the reaction, the mixture was treated with glycine, washed with purified water, and then collected by centrifugation to obtain crosslinked cationized gelatin microparticles having an average particle size of 53.1 and 102.1 μm.

【0030】各組成物は実施例と同様にサケカルシトニ
ン封入し、ラットへ気管支内注入にて投与、血中カルシ
ウム濃度を測定した。血中カルシウムの減少率の経時変
化を図2に示す。また静脈注射時に対する薬理学的利用
率を表2に示す。表2の結果より(1)≒(4)<
(3)<(2)であり、カチオン化ゼラチン微粒子が10
0μm以下、特に10μm以下のときに吸収が向上してい
る。これは微粒子の粒子径減少に伴う表面積の増加によ
り、サケカルシトニンの放出性が上がったためと考えら
れる。
Each of the compositions was encapsulated in salmon calcitonin in the same manner as in the examples, and administered to rats by intrabronchial injection, and the blood calcium concentration was measured. FIG. 2 shows the change over time in the reduction rate of blood calcium. Table 2 shows the pharmacological utilization rate for intravenous injection. From the results in Table 2, (1) ≒ (4) <
(3) <(2), and the cationized gelatin microparticles are 10
Absorption is improved at 0 μm or less, especially at 10 μm or less. This is considered to be due to an increase in salmon calcitonin release due to an increase in surface area due to a decrease in the particle diameter of the fine particles.

【0031】[0031]

【表2】 [Table 2]

【0032】[実施例3]肺上皮細胞単層膜における高
分子薬物透過におけるカチオン化ゼラチン微粒子の効果
本実施例はカチオン化ゼラチン微粒子が生体接着性以外
の性質による高分子薬物吸収促進効果をもつことを示し
ている。以下3製剤について評価した。 (1)サケカルシトニン溶液(対照組成物1) (2)サケカルシトニン/ゼラチン微粒子分散液(対照
組成物2) (3)サケカルシトニン/カチオン化ゼラチン微粒子分
散液(本発明組成物1)いずれも実施例1と同じ組成物
である。
Example 3 Effect of Cationic Gelatin Fine Particles on Permeation of Polymer Drug in Lung Epithelial Cell Monolayer Membrane In this example, cationic gelatin microparticles have a polymer drug absorption promoting effect due to properties other than bioadhesiveness. It is shown that. The following three formulations were evaluated. (1) Salmon calcitonin solution (control composition 1) (2) Salmon calcitonin / gelatin fine particle dispersion (control composition 2) (3) Salmon calcitonin / cationized gelatin fine particle dispersion (composition 1 of the present invention) The same composition as in Example 1.

【0033】肺II型上皮細胞株A-549(ATCCより購入)
を5%ウシ胎児血清(Gibco Laboratories社)および各種
抗生物質を含むDulbecco's Modified Eagles Medium(S
igmaChemical社)を用い、37℃-5%CO2インキュベーター
内で単層培養した。上記3組成物はTranswellTM(Costa
r社)を用い、単層細胞の表面側に各組成物中のサケカ
ルシトニンが5マイクロモル/Lとなる分だけ添加し、基
底膜側に透過してきた120分後のサケカルシトニン量を
高速液体クロマトグラフィーにて定量した。各組成物で
の120分後の添加量に対するA-549細胞単層膜の透過量の
割合を表3に示す。表3より(3)>(2)>(1)。
肺上皮細胞単層膜上に生体接着性に関与する粘液層存在
しないことから、本実施例では微粒子による耐酵素分解
性およびその他の吸収促進作用が評価されており、本発
明組成物が生体接着性以外の何らかの吸収促進作用を有
していると考えられる。
A lung type II epithelial cell line A-549 (purchased from ATCC)
With 5% fetal bovine serum (Gibco Laboratories) and Dulbecco's Modified Eagles Medium (S
(igmaChemical) and monolayer culture in a 37 ° C.-5% CO 2 incubator. The above three compositions were prepared using Transwell (Costa
r), the amount of salmon calcitonin in each composition was added to the surface side of the monolayer cells in an amount of 5 μmol / L, and the amount of salmon calcitonin permeated to the basement membrane side after 120 minutes was measured using a high-speed liquid. It was quantified by chromatography. Table 3 shows the ratio of the amount of permeation of the A-549 cell monolayer membrane to the amount added after 120 minutes of each composition. From Table 3, (3)>(2)> (1).
Since there is no mucus layer involved in bioadhesion on the lung epithelial cell monolayer, in this example, the enzymatic degradation resistance and other absorption promoting effects of the microparticles were evaluated. It is considered to have some absorption promoting action other than sex.

【0034】[0034]

【表3】 [Table 3]

【図面の簡単な説明】[Brief description of the drawings]

【図1】各組成物気管支内注入後の血中カルシウムレベ
ルの経時変化。縦軸は血中カルシウムレベルを投与時を
100として表示。横軸は各組成物投与後の時間。
FIG. 1. Time course of blood calcium levels after intrabronchial infusion of each composition. The vertical axis shows the blood calcium level when administered.
Displayed as 100. The horizontal axis is the time after administration of each composition.

