JP2001168076A5 - - Google Patents

Download PDF

Info

Publication number
JP2001168076A5
JP2001168076A5 JP2000292884A JP2000292884A JP2001168076A5 JP 2001168076 A5 JP2001168076 A5 JP 2001168076A5 JP 2000292884 A JP2000292884 A JP 2000292884A JP 2000292884 A JP2000292884 A JP 2000292884A JP 2001168076 A5 JP2001168076 A5 JP 2001168076A5
Authority
JP
Japan
Prior art keywords
molecules
reaction
molecule
gas
involved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000292884A
Other languages
Japanese (ja)
Other versions
JP2001168076A (en
JP3817417B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2000292884A priority Critical patent/JP3817417B2/en
Priority claimed from JP2000292884A external-priority patent/JP3817417B2/en
Publication of JP2001168076A publication Critical patent/JP2001168076A/en
Publication of JP2001168076A5 publication Critical patent/JP2001168076A5/ja
Application granted granted Critical
Publication of JP3817417B2 publication Critical patent/JP3817417B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0007】
このように、洗浄処理をHOやH等を用いて行うことは、その廃液処理の観点からは極めて有効である。しかしながら、その反面で、純水の製造には膨大な電力が必要である。そのため、洗浄処理における純水使用量の大幅削減が望まれている。すなわち、従来の液相洗浄技術の代替となるドライ洗浄技術の開発が熱望されている。
[0007]
As described above, it is extremely effective to perform the cleaning process using H 2 O, H 2 O 2 or the like from the viewpoint of waste liquid treatment. However, on the other hand, a huge amount of power is required to produce pure water. Therefore, a significant reduction in the amount of pure water used in the cleaning process is desired. That is, the development of a dry cleaning technology that is an alternative to the conventional liquid phase cleaning technology is eagerly desired.

【0029】
第1の分子を反応性のより高い状態とするためには、最適な状態の第2の分子が必要である。この最適な状態を得るためにエネルギーを系の外部からクラスタに与えてもよい。その際に与える外部エネルギーはクラスタを構成する分子の数−すなわちクラスタの構造に応じて変化する。最適なクラスタの構造は第1及び第2の分子の種類に応じて異なっているが、液相が単に均一な誘電体として働くだけでは反応の活性化エネルギーを低減する効果は得られない。すなわち、低い活性化エネルギーで第1の分子を反応性のより高い状態とするには、第1及び第2の分子からなる液相でも第1及び第2の分子を単に混合してなる通常の気相でもなく、第1及び第2の分子からなるクラスタを形成し且つこのクラスタの生成に伴って生じた内部エネルギーを利用する必要がある。
[0029]
In order for the first molecule to be in a more reactive state, the second molecule in an optimal state is required. Energy may be provided to the cluster from outside the system to achieve this optimum. The external energy given at this time varies depending on the number of molecules constituting the cluster, ie, the structure of the cluster. The optimum cluster structure differs depending on the type of the first and second molecules, but merely acting as a uniform dielectric in the liquid phase does not have the effect of reducing the activation energy of the reaction. That is, in order to make the first molecule in a highly reactive state with a low activation energy, the liquid phase consisting of the first and second molecules is a usual mixture of the first and second molecules. It is necessary to form a cluster consisting of the first and second molecules and to utilize the internal energy generated as a result of the formation of the cluster, not in the gas phase.

【0046】
下記反応式:
十nHO→HOO・nHO(n=0〜3の整数)
2→2OH
に示す化学反応の全ての反応経路わたるエネルギー変化(反応ポテンシャル面:potential energy surface:PES)を、主としてpost Hartree−Fock計算に最適化された基底関数aug−cc−pVDZを用いて、単一配置Hartree−Fockを参照配置とするMφller−Plesset2次摂動法(MP2)及び密度汎関数法(BHandHLYP)で計算した。
[0046]
Following reaction formula:
H 2 O 2 n H 2 O → H 2 OO · n H 2 O (n is an integer of 0 to 3)
H 2 O 22 OH
Single reaction configuration using the basis function aug-cc-pVDZ that is optimized for post Hartree-Fock calculations mainly for energy changes (reaction potential surface: PES) across all reaction pathways of chemical reactions shown in It calculated by Mphiller-Plesset second-order perturbation method (MP2) and density functional theory (BHandHLYP) which make Hartree-Fock a reference arrangement.