【図2】粒子径の異なる各組成物を気管支内注入後の血
中カルシウムレベルの経時変化。縦軸は血中カルシウム
レベルを投与時を100として表示。横軸は各組成物投与
後の時間。
FIG. 2 shows the time course of blood calcium levels after intrabronchial injection of each composition having a different particle size. The vertical axis shows the blood calcium level as 100 at the time of administration. The horizontal axis is the time after administration of each composition.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) A61K 38/11 A61K 37/02 38/27 37/24 39/00 37/26 39/395 37/28 37/32 A61P 19/10 37/34 37/36 Fターム(参考) 4C076 AA32 BB27 CC11 CC29 CC30 EE42A FF34 4C084 AA02 AA27 BA44 CA62 DA02 DA19 DA21 DB01 DB02 DB03 DB08 DB09 DB14 DB21 DB22 DB24 DB25 DB28 DB29 DB31 DB32 DB34 DB35 DB52 MA05 NA11 ZA971 ZA972 4C085 AA03 AA13 AA14 EE05 GG08──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) A61K 38/11 A61K 37/02 38/27 37/24 39/00 37/26 39/395 37/28 37 / 32 A61P 19/10 37/34 37/36 F term (reference) 4C076 AA32 BB27 CC11 CC29 CC30 EE42A FF34 4C084 AA02 AA27 BA44 CA62 DA02 DA19 DA21 DB01 DB02 DB03 DB08 DB09 DB14 DB21 DB22 DB24 DB25 DB28 DB29 DB31 DB32 DB34 DB35 DB52 MA05 NA11 ZA971 ZA972 4C085 AA03 AA13 AA14 EE05 GG08

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 高分子薬物と、カチオン化されたゼラチ
ン微粒子とからなる経肺投与用医薬品組成物。
1. A pharmaceutical composition for pulmonary administration comprising a polymer drug and cationized gelatin microparticles.
【請求項2】 該カチオン化されたゼラチンがアミノ基
またはアンモニウム基をゼラチンに導入することによっ
て得られる請求項1記載の経肺投与用医薬品組成物。
2. The pharmaceutical composition for pulmonary administration according to claim 1, wherein the cationized gelatin is obtained by introducing an amino group or an ammonium group into gelatin.
【請求項3】 該高分子薬物が、分子量500〜200,000で
ある高分子薬物からなる群から選ばれた請求項1または
2に記載の経肺投与用医薬品組成物。
3. The pharmaceutical composition for transpulmonary administration according to claim 1, wherein the polymer drug is selected from the group consisting of a polymer drug having a molecular weight of 500 to 200,000.
【請求項4】 該高分子薬物がバゾプレッシン類、黄体
形成ホルモン放出ホルモン類、成長ホルモン放出因子ホ
ルモン類、ソマトスタチン誘導体類、オキシトシン類、
ヒルジン誘導体類、エンケファリン類、副腎皮質刺激ホ
ルモン類、ブラジキニン類、カルシトニン類、インスリ
ン類、グルカゴン類、成長ホルモン類、黄体形成ホルモ
ン類、インスリン様成長因子類、カルシトニン遺伝子関
連ペプチド類、心房性ナトリウム利尿ペプチド誘導体
類、インターフェロン類、エリスロポエチン、顆粒球コ
ロニー形成刺激因子、マクロファージ形成刺激因子、副
甲状腺ホルモン、プロラクチン、甲状腺刺激ホルモン放
出ホルモン、アンギオテンシン類、ワクチン類、及び抗
体からなる群から選ばれた1種以上の高分子薬物である
請求項1〜3のいずれか一項に記載の経肺投与用医薬品
組成物。
4. The method of claim 1, wherein the macromolecular drug is vasopressin, luteinizing hormone-releasing hormone, growth hormone-releasing factor hormone, somatostatin derivative, oxytocin,
Hirudin derivatives, enkephalins, adrenocorticotropic hormones, bradykinins, calcitonins, insulins, glucagons, growth hormones, luteinizing hormones, insulin-like growth factors, calcitonin gene-related peptides, atrial natriuresis One selected from the group consisting of peptide derivatives, interferons, erythropoietin, granulocyte colony stimulating factor, macrophage stimulating factor, parathyroid hormone, prolactin, thyroid stimulating hormone releasing hormone, angiotensin, vaccines, and antibodies The pharmaceutical composition for pulmonary administration according to any one of claims 1 to 3, which is a high molecular drug as described above.
【請求項5】 該カチオン化されたゼラチン微粒子の粒
径が0.1〜50μmである請求項1〜4のいずれか一項に記
載の経肺投与用医薬品組成物。
5. The pharmaceutical composition for transpulmonary administration according to claim 1, wherein the cationized gelatin fine particles have a particle size of 0.1 to 50 μm.
【請求項6】 該カチオン化されたゼラチン微粒子の80
重量%以上の粒径が0.5〜10μmである請求項1〜5のい
ずれか一項に記載の経肺投与用医薬品組成物。
6. The cationized gelatin microparticles of claim
The pharmaceutical composition for transpulmonary administration according to any one of claims 1 to 5, wherein the particle size of not less than 0.5% by weight is 0.5 to 10 µm.
JP35731499A 1999-12-16 1999-12-16 Pharmaceutical composition for pulmonary administration Expired - Fee Related JP4387018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35731499A JP4387018B2 (en) 1999-12-16 1999-12-16 Pharmaceutical composition for pulmonary administration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35731499A JP4387018B2 (en) 1999-12-16 1999-12-16 Pharmaceutical composition for pulmonary administration