【0050】
また、特に注目すべきことに、2分子のHOを関与させた場合、HO が吸着したHの状態を基準として測ったHOO生成反応の障壁は、分子内水素移動過程及び分子間水素移動過程の双方において、1分子のHO が関与する場合に比べて4kcal/mol程度低下するに過ぎないが、それぞれ解離極限にあるHO 及びHの状態を基準として測ったHOO生成反応に必要な吸熱量が大幅に低減されることが分かった。そこで、3分子のHO を関与させた場合についても同様の検討を行ったところ同じ傾向が得られ、解離極限からの吸熱量はほぼゼロになることが分かっている。
[0050]
In particular Remarkably, when Involve of H 2 O 2 molecules, barrier H 2 OO formation reaction H 2 O were measured relative to the state of H 2 O 2 adsorbed, intramolecular hydrogen In both the transfer process and the intermolecular hydrogen transfer process, it is only about 4 kcal / mol lower than in the case where one molecule of H 2 O is involved, but each of H 2 O and H 2 O 2 in the dissociation limit It was found that the heat absorption required for the H 2 OO formation reaction measured on the basis of the state was significantly reduced. Therefore, the same tendency is obtained when the same examination is carried out also in the case where three molecules of H 2 O are involved, and it is known that the heat absorption from the dissociation limit becomes almost zero.

【0055】
一方、例えば図5に示されるように2分子のHOがダイマーを形成してH分子に吸着する3つの経路に関しては、いずれも一方のHOがプロトン受容体としてのHのHと、そしてもう一方のHOがプロトン供与体としてHのOと水素結合を形成する構造をとる。障壁は(分子内水素移動、分子間水素移動)の順に各々、path1(45.32,33.13)、path2(45.58,33.64)、path3(46.39,34.69)kcal/molであった。
[0055]
On the other hand, for example, as shown in FIG. 5, with regard to three pathways in which two molecules of H 2 O form a dimer and are adsorbed to the H 2 O 2 molecule, one of H 2 O is H as a proton acceptor. The H of 2 O 2 and the other H 2 O form a hydrogen bond with O of H 2 O 2 as a proton donor. The barriers are (intramolecular hydrogen transfer, intermolecular hydrogen transfer) in the order of path1 (45.32, 33.13), path2 (45.58, 33.64), path3 (46.39, 34.69) kcal, respectively. It was / mol.

【0056】
以上から、2分子のHOが関与する系においては、それらがダイマーを形成してHに吸着する場合、モノマーとして吸着する場合に比べて、2つのHO分子間の水素結合分だけ吸着状態が安定化するが、それ以上に1,2−hydrogen shift遷移状態が安定化するので、分子内水素移動過程の障壁は4kcal/mol程度減少することが分かる。この減少は、ダイマーを形成することにより正に分極したH2O分子のH原子と、分子内水素移動過程でより負に分極したH分子のO原子との間の相互作用が強まること−すなわち、H分子の内部歪みに要するエネルギーロスが触媒であるHO分子により緩和される(LUMO,HOMO,2ndHOMOのシフト)こと−による。
[0056]
From the above, in a system in which two molecules of H 2 O are involved, when they form a dimer and are adsorbed to H 2 O 2 , hydrogen between two H 2 O molecules is compared with the case where they are adsorbed as a monomer Although the adsorption state is stabilized by the binding component, the 1,2-hydrogen shift transition state is further stabilized, so that the barrier of the intramolecular hydrogen transfer process is reduced by about 4 kcal / mol. This reduction strengthens the interaction between the H atom of the positively polarized H 2 O molecule and the O atom of the more negatively polarized H 2 O 2 molecule in the intramolecular hydrogen transfer process by forming a dimer. In other words, the energy loss required for the internal strain of the H 2 O 2 molecule is mitigated by the H 2 O molecule as the catalyst (a shift of LUMO, HOMO, 2nd HOMO).

【0058】
上述した1分子のHOが関与する系並びに2分子のHOが関与する系に関して得られた結果において特に注目すべき点は、2分子のHOが関与する系では、モノマー経路であるかダイマー経路であるかに関わらず、1分子のHOが関与する系に比べて、解離極限を基準として測ったオキシウォータを生成する際に必要な吸熱量が大幅に低減されることである。この傾向は、特に分子間水素移動経路においてより顕著である。以上の結果は、H分子にHO分子が吸着する際に生じる吸着熱が散逸せずに内部エネルギーとして蓄積されるようなプロセス−すなわち、気相処理(ドライ処理)−では、この吸熱量を有効に上記吸熱量(外部仕事)に利用できることを示している。
[0058]
The point to be particularly noted in the results of H 2 O molecule described above can of H 2 O system, as well as two molecules involved was obtained with respect to the system involved, in a system of H 2 O 2 molecules are involved, monomers path The heat absorption required to generate oxywater based on the dissociation limit is significantly reduced compared to a system involving one molecule of H 2 O, regardless of whether it is a dimer pathway or a dimer pathway It is. This tendency is more pronounced especially in intermolecular hydrogen transfer pathways. The above results show that the heat of adsorption generated when H 2 O molecules are adsorbed to H 2 O 2 molecules is not dissipated but stored as internal energy, ie, in the gas phase process (dry process) It shows that this heat absorption amount can be effectively used for the above-mentioned heat absorption amount (external work).

【0060】
一方、第1及び第2のHO分子がモノマー経路でH分子と相互作用している場合、H分子はそのプロトン供与サイトを使い果たしているため、第3のHO分子が独立にH分子と相互作用する構造は不利である。そのため、第3のHO分子は第1及び第2のHO分子と相互作用せざるを得ない。すなわち、第1及び第2のHO分子のいずれかが第3のHO分子とダイマー構造を形成することとなり、上述したダイマー経路と最終的に反応経路は等しくなる。
[0060]
On the other hand, if the first and second H 2 O molecules are interacting with the H 2 O 2 molecules in the monomer pathway, then the H 2 O 2 molecules use up their proton donating sites, so the third H 2 O 2 The structure in which the O molecule interacts independently with the H 2 O 2 molecule is disadvantageous. Therefore, the third H 2 O molecule has to interact with the first and second H 2 O molecules. That is, one of the first and second H 2 O molecules becomes possible to form the third H 2 O molecules and dimeric structures, finally reaction path and dimers route described above is equal.

【0064】
(3)3分子のHOが関与する系では、吸着状態からの1,4−hydrogen shift障壁は28kcal/mol程度であるが、解離極限を基準とした1,4−hydrogen shift障壁は殆どゼロとなる。
[0064]
(3) In a system in which three molecules of H 2 O are involved, the 1,4-hydrogen shift barrier from adsorption is about 28 kcal / mol, but the 1,4-hydrogen shift barrier based on the dissociation limit is almost It will be zero.

【0071】
図7は、HOからHOOを液相で生成する経路とエネルギーとの関係を示すグラフである。また、表4及び表5にエネルギー変化量を示す。なお、図8及び図9に、図7に示す各反応に伴うH分子の構造変化を示しており、図8はHO分子が関与しない反応に伴うH分子の構造変化を示し、図9は1分子のHOが関与する反応に伴うH分子の構造変化を示している。図8及び図9の各構造の周りを囲む線は、Onsager法では計算手法で述べた半径aの球空孔、SCIPCM法では0.0004auの等電荷面を示している。
【表4】

Figure 2001168076
【表5】
Figure 2001168076
geometryの変化から、反作用場(双極子場)の有無による2%程度以下であるが、分極の大きな構造(遷移状態、生成系)ほど変化は大きいことが分かった。[0071]
Figure 7 is a graph showing the relationship between the path and the energy generated in the liquid phase H 2 OO from H 2 O. Moreover, energy change amount is shown in Table 4 and Table 5. Incidentally, in FIGS. 8 and 9 show a structural change in the molecules H 2 O 2 due to the reaction shown in FIG. 7, 8 molecules H 2 O 2 due to the reaction of H 2 O molecules is not involved structure shows the change, FIG. 9 shows the structural changes of the molecules H 2 O 2 due to reaction of H 2 O molecule is involved. The lines surrounding the structures in FIG. 8 and FIG. 9 indicate spherical holes of radius a 0 described in the calculation method in the Onsager method, and equal charge surfaces of 0.0004 au in the SCIPCM method.
[Table 4]
Figure 2001168076
[Table 5]
Figure 2001168076
From the change of geometry, it is found that the change is larger as the structure of the polarization (transition state, generation system) is about 2% or less due to the presence or absence of the reaction field (dipolar field).

【0072】
先ず、HOの関与しないHの自己分解反応についてみる。気相(ε=1)におけるHの自己分解反応は、OHラジカルを生成する経路及びHOO(→O原子)を生成する経路共に、非常に障壁の高い吸熱反応であり、反応の進行には光解離や金属触媒等を必要とする。この傾向は反作用場を考慮しても変わらなかった。反応障壁はOnsager場で1kcal/mol、SCIPCM場で2kcal/mol程度しか低下しない。各原子上のMulliken電荷の絶対値は、気相→Onsager場→SCICPM場の順に増大している。従って分子としての電気双極子モーメントも増加しているが、始原系から遷移状態での変化量はほぼ一定である。このため、この誘起電気双極子モーメントの差に対応する反作用場の差は小さくなってしまう。
[0072]
First, look for self-decomposition reaction of H 2 O 2 not involved in H 2 O. The autolysis reaction of H 2 O 2 in the gas phase (ε = 1) is a highly endothermic reaction with a very high barrier, both in the pathway to generate OH radicals and the pathway to generate H 2 OO (→ O atom), Progress requires photodissociation and metal catalysts. This tendency did not change even considering the reaction field. The reaction barriers decrease by only 1 kcal / mol in the Onsager field and as low as 2 kcal / mol in the SCIPCM field. The absolute value of Mulliken's charge on each atom increases in the order of gas phase → Onsager field → SCICPM field. Therefore, the electric dipole moment as a molecule also increases, but the change from the primordial system to the transition state is almost constant. Therefore, the difference in reaction field corresponding to the difference in induced electric dipole moment is reduced.

【0073】
最後に、始原系から遷移状態のPESはほぼ同じであるが、遷移状態から生成系(HOO)のPESはかなり異なり、安定化エネルギー(換言すれば逆方向反応の障壁)は約5〜8kcal/mol増加している。気相とSCRF法でのMulliken電荷の変化も、始原系や遷移状態のそれと比べて大きい。HOO自体がもともと大きく分極しており、このために負電荷の過剰なO原子が強い酸化性を発現するのであるが、この大きな分極が反作用場によってさらに増長されている。
[0073]
Finally, although the PES from the primordial system to the transition state is about the same, the PES from the transition state to the generation system (H 2 OO) is quite different, and the stabilization energy (in other words, the barrier to reverse reaction) is about 5 to 5 It is increased by 8 kcal / mol. The change of Mulliken's charge in the gas phase and the SCRF method is also larger than that of the primordial system and the transition state. Although H 2 OO itself is originally highly polarized, the excess O atom of the negative charge exhibits strong oxidizing properties, but this large polarization is further enhanced by the reaction field.

【0077】
遷移状態では、電気双極子モーメントがHよりも2割程度大きなHOの方が、“ε=78.3の水”の反作用場をより強く受ける。このため、分子内水素移動過程ではHのO原子とHOのH原子との間の水素結合形成が抑制される。これは、酸化性を発現すべきO原子の負への分極を促進する効果を弱めてしまう。分子間水素移動過程においても、吸着状態から遷移状態への過程で、HOのO原子はプロトン受容体としてHからのH引抜には有効に働くものの、HへのH供与の促進効果は小さい。
[0077]
In the transition state, those electric dipole moment of the big H 2 O 2 by about 20% than the H 2 O 2 is, receive stronger reaction field of "ε = 78.3 water". Therefore, the intramolecular hydrogen transfer process hydrogen bond formation between the O atom and of H 2 O H atoms of H 2 O 2 is suppressed. This weakens the effect of promoting the negative polarization of the O atom that should exhibit oxidative properties. Also in intermolecular hydrogen transfer process, in the course of the transition state from the suction state, although O atoms H 2 O is effectively acts on H withdrawal from H 2 O 2 as a proton acceptor, to H 2 O 2 The promotion effect of H donation is small.

【0082】
気相反応系の場合には、触媒HO分子数が0,1,2,3と増すにつれて、この酸化性を発現するO原子のMu11iken電荷は−0.5052(0分子HO)、−0.5394(1分子)、−0.5662〜−0.5902(2分子)、−0.5981〜−0.6180(3分子)のように増加した(MP2/aug−cc−pVDZレベルでの値)。今回用いたSCRF法では、電荷分布は実測値を未だ再現できないものの、反作用場の効果はε=78.3ではほぼ飽和していると見てよい。すなわち、多数のHO分子が液相(例えば、種々の方向を向いた電気双極子の平均和)としてHOOの分極を促進しても、その効果は上記で示した分極量ではほぼ飽和しているだろうと考えられる。
[0082]
In the case of a gas phase reaction system, as the number of catalyst H 2 O molecules increases to 0, 1, 2, 3, the Mu11iken charge of the O atom exhibiting this oxidizing property is −0.5052 (0 molecule H 2 O) , -0.5394 (one molecule), -0.5662 to -0.5902 (two molecules), -0.5981 to -0.6180 (three molecules) (MP2 / aug-cc-pVDZ) Value at the level). In the SCRF method used this time, although the charge distribution can not reproduce the measured value yet, the effect of the reaction field may be considered to be almost saturated at ε = 78.3. That is, even if a large number of H 2 O molecules promote the polarization of H 2 OO as a liquid phase (eg, the average sum of electric dipoles oriented in various directions), the effect is almost as high as the amount of polarization shown above It is thought that it will be saturated.

【0085】
これより、HOの触媒的効果、すなわち、見かけの反応障壁低下と酸化性の増大効果は、
(3) HOが集団として反応系に及ぼす誘電的性質によるものではない
(4) HとHOの協奏的な反応により初めて実現される、気相反応系に代表される分子間の直接反応の特徴である
ことが分かった。
[0085]
From this, the catalytic effect of H 2 O, that is, the apparent reaction barrier lowering effect and the oxidizing property enhancing effect are
(3) Not due to the dielectric properties that H 2 O exerts on the reaction system as a group (4) Represented by the gas phase reaction system realized for the first time by the concerted reaction of H 2 O 2 and H 2 O It turned out to be a feature of the direct reaction between molecules.

【0086】
これは、HO+nHO系における酸化種生成反応の促進、および酸化性の制御において、誘電体的性質を生じさせるような分子数の水分子(例えば、液相、固相)は不要であり、純水の使用量削減に寄与できることを示している。
[0086]
This is because the number of water molecules (eg, liquid phase, solid phase) that cause dielectric property is not necessary in promoting the oxidation species generation reaction in H 2 O + nH 2 O system and controlling the oxidation property. Indicates that it can contribute to the reduction of the amount of pure water used.

【0087】
ただし見かけの障壁低下を有効に利用するには、H分子へのHO吸着エネルギーを内部エネルギーとして保存して散逸させないこと、すなわち反応生成物の衝突緩和を抑制することがプロセス条件として重要であるが、液相でそのような制御を行うことは困難である。したがって、オキシウォータの生成は、気相反応系で行うことが有効であるといえる。その代わりに、汚染除去に関しては、液相反応系の利点である水和による金属イオン除去とゼータ電位制御によるパーティクルの静電除去に相当する工程を考える必要はある。
[0087]
However, in order to effectively use the apparent barrier reduction, it is necessary to store the H 2 O adsorption energy to the H 2 O 2 molecule as internal energy and not dissipate it, that is, to suppress the collisional relaxation of reaction products. As important, it is difficult to perform such control in the liquid phase. Therefore, it can be said that the production of oxywater is effective in a gas phase reaction system. Instead, with regard to decontamination, it is necessary to consider steps equivalent to metal ion removal by hydration, which is an advantage of liquid phase reaction systems, and electrostatic removal of particles by zeta potential control.

【0090】
これらの結果から、過酸化水素と水との系において高い効率で酸化種を生成するためには、以下の要件を満たすことが好ましい。すなわち、1分子の過酸化水素に対して3分子の水を作用させる。また、液相及び気相のバルク中で過酸化水素と水とを反応させるのではなく、例えば、被処理体表面近傍へそれぞれ別々に供給させて反応させる。或いは、液相に比べて密度が3桁以上小さな気相バルク中でそれらのクラスタを生成し、クラスタ生成に伴って蓄えられる内部エネルギーが衝突緩和により散逸するのを抑制しつつ被処理体表面に供給して、被処理体表面で酸化種を生成する。或いは、過酸化水素及び水をそれらのクラスタ化を抑制しつつ被処理体表面に供給するために、HOトリマー、HOダイマー、HOモノマー、Hダイマー、及びHモノマーの回転励起が可能な3GHz以上のマイクロ波を印加する。これらの少なくとも1つを採用することにより、より高い効率で酸化種を生成することが可能となる。
[0090]
From these results, in order to generate oxidized species with high efficiency in a system of hydrogen peroxide and water, it is preferable to satisfy the following requirements. That is, three molecules of water act on one molecule of hydrogen peroxide. Further, instead of reacting hydrogen peroxide and water in the bulk of the liquid phase and the gas phase, for example, they are separately supplied near the surface of the object to be reacted. Alternatively, these clusters are generated in a gas phase bulk whose density is three or more orders of magnitude smaller than that of the liquid phase, and the internal energy stored as the clusters are generated is suppressed on the surface of the object while suppressing dissipation by collision relaxation. Supply to generate oxidized species on the surface of the object. Alternatively, H 2 O trimers, H 2 O dimers, H 2 O monomers, H 2 O 2 dimers, and H 2 O can be used to supply hydrogen peroxide and water to the surface of the object while suppressing their clustering. A microwave of 3 GHz or more capable of rotational excitation of O 2 monomer is applied. By adopting at least one of these, it is possible to generate oxidized species with higher efficiency.

【0134】
また、上述したように、過酸化水素への水の吸着により生じた吸着熱が気体分子同士の衝突により散逸するのを抑制するためには、処理室3内の全圧が低く且つ排気速度が速いこと、すなわち、処理室3内でのプロセスガスの滞留時間が短いことが第1に重要である。第2には、希釈供給に用いるガスの振動自由度3N−6(Nはガス分子の構成原子数)が小さいこと、或いは希釈供給に用いるガスの分子量が大きいことも重要である。最も好ましいガスは振動自由度がゼロの重希ガス(KrやXe)であるが、振動自由度が1の窒素や酸素等の2原子分子も好ましい。イソプロピルアルコール等のアルコール類は基板11上での乾燥が十分に速いため、希釈供給に用いるガスとしても利用可能であるが、イソプロピルアルコールの場合で振動自由度は30である。イソプロピルアルコール二量体を含め振動自由度が60以下であれば利用可能である。
[0134]
Further, as described above, in order to suppress the heat of adsorption generated by the adsorption of water to hydrogen peroxide from being dissipated due to the collision of gas molecules, the total pressure in the processing chamber 3 is low and the exhaust speed is low. Fastness, that is, short residence time of the process gas in the processing chamber 3 is of primary importance. Secondly, it is also important that the vibration degree of freedom 3N-6 (N is the number of constituent atoms of gas molecules) of the gas used for dilution supply is small, or the molecular weight of the gas used for dilution supply is large. The most preferable gas is a heavy rare gas (Kr or Xe) having zero vibrational freedom, but diatomic molecules such as nitrogen and oxygen having one vibrational freedom are also preferable. Alcohols such as isopropyl alcohol can be used as a gas used for dilution and supply because the drying on the substrate 11 is sufficiently fast, but in the case of isopropyl alcohol, the vibration freedom is 30. It is usable if the vibration degree of freedom is 60 or less including the isopropyl alcohol dimer.

【0167】
また、電子スピン共鳴法で測定した欠陥密度は、E‘センタが3×1016/cm、過酸化ラジカルや非架橋ホールセンタと帰属されている欠陥が1×1016/cmであり、従来のプラズマCVD酸化膜より少ないことが分かった。なお、SiFガス等のフッ素を含有するガスを導入しなければ、通常のシリコン酸化膜が形成できる。その他、フッ素添加シリコン酸化膜やシリコン酸化膜の形成に用いるTEOS(Si(OC)やそのフッ化ガス(SiF、(OC4−n,n=1〜3)、フッ化シランガスSiF4−n、(n=1〜3)等を用いても良い。
[0167]
Further, the defect density measured by the electron spin resonance method is 3 × 10 16 / cm 3 at the E ′ center and 1 × 10 16 / cm 3 at the defects attributed to the peroxide radical and the non-crosslinked hole center. It has been found that it is less than the conventional plasma CVD oxide film. If a gas containing fluorine, such as SiF 4 gas, is not introduced, a normal silicon oxide film can be formed. In addition, TEOS (Si (OC 2 H 5 ) 4 ) or its fluorinated gas (SiF n , (OC 2 H 5 ) 4-n , n = 1 to 3) used for forming a fluorine-added silicon oxide film or silicon oxide film ), Fluorosilane gas SiF n H 4-n , (n = 1 to 3) or the like may be used.

【図面の簡単な説明】
【図1】HからHOOを気相で生成する経路とエネルギーとの関係を示すグラフ。
【図2】HO分子が関与せずにHからHOOが生成する反応が気相で生じる際のH分子の構造変化を示す図。
【図3】1分子のHO分子が関与してHからHOOが生成する反応が気相で生じる際のH分子の構造変化を示す図。
【図4】2分子のHOモノマーが関与してHからHOOが生成する反応が気相で生じる際のH分子の構造変化を示す図。
【図5】2分子のHO分子から生成されたHOダイマーが関与してHからHOOが生成する反応が気相で生じる際のH分子の構造変化を示す図。
【図6】3分子のHO分子が関与してHからHOOが生成する反応が気相で生じる際のH分子の構造変化を示す図。
【図7】HからHOOを液相で生成する経路とエネルギーとの関係を示すグラフ。
【図8】HO分子が関与せずにHからHOOが生成する反応が液相で生じる際のH分子の構造変化を示す図。
【図9】1分子のHO分子が関与してHからHOOが生成する反応が液相で生じる際のH分子の構造変化を示す図。
【図10】本発明の一実施形態に係る表面処理方法を概略的に示す図。
【図11】本発明の一実施形態に係る表面処理方法を概略的に示す図。
【図12】本発明の一実施形態に係る表面処理システムを概略的に示す図。
【符号の説明】
1…半導体処理装置 ; 2…収納容器 ; 3…処理室
4…ロードロック室 ; 5、6…ゲートバルブ ; 7…接続手段
8…扉 ; 9…処理容器 ; 10…載置台 ; 11…基板
12…シャワーヘッド ; 13…ガス供給手段
14、20、23、28、31…バルブ ; 15、22、30…排気口
16、24…排気手段 ; 17…搬送手段 ; 18…駆動手段
19…ガス供給手段 ; 21、29…フィルタ ; 25…カセット
26…保持手段 ; 27、32…開口 ; 35…有機物
36…金属汚染物 ; 37…パーティクル
Brief Description of the Drawings
FIG. 1 is a graph showing the relationship between energy and a pathway for generating H 2 OO from H 2 O 2 in the gas phase.
FIG. 2 is a diagram showing a structural change of H 2 O 2 molecules when a reaction of generating H 2 OO from H 2 O 2 without H 2 O molecules is generated in a gas phase.
Figure 3 illustrates one molecule of H 2 O molecules H 2 OO is generated from H 2 O 2 involved the reaction is a structural change in the molecules H 2 O 2 when occurring in the gas phase.
4 is a diagram showing a structural change in the molecules H 2 O 2 when occurring H 2 O monomer 2 molecules to generate involvement to H 2 O 2 from H 2 OO reactions in the gas phase.
[5] structural changes in the molecules H 2 O 2 when occurring H 2 O dimer generated from H 2 O molecules of 2 molecules involved H 2 O 2 from H 2 OO is produced reaction in the gas phase Figure showing.
FIG. 6 is a diagram showing a structural change of H 2 O 2 molecules when a reaction in which H 2 O is generated from H 2 O 2 by involving 3 molecules of H 2 O molecules occurs in the gas phase.
FIG. 7 is a graph showing the relationship between energy and a pathway for producing H 2 OO from H 2 O 2 in a liquid phase.
8 shows H 2 O molecules generated by H 2 OO from H 2 O 2 without involving reaction of structural changes in the molecules H 2 O 2 when occurring in the liquid phase.
9 is a diagram showing one molecule of H 2 O molecules involved in H 2 O 2 from H 2 OO generates reaction structural changes in molecules H 2 O 2 when occurring in the liquid phase.
FIG. 10 schematically shows a surface treatment method according to an embodiment of the present invention.
FIG. 11 schematically shows a surface treatment method according to an embodiment of the present invention.
FIG. 12 schematically shows a surface treatment system according to an embodiment of the present invention.
[Description of the code]
DESCRIPTION OF SYMBOLS 1 ... Semiconductor processing apparatus; 2 ... Storage container; 3 ... Processing chamber 4 ... Load lock chamber; 5, 6 ... Gate valve; 7 ... Connection means 8 ... Door; 9 ... Processing container; 10 ... Mounting base; 11 ... Substrate 12 ... Shower head; 13: Gas supply means 14, 20, 23, 28, 31: Valves 15, 22, 30: Exhaust ports 16, 24: Exhaust means 17: Conveying means 18: Driving means 19: Gas supply means 21 29 Filter 26 25 cassette 26 holding means 27 32 opening 35 organic substance 36 metal contamination 37 particle

JP2000292884A 1999-09-29 2000-09-26 Surface treatment method Expired - Fee Related JP3817417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000292884A JP3817417B2 (en) 1999-09-29 2000-09-26 Surface treatment method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27626099 1999-09-29
JP11-276260 1999-09-29
JP2000292884A JP3817417B2 (en) 1999-09-29 2000-09-26 Surface treatment method

Publications (3)

Publication Number Publication Date
JP2001168076A JP2001168076A (en) 2001-06-22
JP2001168076A5 true JP2001168076A5 (en) 2004-12-02
JP3817417B2 JP3817417B2 (en) 2006-09-06

Family

ID=26551831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000292884A Expired - Fee Related JP3817417B2 (en) 1999-09-29 2000-09-26 Surface treatment method

Country Status (1)

Country Link
JP (1) JP3817417B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4001498B2 (en) * 2002-03-29 2007-10-31 東京エレクトロン株式会社 Insulating film forming method and insulating film forming system
JP3696587B2 (en) 2002-10-11 2005-09-21 沖電気工業株式会社 Manufacturing method of semiconductor device
JP3967677B2 (en) * 2002-12-25 2007-08-29 大日本スクリーン製造株式会社 Drying processing apparatus and substrate processing apparatus
JP4361078B2 (en) * 2006-11-20 2009-11-11 東京エレクトロン株式会社 Insulating film formation method
JP5206733B2 (en) * 2010-05-25 2013-06-12 株式会社デンソー Wafer processing method and polishing apparatus and cutting apparatus used therefor
JP5792972B2 (en) * 2011-03-22 2015-10-14 株式会社日立国際電気 Semiconductor device manufacturing method and substrate processing apparatus
JP5776397B2 (en) 2011-07-19 2015-09-09 東京エレクトロン株式会社 Cleaning method, processing apparatus and storage medium
JP2014065026A (en) * 2012-09-10 2014-04-17 Panasonic Corp Surface treatment device and surface treatment method
US11520953B2 (en) * 2018-05-03 2022-12-06 Lam Research Corporation Predicting etch characteristics in thermal etching and atomic layer etching

Similar Documents

Publication Publication Date Title
US9831082B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, substrate processing system and non-transitory computer-readable recording medium
Zhang et al. C3N4/PDA S‐Scheme Heterojunction with Enhanced Photocatalytic H2O2 Production Performance and Its Mechanism
Pearson The principle of maximum hardness
Zhang et al. Spin-gapless semiconducting graphitic carbon nitrides: A theoretical design from first principles
Gao et al. On the theory of electron transfer reactions at semiconductor/liquid interfaces. II. A free electron model
JP2001168076A5 (en)
KR20080003346A (en) Method of forming porous film and computer-readable recording medium
Bai et al. Efficient degradation of PPCPs by Mo1− xS2− y with S vacancy at phase-junction: Promoted by innergenerate-H2O2
Yamaguchi et al. Theory of chemical bonds in metalloenzymes. XV. Local singlet and triplet diradical mechanisms for radical coupling reactions in the oxygen evolution complex
Lu et al. Adjustable electronic performances and redox ability of a gC 3 N 4 monolayer by adsorbing nonmetal solute ions: a first principles study
US6689284B1 (en) Surface treating method
Jiang et al. Bi25FeO40/Bi2O2CO3 piezoelectric catalyst with built-in electric fields that was prepared via photochemical self-etching of Bi25FeO40 for 4-chlorophenol degradation
Srinivas et al. Gas-phase generation and characterization of neutral and ionized HSiOH, H2SiO, H2SiOH, and H3SiO by collisional-activation and neutralization-reionization mass spectrometry
Yamaguchi Time-dependent density functional calculations of fully π-conjugated zinc oligoporphyrins
Widjaja et al. Atomistic mechanism of the initial oxidation of the clean Si (100)-(2× 1) surface by O 2 and SiO 2 decomposition
Van Dongen Phase separation in the extended Hubbard model at weak coupling
JP3817417B2 (en) Surface treatment method
Abdelsalam et al. Edge functionalization of finite graphene nanoribbon superlattices
Feng et al. Electronic states of Ga2P2
Yamaguchi et al. Theory of chemical bonds in metalloenzymes-Manganese oxides clusters in the oxygen evolution center
Lagudu Polishing of SiC films
Nguyen Reactivity of Graphene and Hexagonal Boron Nitride In‐Plane Heterostructures with Oxygen: A DFT Study
CN102691065B (en) Substrate processing method and storage medium
Tsetseris Hydrogen-and oxygen-related effects in phthalocyanine crystals: formation of carrier traps and a change in the magnetic state
Liu et al. Water molecule switching heterogeneous proton-coupled electron transfer pathway