Publications (2)

Publication Number Publication Date
JP2001172203A true JP2001172203A (en) 2001-06-26
JP4387018B2 JP4387018B2 (en) 2009-12-16

Family

ID=18453494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35731499A Expired - Fee Related JP4387018B2 (en) 1999-12-16 1999-12-16 Pharmaceutical composition for pulmonary administration

Country Status (1)

Country Link
JP (1) JP4387018B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003091283A1 (en) * 2002-04-26 2003-11-06 Nof Corporation Gelatin derivatives and high-molecular micelles comprising the same
JP2005206491A (en) * 2004-01-21 2005-08-04 Medgel Corp Pulmonary emphysema-treating transpulmonary administration preparation
EP1982703A2 (en) 2007-04-19 2008-10-22 FUJIFILM Corporation A transpulmonary composition
US7605231B2 (en) 2002-04-26 2009-10-20 Yasuhiko Tabata Gelatin derivatives and high-molecular micelle comprising the derivatives
WO2011149814A3 (en) * 2010-05-24 2012-03-22 Amerilab Technologies, Inc. Effervescent composition for forming a gelled composition, tablet for forming a gelled composition, and method of making a gelled composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003091283A1 (en) * 2002-04-26 2003-11-06 Nof Corporation Gelatin derivatives and high-molecular micelles comprising the same
US7605231B2 (en) 2002-04-26 2009-10-20 Yasuhiko Tabata Gelatin derivatives and high-molecular micelle comprising the derivatives
JP2005206491A (en) * 2004-01-21 2005-08-04 Medgel Corp Pulmonary emphysema-treating transpulmonary administration preparation
EP1982703A2 (en) 2007-04-19 2008-10-22 FUJIFILM Corporation A transpulmonary composition
WO2011149814A3 (en) * 2010-05-24 2012-03-22 Amerilab Technologies, Inc. Effervescent composition for forming a gelled composition, tablet for forming a gelled composition, and method of making a gelled composition
AU2011258600B2 (en) * 2010-05-24 2014-11-13 Amerilab Technologies, Inc. Effervescent composition for forming a gelled composition, tablet for forming a gelled composition, and method of making a gelled composition
US9907324B2 (en) 2010-05-24 2018-03-06 Amerilab Technologies, Inc. Effervescent composition for forming a gelled composition, tablet for forming a gelled composition, and method of making a gelled composition

Also Published As

Publication number Publication date
JP4387018B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
EP0895473B1 (en) Polysaccharide microspheres for the pulmonary delivery of drugs
US5707644A (en) Small particle compositions for intranasal drug delivery
CA2277801C (en) Preparation of particles for inhalation
Kumar Malik et al. Recent advances in protein and peptide drug delivery systems
US5690954A (en) Enhanced uptake drug delivery system having microspheres containing an active drug and a bioavailability improving material
FI97444C (en) A method of making a drug delivery system
US6652837B1 (en) Preparation of novel particles for inhalation
US6977087B2 (en) Aerodynamically light particles for pulmonary drug delivery
JP4315468B2 (en) Aerodynamically light particles for drug delivery to the lung
US5985309A (en) Preparation of particles for inhalation
KR101644250B1 (en) Diketopiperazine salts, diketomorpholine salts or diketodioxane salts for drug delivery
JP4416325B2 (en) Stable spray-dried protein formulation
CN104105507B (en) Nanoparticles for enhancing mucosal penetration or reducing inflammation
EP2308473A1 (en) Pharmaceutical composition containing surface-coated microparticles
WO1989003207A1 (en) A drug composition with microspheres and process for its preparation
JPH10506406A (en) Spray-dried fine particles as therapeutic vehicles
JP2003519664A (en) Transepithelial delivery of GLP-1 derivatives
KR20120084303A (en) Pharmaceutical composition containing medicament-containing fine particles and method for producing same
JP2005513098A (en) Sustained release composition
JP4387018B2 (en) Pharmaceutical composition for pulmonary administration
AU617376C (en) A drug composition with microspheres and process for its preparation
CA2403349C (en) Preparation of particles for inhalation
EP1498115A1 (en) Preparation of particles for inhalation
Illum Patent Info

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090930

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees