JP2001166211A - Decentering optical system and visual display device using the sme - Google Patents

Decentering optical system and visual display device using the sme

Info

Publication number
JP2001166211A
JP2001166211A JP2000305806A JP2000305806A JP2001166211A JP 2001166211 A JP2001166211 A JP 2001166211A JP 2000305806 A JP2000305806 A JP 2000305806A JP 2000305806 A JP2000305806 A JP 2000305806A JP 2001166211 A JP2001166211 A JP 2001166211A
Authority
JP
Japan
Prior art keywords
optical system
image
optical
pupil
relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000305806A
Other languages
Japanese (ja)
Other versions
JP3597456B2 (en
Inventor
Kokichi Kenno
孝吉 研野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2000305806A priority Critical patent/JP3597456B2/en
Publication of JP2001166211A publication Critical patent/JP2001166211A/en
Application granted granted Critical
Publication of JP3597456B2 publication Critical patent/JP3597456B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a decentering optical system for a visual display device with which observation can be made at an observation angle of view of >=40 deg., a bright image flat to a periphery can be observed and further a wide exit pupil diameter is assured. SOLUTION: The decentering optical system including an optical surface which is arranged between an image plane 14 and the pupil 2 and is decentered from at least the optical axis includes at least a first transmission surface and a second reflection surface 3 in such a manner that the image plane is formed as a relay image in the optical path and that the relay image is introduced to the pupil. The first reflection surface is decentered and arranged by directing its concave surface toward a direction where rays are reflected. Its shape is composed of an aspherical surface shape including an aspherical surface coefficient which is not rotationally symmetric but is rotationally asymmetric. The first transmission surface is arranged nearer the image plane side than the first reflection surface on the optical path and is composed of the aspherical surface shape including the aspherical surface coefficient which is rotationally asymmetric in order to correct the astigmatism which is not rotationally symmetric generated by at least the first reflection surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【産業上の利用分野】本発明は、偏心光学系及びそれを
用いた視覚表示装置に関し、特に、観察者の頭部又は顔
面に保持することを可能とする頭部又は顔面装着式視覚
表示装置に用いられる偏心光学系とその視覚表示装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eccentric optical system and a visual display device using the same, and more particularly, to a head or face-mounted visual display device capable of being held on the head or face of an observer. The present invention relates to an eccentric optical system used for the above and a visual display device thereof.

【従来の技術】従来、頭部装着式視覚表示装置として、
図21に平面図を示したようなものが知られている(米
国特許第4026641号)。これは、CRTのような
画像表示素子46の像を画像伝達素子25で物体面12
に伝達し、この物体面12の像をトーリック反射面10
によって空中に投影するようにしたものである。さら
に、本出願人による先行技術として、特願平3−295
874号において、偏心して配置した凹面接眼光学系
と、偏心して配置したリレー光学系を使用した頭部装着
式視覚表示装置がある。その1実施例の断面図を図22
に示す。図中Pは観察者眼球13の回旋中心、Cは観察
者にとって正面に相当する観察視軸、Q1 は観察者瞳位
置、S8 はTを回転中心軸とする回転楕円体、16はそ
の回転楕円体の反射面、17はリレー光学系の光軸、Q
2 は回転楕円体の焦点、15はリレー光学系、14は2
次元画像表示素子である。
2. Description of the Related Art Conventionally, as a head mounted visual display device,
FIG. 21 is a plan view showing a known example (U.S. Pat. No. 4,026,641). This is because the image of the image display element 46 such as a CRT is transferred to the object plane 12 by the image transmission element 25.
To the toric reflecting surface 10
Is projected in the air. Further, as prior art by the present applicant, Japanese Patent Application No. 3-295
No. 874, there is a head mounted visual display device using an eccentrically arranged concave eyepiece optical system and an eccentrically arranged relay optical system. FIG. 22 is a sectional view of the first embodiment.
Shown in Figure P is the center of rotation of the observer's eye 13, C is observed visual axis corresponding to the front for the observer, Q 1 is observer's pupil position, S 8 are spheroidal to the rotation center axis T, 16 thereof Spheroidal reflecting surface, 17 is the optical axis of the relay optical system, Q
2 is the focal point of the spheroid, 15 is the relay optical system, 14 is 2
It is a two-dimensional image display element.

【発明が解決しようとする課題】頭部装着式視覚表示装
置にとって、装置全体の大きさを小さくすることと、重
量を軽くすることは、装着性を損なわなくするために重
要な点である。この装置全体の大きさを決定する要因
は、光学系のレイアウトである。装置全体を小型にする
ためには、2次元画像表示素子を凸レンズで拡大して直
接観察する直視型のレイアウトでは、観察者顔面からの
装置突出量が大きくなる。さらに、広い観察画角をとる
ためには、大きな正レンズ系と大きな2次元画像表示素
子を使用する必要があり、装置が大きくなると同時に、
重くなる。疲労を感じさせずに長時間の観察を可能とし
たり、簡単に着脱するためには、観察者の眼球直前に反
射面からなる接眼光学系を配置した構成が望ましい。こ
れにより、2次元画像表示素子と照明光学系等を観察者
の頭部周辺に小さくまとめて配置でき、装置の突出量が
減ると同時に、軽量化が可能となる。次に、大きな画角
を確保することは、画像観察時の臨場感を上げるために
必要である。特に、提示される画像の立体感は提示画角
によって決まってしまう(テレビジョン学会誌 Vol.45,
No.12, pp.1589-1596(1991))。広い画角と高い解像力
が得られる光学系をいかにして実現するかが、次に重要
な問題となる。立体感・迫力感等を観察者に与えるため
には、水平方向で40°(±20°)以上の提示画角を
確保することが必要であると同時に、120°(±60
°)付近でその効果は飽和してしまうことが知られてい
る。つまり、40°以上で、なるべく120°に近い観
察画角にすることが望ましい。しかし、上記の接眼光学
系が平面の反射鏡の場合は、観察者の眼球に上記の40
°以上の画角の光線を入射させようとした場合には、非
常に大きな2次元画像表示素子を必要とし、結局装置全
体が大きくて重いものとなってしまう。さらに、凹面鏡
は、その性質上、凹面鏡の表面に沿った凹面の強い像面
歪曲を発生するために、平面の2次元画像表示素子を凹
面鏡の焦点位置に配置すると、その観察像面は湾曲を起
こしてしまい、視野周辺まで明瞭な観察像を得ることは
できない。また、2次元画像表示素子の表示面を湾曲し
て配置する方法も、図21の先行技術のように存在す
る。しかし、図21のように凹面鏡を使用して、凹面鏡
の前側焦点位置に2次元画像表示素子を配置し、凹面鏡
のみで2次元画像表示素子を空中に拡大投影する配置を
とっても、40°以上の観察画角を提供する場合には、
凹面鏡の収差のために高い解像力を得ることは難しかっ
た。また、図22のような偏心配置の補正光学系を使用
する場合、その偏心補正光学系が顔面近傍に位置するた
めに、眼鏡等を使用しながら像を観察することができな
かった。これは、図22より明らかなように、眼鏡の縁
の部分が偏心補正光学系と干渉することと、観察像を形
成するリレー光学系からの光線が眼鏡レンズに裏側から
当たってしまい、正常な観察像を観察することができな
くなってしまうことによる。本発明はこのような問題点
に鑑みてなされたものであり、広い観察画角を提供しつ
つ、小型・軽量で、高い解像力と大きい射出瞳径を持っ
た視覚表示装置、及び、このような視覚表示装置であり
ながら、眼鏡を掛けたまま観察できる視覚表示装置を提
供しようとするものである。以下、本発明の大きい射出
瞳径を提供する目的について説明する。光学系の射出瞳
径を大きくとらないと、周辺の画角を観察する時の眼の
回旋運動によって視野がケラレてしまう。この様子を図
4に示す。図(a)は、視野中心を観察している観察者
の眼1の瞳位置2が光学系の射出瞳径位置に合っている
場合であり、図(b)は、視野周辺を観察しようとして
観察者が眼1をその方向に回旋させて見ようとした場合
であり、観察者の瞳2と眼球1の回旋中心がズレている
ために、図(b)においては、あたかも瞳2が横ズレし
たようになる。このため、例えば左方向を観察しようと
して眼球1を左に回すと、右側の視野がケラレて見えな
くなる問題が発生する。また、観察者の瞳と装置自体の
射出瞳は、装置の装着状態で変化する。観察者の瞳径に
対してある程度余裕を持った射出瞳径を持った装置でな
いと、装置装着時や観察者の個人差によって起こる観察
者瞳位置と装置の射出瞳位置のズレを吸収できずに、観
察者の瞳で観察画像が遮られ、広い観察画角を確保する
ことはできない。この問題を解決するためには、観察系
の射出瞳径を大きく設計することが重要となる。一般の
カメラレンズでも、瞳径を大きくすること、すなわち、
Fナンバーを小さくすることは、レンズの収差補正上難
しくなり、瞳径を2倍にすることには大変な困難が伴
う。例えば、Fナンバー2.8で焦点距離50mmのカ
メラ用標準レンズとFナンバー1.4の標準レンズで
は、その構成枚数は3枚のトリプレットタイプから6枚
のガウスタイプにする必要がある。このように、瞳径
(Fナンバー)を2倍にすることは、光学系の構成を大
きく変え、レンズ構成の大形化を招いてしまう。ところ
で、一般の人の約半数は近視・乱視等の視覚障害を持っ
ている。近年、コンタクトレンズが普及してコンタクト
レンズ装着者の割合が増えてはいるが、コンタクトレン
ズは、その取扱いや保守性から一部の人の使用に限られ
ており、価格や取扱い等の問題で眼鏡を使用している人
が殆どである。眼鏡を利用している人が眼鏡を取った裸
眼により、例えば図21〜22のような視覚表示装置を
装着して、明瞭な観察画像を観察できるようにするに
は、視覚表示装置側に何らかの視度補正手段を設ける必
要がある。しかし、小型・軽量を目的とする本発明のよ
うな視覚表示装置に乱視を含めた視度補正手段を設ける
ことは、装置の大型化と重量の増大を招くと共に、装置
側の視度補正量を観察者に合うよう適切に調整できるよ
うにすることは非常に難しくなる。また、間違った視度
で正常な観察視力を持った観察者が長時間観察してしま
った場合、その観察者の視度が逆に装置側の間違った視
度に順応してしまって、観察者の視力が悪くなってしま
う危険性もある。さらに、2次元画像表示素子の空中像
と外界の観察像を重畳して観察する所謂「スーパーイン
ポーズ」での観察では、外界の像の視度と視覚表示装置
により空間に投影された空中像との両方に視度補正機構
を付加することが必要になり、ますます装置の大型化を
招いてしまう。本発明は上記の問題点を解決するために
なされたものであり、その第1の目的は、40°(±2
0°)以上の観察画角で観察でき、かつ、周辺までフラ
ットで鮮明な画像が観察でき、さらに、広い射出瞳径を
確保した視覚表示装置用の偏心光学系を提供することで
ある。また、本発明の別の目的は、眼鏡等を装着したま
ま空間に投影された広い観察画角の空中像を鮮明に観察
することが可能な視覚表示装置用の偏心光学系を提供す
ることである。
SUMMARY OF THE INVENTION For a head mounted type visual display device, it is important to reduce the size of the entire device and to reduce the weight so as not to impair the wearability. The factor that determines the size of the entire apparatus is the layout of the optical system. In order to reduce the size of the entire apparatus, in a direct-view layout in which the two-dimensional image display element is directly observed by enlarging the two-dimensional image display element with a convex lens, the amount of projection of the apparatus from the observer's face increases. Furthermore, in order to obtain a wide observation angle of view, it is necessary to use a large positive lens system and a large two-dimensional image display element.
Heavier. In order to enable long-term observation without causing fatigue and to easily attach and detach the eyepiece, it is desirable to employ a configuration in which an eyepiece optical system including a reflective surface is arranged immediately before the eyeball of the observer. Thus, the two-dimensional image display element and the illumination optical system can be arranged in a small area around the observer's head, so that the projection amount of the apparatus is reduced and the weight can be reduced. Next, it is necessary to secure a large angle of view in order to increase the sense of reality during image observation. In particular, the stereoscopic effect of the presented image is determined by the angle of view (Television Society Journal Vol.45,
No. 12, pp. 1589-1596 (1991)). The next important issue is how to realize an optical system that can obtain a wide angle of view and high resolution. In order to give the observer a three-dimensional feeling and a powerful feeling, it is necessary to secure a presentation angle of view of 40 ° (± 20 °) or more in the horizontal direction, and at the same time, to provide 120 ° (± 60 °).
It is known that the effect saturates around (°). That is, it is desirable to set the observation angle of view to 40 ° or more and as close as possible to 120 °. However, when the eyepiece optical system is a flat reflecting mirror, the above-mentioned 40-degree eyeball is placed on the eyeball of the observer.
If a light beam having an angle of view of more than ° is to be incident, a very large two-dimensional image display element is required, and the whole device is eventually large and heavy. Further, due to the nature of the concave mirror, in order to generate strong image field distortion of the concave surface along the surface of the concave mirror, when the planar two-dimensional image display element is arranged at the focal position of the concave mirror, the observation image plane becomes curved. And a clear observation image cannot be obtained up to the periphery of the visual field. A method of arranging the display surface of the two-dimensional image display element in a curved manner also exists as in the prior art shown in FIG. However, even if the two-dimensional image display element is arranged at the front focal position of the concave mirror using a concave mirror as shown in FIG. 21 and the two-dimensional image display element is magnified and projected in the air using only the concave mirror, the angle is 40 ° or more. When providing the observation angle of view,
It was difficult to obtain high resolution due to the aberration of the concave mirror. Further, when a correction optical system having an eccentric arrangement as shown in FIG. 22 is used, the image cannot be observed while using glasses or the like because the eccentricity correction optical system is located near the face. This is because, as is apparent from FIG. 22, the edge portion of the spectacles interferes with the eccentricity correction optical system, and the light beam from the relay optical system that forms the observation image hits the spectacle lens from the back side. This is because the observation image cannot be observed. The present invention has been made in view of such a problem, and provides a wide viewing angle of view, and is compact and lightweight, and has a high resolution and a large exit pupil diameter. An object of the present invention is to provide a visual display device that can be observed while wearing glasses while being a visual display device. Hereinafter, an object of the present invention for providing a large exit pupil diameter will be described. If the diameter of the exit pupil of the optical system is not large, the visual field will be vignetted by the rotational movement of the eye when observing the peripheral angle of view. This is shown in FIG. FIG. 7A shows a case where the pupil position 2 of the eye 1 of the observer observing the center of the visual field matches the exit pupil diameter position of the optical system, and FIG. In this case, the observer tries to rotate the eye 1 in that direction and looks at it. Since the center of rotation of the pupil 2 of the observer and the center of rotation of the eyeball 1 are misaligned, in FIG. It will be like. For this reason, for example, when the eyeball 1 is turned to the left to observe the left direction, a problem occurs that the right visual field becomes invisible due to vignetting. In addition, the pupil of the observer and the exit pupil of the device itself change depending on how the device is worn. Unless the device has an exit pupil diameter with some allowance for the observer's pupil diameter, it is not possible to absorb the difference between the observer's pupil position and the device's exit pupil position that occurs when the device is attached or due to individual differences between observers In addition, the observation image is obstructed by the observer's pupil, and a wide observation angle of view cannot be secured. In order to solve this problem, it is important to design the exit pupil diameter of the observation system to be large. Even with a general camera lens, increasing the pupil diameter, that is,
Reducing the F-number becomes difficult in correcting aberrations of the lens, and doubling the pupil diameter involves great difficulty. For example, in the case of a camera standard lens having an F number of 2.8 and a focal length of 50 mm and a standard lens having an F number of 1.4, the number of components must be changed from three triplet types to six Gaussian types. As described above, doubling the pupil diameter (F number) greatly changes the configuration of the optical system and causes the lens configuration to be large. By the way, about half of ordinary people have visual impairments such as myopia and astigmatism. In recent years, contact lenses have become widespread and the proportion of contact lens wearers has increased.However, contact lenses are limited to use by some people because of their handling and maintainability. Most people use glasses. In order for a person using the glasses to wear a visual display device as shown in, for example, FIGS. It is necessary to provide diopter correction means. However, providing a diopter correction means including astigmatism in a visual display device such as the present invention for the purpose of small size and light weight causes an increase in the size and weight of the device, and a diopter correction amount on the device side. It would be very difficult to be able to properly adjust to fit the observer. In addition, if an observer who has normal vision with a wrong diopter observes for a long time, the diopter of the observer will reversely adapt to the wrong diopter on the device side, and There is also a risk that the eyesight of the elderly will deteriorate. Furthermore, in the so-called “superimposition” observation in which the aerial image of the two-dimensional image display element and the observation image of the outside world are superimposed and observed, the diopter of the outside world image and the aerial image projected into space by the visual display device In both cases, it is necessary to add a diopter correction mechanism, which further increases the size of the apparatus. SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and a first object of the present invention is to provide a camera having an angle of 40 ° (± 2).
An object of the present invention is to provide an eccentric optical system for a visual display device capable of observing at an observation angle of view of 0 ° or more, observing a flat and clear image to the periphery, and securing a wide exit pupil diameter. Another object of the present invention is to provide an eccentric optical system for a visual display device capable of clearly observing an aerial image with a wide observation angle of view projected on a space while wearing glasses or the like. is there.

【課題を解決するための手段】上記目的を達成する本発
明の第1の偏心光学系は、像面と瞳との間に配置され、
少なくとも光軸に対して偏心した光学面を含んだ偏心光
学系において、前記偏心光学系は、前記像面をリレー像
として光路中に形成し、前記リレー像を前記瞳に導くよ
うに、少なくとも、第1透過面と、第1反射面とを含
み、前記第1反射面が、光線を反射させる方向に凹面を
向けて偏心配置され、その形状が回転対称ではなく、回
転非対称な非球面係数を含んだ非球面形状にて構成さ
れ、前記第1透過面が、光路上、前記第1反射面よりも
前記像面側に配置され、少なくとも前記第1反射面によ
って発生する回転対称ではない非点隔差を補正するため
に回転非対称な非球面係数を含んだ非球面形状にて構成
されていることを特徴とするものである。本発明の第2
の偏心光学系は、像面と瞳との間に配置され、少なくと
も光軸に対して偏心した光学面を含んだ偏心光学系にお
いて、前記偏心光学系は、前記像面をリレー像として光
路中に形成し、前記リレー像を前記瞳に導くように、少
なくとも、第1透過面と、第1反射面とを含み、前記第
1反射面が、光線を反射させる方向に凹面を向けて偏心
配置され、その面形状が前記第1反射面に入射する光軸
と反射後に射出する光軸の両方の光軸を含んだY−Z平
面を断面とした時の面形状と、前記Y−Z平面と光軸上
垂直なX−Z平面を断面とした時の面形状とが互いに異
なった回転非対称な非球面形状にて構成され、前記第1
透過面が、光路上、前記第1反射面よりも前記像面側に
配置され、少なくとも前記第1反射面によって発生する
回転対称ではない非点隔差を補正するために前記Y−Z
平面を断面した時の面形状と、前記Y−Z平面と光軸上
垂直なX−Z平面を断面とした時の面形状とが互いに異
なった回転非対称な非球面形状にて構成されていること
を特徴とするものである。これらの場合、偏心光学系
が、前記第1透過面とは別に、第2透過面を有し、第2
透過面は、第1透過面と相関して、少なくとも第1反射
面によって発生する回転対称ではない非点隔差を補正す
る回転非対称な非球面形状にて構成されていることが望
ましい。そして、偏心光学系は、第1透過面と像面との
間に、前記リレー像を形成するリレー光学群を配置し、
リレー光学群は、平面状の前記像面を、湾曲した曲面状
のリレー像として光路内にリレーするように構成されて
いることが望ましい。また、第1反射面は、瞳中心を透
過する光軸の直線上に傾いて配置されていることが望ま
しい。また、第1反射面は、その反射面にて光軸が反射
屈曲される時の屈曲角度が60°以上となるように構成
されていることが望ましい。なお、本発明は、像面上に
配置された画像表示素子と、以上の何れかの偏心光学系
とを含んでなる視覚表示装置を含むものである。
A first decentering optical system according to the present invention for achieving the above object is disposed between an image plane and a pupil,
In an eccentric optical system including an optical surface decentered at least with respect to the optical axis, the eccentric optical system forms the image plane in a light path as a relay image and guides the relay image to the pupil, at least. A first transmission surface and a first reflection surface, wherein the first reflection surface is eccentrically arranged with a concave surface facing in a direction in which light rays are reflected, and the shape of the first reflection surface is not rotationally symmetric but rotationally asymmetric. Wherein the first transmitting surface is disposed on the optical path on the image surface side with respect to the first reflecting surface, and is not a rotationally symmetric astigmatism generated by at least the first reflecting surface. It is characterized in that it has an aspherical shape including a rotationally asymmetrical aspherical coefficient for correcting a difference. Second embodiment of the present invention
The decentered optical system is disposed between an image plane and a pupil, and in an decentered optical system including at least an optical surface decentered with respect to an optical axis, the decentered optical system uses the image plane as a relay image in an optical path. And at least a first transmission surface and a first reflection surface so as to guide the relay image to the pupil, wherein the first reflection surface is eccentrically arranged with a concave surface facing in a direction in which light rays are reflected. A surface shape when the YZ plane including both the optical axis incident on the first reflection surface and the optical axis emitted after reflection is defined as a cross section, and the YZ plane And an X-Z plane perpendicular to the optical axis as a cross-section, and are formed in mutually different rotationally asymmetric aspherical shapes.
A transmission surface is disposed on the image path side of the optical path relative to the first reflection surface, and the YZ is used to correct at least a rotationally non-symmetric astigmatism generated by the first reflection surface.
The plane shape when the plane is sectioned and the plane shape when the XZ plane perpendicular to the optical axis is the XZ plane are different from each other in the rotationally asymmetric aspherical shape. It is characterized by the following. In these cases, the decentered optical system has a second transmission surface separately from the first transmission surface,
Preferably, the transmission surface has a rotationally asymmetric, aspherical shape that corrects at least a non-rotationally symmetric astigmatic difference generated by the first reflection surface in correlation with the first transmission surface. And the decentering optical system arranges a relay optical group that forms the relay image between the first transmission surface and the image surface,
It is preferable that the relay optical group is configured to relay the planar image surface into a light path as a curved and curved relay image. Further, it is desirable that the first reflection surface is arranged to be inclined on a straight line of the optical axis passing through the center of the pupil. Further, it is desirable that the first reflecting surface is configured such that the bending angle when the optical axis is reflected and bent at the reflecting surface is 60 ° or more. The present invention includes a visual display device including an image display device arranged on an image plane and any one of the above-described decentered optical systems.

【作用】以下、上記配置をとる理由と作用について説明
する。以下は、設計上の利便性から、観察者瞳位置から
2次元画像表示素子へ向けて光線を追跡する逆追跡の光
路に沿って説明する。接眼凹面反射光学系とリレー光学
系の間に配置された偏心補正光学素子は、偏心して配置
された接眼凹面反射光学系で発生する光軸に対して対称
ではない収差を補正するためのものである。以下、上記
配置をとる理由について、リレー光学系を省略した図3
を用いて説明する。図3は、観察者の右眼に当たる光学
系の接眼凹面鏡によって発生する像面湾曲を逆追跡によ
って示した図である。この図は右眼用の光学系であり、
左眼用の光学系はこれと対称に配置される。この図にお
いて、観察者眼球を1、観察者瞳位置を2、接眼凹面鏡
を3、観察者の視軸を4、接眼凹面鏡3による無限遠物
体の像面を5、接眼凹面鏡3によって屈曲した光軸を
6、接眼凹面鏡3による観察者の瞳投影位置を7で示
す。この図は、観察者眼球位置1での瞳径は8mm、追
跡光線の画角は50°(半画角25°)と、35°(半
画角17.5°)の光線を示している図である。前記の
ように、観察画角が40°を越える広画角の接眼凹面反
射光学系では、凹面鏡の結像特性として、凹面鏡の焦点
面5は湾曲してしまう。観察画角の中心である視軸4
は、接眼凹面鏡3によって反射され、光軸6となる。凹
面鏡3を視軸4に対して偏心して配置しているために、
像面5と光軸6は垂直にならずに、光軸6に対して斜め
に傾いた像面5として形成される。つまり、偏心した凹
面鏡3で光軸6までも屈曲させているために、観察画角
の中心である光軸6に対して傾いてなおかつ湾曲した像
面5を形成する。この像面湾曲は、凹面反射鏡3を非球
面で構成しても、トーリック面で構成しても、同じであ
る。この像面をリレー光学系で2次元画像表示素子上に
投影することは、傾いて湾曲した物体面を平面の2次元
画像表示素子上に投影することをリレー光学系に要求す
ることとなる。本発明のような偏心補正光学系がなくと
も、リレーレンズ系の偏心と2次元画像表示素子の傾き
によって、像面の傾きと像面湾曲を補正できることは、
一般に周知の事実であるが、本発明のように大きな瞳径
と高い解像力を同時に満足することは困難で、大掛かり
なリレー光学系が必要となる。そこで、本発明において
は、光軸に対して傾いていて湾曲した物体面を光軸に対
して垂直に起こすと共に像面湾曲を補正する偏心補正光
学系を、接眼凹面反射光学系とリレー光学系の間の像面
近傍に配置することで、上記のような像面の光軸に対す
る傾きと湾曲を同時に補正することに成功したものであ
る。この偏心補正光学系の少なくとも1つの面は、光軸
に対して傾いていることはもちろん、リレー光学系の光
軸に対しても傾いていると同時に、偏心補正光学系の2
つの面も互いに偏心した面で構成することが好ましい。
これは、接眼凹面鏡による像面が単に傾いた平面ではな
く、湾曲を持った曲面になっていて、なおかつ、傾いて
いるためである。この傾いた像面を平面に補正するため
には、複雑に偏心した曲面で上記偏心補正光学系を構成
する必要がある。このような構成をとる効果について、
図1の本発明の概念図を用いて説明する。図1の概念図
において、観察者眼球位置を1、観察者虹彩位置を2、
接眼凹面鏡を3、観察者視軸を4、接眼凹面鏡3による
無限遠物体の像面を5、接眼凹面鏡3で反射された視軸
を6、偏心補正光学系を8、偏心補正光学系8を射出し
た後の光軸を9、偏心補正光学系8で補正された像面を
18で示す。先ず、第1に、偏心補正光学系8が楔状を
していることが重要である。図1に示すように、楔状の
偏心補正光学系8は、視軸6に対して非対称な光路長を
持つことによって、視軸6に対して傾いて形成される像
5を光軸9に対してほぼ垂直な像面18に変換する作用
がある。次に、視軸に対して対称な像面湾曲を補正する
ために、リレー光学系(図1中では省略)に対して凹面
を向けている像面湾曲補正のために、偏心補正光学系8
の第1面S1 を図1のS2 のように凸面することで、上
記像面湾曲を補正できる。これにより、リレー光学系は
平坦な像面を2次元画像表示素子に投影するだけですむ
ので、リレー光学系の収差補正の負担が大幅に減り、小
型のリレー光学系で構成することに成功したものであ
る。図2に本発明による偏心補正光学系の光路図を示
す。この図は後記する実施例1の偏心補正光学系による
補正状態を示すもので、図において、観察者眼球を1、
観察者瞳位置を2、接眼凹面鏡を3、観察者の視軸を
4、接眼凹面鏡3による像面を5、接眼凹面鏡3と図示
しないリレー光学系の間に配置される偏心補正光学系を
8、接眼凹面鏡3及び偏心補正光学系8によって屈曲し
た光軸を9、接眼凹面鏡3及び偏心補正光学系8による
観察者の瞳2の投影位置を7、接眼凹面鏡3と偏心補正
光学系8によって補正された像面を18で示す。この光
路図から明らかなように、接眼凹面鏡3による像面5
は、偏心補正光学系8によって光軸9に対して垂直で平
坦な像面18に補正される。このように、偏心した面で
構成されている偏心補正光学系8によって、リレー光学
系での収差補正の負担が減り、本発明のように、大きな
瞳径を確保しつつ、高い解像力を満足した観察光学系と
することが可能となる。なお、上記のように、偏心補正
光学系8の第1面と第2面は、軸上光線に対して楔状を
していることが、像面の傾きを補正し、解像力の高い観
察像を提供するために重要である。さらに好ましくは、
接眼凹面鏡3で発生した非点収差は、接眼凹面鏡3が偏
心して配置されているために、視軸に対して回転対称で
はない複雑な非点隔差を発生させている。この複雑な非
点隔差を補正するために、偏心補正光学系8はアナモル
フィク面で構成することが望ましく、図2の紙面内のY
−Z軸面内の屈折力より、紙面と垂直なX−Z軸面内の
屈折力が小さくなるように構成することが、非点収差を
補正して解像力の高い観察像を視野周辺まで提供するた
めに必要となる。さらに好ましくは、偏心補正光学系8
の接眼凹面鏡3側の面を凸面で構成することが、収差補
正上好ましい。このことは、像面5の湾曲の形に偏心補
正光学系8の1面を合わせる形となる。これによって、
この偏心補正光学系8を通過する光線の光路長が光軸近
傍より周辺画角で短くなるために、像面湾曲補正に有利
になるからである。このことは、偏心補正光学系8の役
割が、像面湾曲を補正する役割が比較的強い時に重要と
なる。さらに好ましくは、偏心補正光学系とリレー光学
系、像面の偏心との両方を組み合わせることによって、
更に良好な収差補正ができることは、言うまでもない。
また、さらに好ましくは、偏心補正光学系又は接眼凹面
鏡を非球面にすることによって、図1の偏心補正光学系
8のように、リレー光学系に入射する瞳収差を補正する
ことが可能となり、リレー光学系の収差補正の負担が減
り、リレー光学系を小型にできる。さらに好ましくは、
光軸6(図1)に対して、リレー光学系の一部又は全部
を傾けて配置することにより、偏心補正光学系8で発生
する色収差に対しても、リレー光学系で補正することが
可能となる。さらに好ましくは、偏心補正光学系の像面
の傾き補正の負担を減らし、色収差補正によい結果を得
るように、2次元画像表示素子を傾けて配置すると、全
体の性能に良い結果を与える。さらに、接眼凹面反射光
学系3の前側焦点位置より凹面鏡3から離れた位置に観
察者の瞳2位置を配置すると、接眼凹面鏡3の像面5を
小さくすることが可能となり、観察者頭部と偏心補正光
学素子8との干渉が避けやすく、接眼凹面光学系3の焦
点距離をFR 、接眼凹面光学系3と観察者虹彩位置2ま
での距離をDとするとき、 D>0.5×FR ・・・・(1) なる条件式(1)を満足することが好ましい。上記条件
式(1)の下限を越えると、接眼凹面鏡3で反射した光
線が極端に広がってしまい、偏心補正光学系8が大きく
なり、観察者頭部に当たってしまう。また、リレー光学
系が大型となり、装置全体が大型のものになってしま
う。また、接眼凹面反射光学系3と観察者眼球1の虹彩
位置2又は眼球回旋点との距離は、接眼凹面反射光学系
3を観察者眼球1直前に配置するために、余りに短い
と、観察者の睫毛に当たったり恐怖感を与えてしまう。
このために、接眼凹面反射光学系3と観察者虹彩位置2
又は眼球回旋点までの距離Dは30mm以上離して配置
することが望ましく、 D>30 〔mm〕 ・・・・(2) なる条件(2)を満足することが好ましい。さらに、第
2の本発明のように、視軸の屈曲角を60°以上傾ける
ようにすると、接眼凹面反射鏡によって発生する像面の
屈曲後の視軸に対する傾きと、凹面反射鏡に斜めに光束
が入射するために発生する複雑な非点収差の発生とによ
り、観察画角周辺まで明瞭な観察像を観察することがで
きない。上記の収差を補正するためには、偏心補正光学
系の第1面と第2面のY−Z軸平面(観察者の左右方向
と視軸を含む平面)内での曲率半径をRY1、RY2とする
とき、 RY1/RY2<0.5 ・・・・(3) なる条件(3)を満足することが重要である。この条件
(3)は、偏心補正光学系のY−Z平面内での屈折力を
表している。ただし、本発明の場合は、偏心補正光学系
の第1面と第2面はお互いに偏心しているので、厳密に
は屈折力を定義することは不可能である。本発明のよう
な光学系の場合、この条件式(3)の上限の0.5を越
えると、特に60°以上の屈曲角を接眼凹面鏡で得る場
合、接眼凹面光学系で発生する強い像面湾曲を補正する
ことが難しくなる。この像面湾曲は凹面鏡で発生するも
ので、比較的屈曲角が小さい場合は、屈曲後の視軸に対
して垂直であり、かつ、曲率も緩い像面となる。しか
し、屈曲角が60°を越えてくると、視軸に対する傾き
と曲率が共に大きくなり、この強い像面湾曲と像面の傾
きをリレー光学系で補正できる限界を越えてしまう。さ
らに、偏心補正光学系でも、上記条件式(3)に示す範
囲を越えると、湾曲補正が不可能となり、フラットで鮮
明な観察像を得ることができなくなってしまう。
The reason and operation of the above arrangement will be described below. The following description will be made along the optical path of reverse tracing for tracing light rays from the observer's pupil position to the two-dimensional image display element for convenience in design. The eccentricity correcting optical element arranged between the eyepiece concave reflecting optical system and the relay optical system is for correcting aberrations that are not symmetrical with respect to the optical axis generated by the eccentrically arranged eyepiece concave reflecting optical system. is there. The reason for the above arrangement will be described below with reference to FIG.
This will be described with reference to FIG. FIG. 3 is a diagram showing the field curvature generated by the eyepiece concave mirror of the optical system corresponding to the observer's right eye by reverse tracking. This figure is the optical system for the right eye,
The optical system for the left eye is symmetrically arranged. In this figure, the observer's eyeball is 1, the observer's pupil position is 2, the eyepiece concave mirror is 3, the observer's visual axis is 4, the image plane of the object at infinity by the eyepiece concave mirror 3 is 5, the light bent by the eyepiece concave mirror 3. The axis is indicated by 6 and the pupil projection position of the observer by the ocular concave mirror 3 is indicated by 7. In this figure, the pupil diameter at the observer's eyeball position 1 is 8 mm, and the angles of view of the tracking rays are 50 ° (half angle of view 25 °) and 35 ° (half angle of view 17.5 °). FIG. As described above, in an eyepiece concave reflection optical system having a wide angle of view exceeding 40 °, the focal plane 5 of the concave mirror is curved as an imaging characteristic of the concave mirror. Visual axis 4 which is the center of the angle of view
Is reflected by the eyepiece concave mirror 3 and becomes the optical axis 6. Since the concave mirror 3 is arranged eccentrically with respect to the visual axis 4,
The image plane 5 and the optical axis 6 are not perpendicular to each other, but are formed as an image plane 5 that is obliquely inclined with respect to the optical axis 6. That is, since the optical axis 6 is also bent by the decentered concave mirror 3, the image plane 5 which is inclined and curved with respect to the optical axis 6, which is the center of the observation angle of view, is formed. This curvature of field is the same whether the concave reflecting mirror 3 is formed of an aspherical surface or a toric surface. Projecting this image plane on a two-dimensional image display element with a relay optical system requires the relay optical system to project an inclined and curved object surface onto a planar two-dimensional image display element. Even without the eccentricity correction optical system as in the present invention, the inclination of the image plane and the curvature of the field can be corrected by the eccentricity of the relay lens system and the inclination of the two-dimensional image display element.
As is generally known, it is difficult to simultaneously satisfy a large pupil diameter and high resolution as in the present invention, and a large-scale relay optical system is required. Therefore, in the present invention, an eccentricity correction optical system that raises an object surface that is tilted and curved with respect to the optical axis perpendicular to the optical axis and corrects field curvature is provided by an ocular concave reflecting optical system and a relay optical system. By arranging them near the image plane, the inclination and curvature of the image plane with respect to the optical axis as described above can be corrected simultaneously. At least one surface of the eccentricity correction optical system is inclined not only with respect to the optical axis but also with respect to the optical axis of the relay optical system.
It is preferable that the two surfaces are also constituted by eccentric surfaces.
This is because the image plane formed by the eyepiece concave mirror is not merely a plane that is inclined but a curved surface having a curve, and is also inclined. In order to correct the tilted image plane to a plane, it is necessary to configure the eccentricity correction optical system with a complicatedly decentered curved surface. Regarding the effect of taking such a configuration,
This will be described with reference to the conceptual diagram of the present invention shown in FIG. In the conceptual diagram of FIG. 1, the observer eyeball position is 1, the observer iris position is 2,
The eyepiece concave mirror is 3, the observer's visual axis is 4, the image plane of the object at infinity by the eyepiece concave mirror 3 is 5, the visual axis reflected by the eyepiece concave mirror 3 is 6, the eccentricity correcting optical system is 8, and the eccentricity correcting optical system 8 is The optical axis after the emission is indicated by 9, and the image plane corrected by the eccentricity correction optical system 8 is indicated by 18. First, it is important that the eccentricity correction optical system 8 is wedge-shaped. As shown in FIG. 1, the wedge-shaped eccentricity correcting optical system 8 has an optical path length that is asymmetrical with respect to the visual axis 6 so that the image 5 formed at an angle with respect to the visual axis 6 is formed with respect to the optical axis 9. To an image plane 18 which is substantially vertical. Next, an eccentricity correction optical system 8 is provided for correcting a field curvature symmetrical with respect to the visual axis, for correcting a field curvature having a concave surface with respect to the relay optical system (omitted in FIG. 1).
A first surface S 1 of By convex surface as S 2 in FIG. 1, it corrects the curvature of field. As a result, the relay optical system only needs to project a flat image surface onto the two-dimensional image display element, so that the burden of aberration correction on the relay optical system has been greatly reduced, and the relay optical system has been successfully constructed with a small relay optical system. Things. FIG. 2 shows an optical path diagram of the eccentricity correcting optical system according to the present invention. This figure shows a correction state by an eccentricity correction optical system according to Example 1 described later.
The observer's pupil position is 2, the eyepiece concave mirror is 3, the observer's visual axis is 4, the image plane by the eyepiece concave mirror 3 is 5, the eccentricity correcting optical system disposed between the eyepiece concave mirror 3 and the relay optical system (not shown) is 8 9, the optical axis bent by the eyepiece concave mirror 3 and the eccentricity correction optical system 8 is corrected by the eyepiece concave mirror 3 and the eccentricity correction optical system 8, and the projection position of the observer's pupil 2 is corrected by the eyepiece concave mirror 3 and the eccentricity correction optical system 8. The resulting image plane is shown at 18. As is apparent from this optical path diagram, the image plane 5 by the ocular concave mirror 3
Is corrected by the eccentricity correcting optical system 8 into a flat image plane 18 perpendicular to the optical axis 9. As described above, the eccentricity correction optical system 8 constituted by the eccentric surface reduces the burden of aberration correction in the relay optical system, and satisfies high resolution while securing a large pupil diameter as in the present invention. An observation optical system can be provided. As described above, the first surface and the second surface of the eccentricity correction optical system 8 are wedge-shaped with respect to the on-axis ray, so that the inclination of the image plane is corrected, and an observation image with high resolving power can be obtained. Important to provide. More preferably,
The astigmatism generated by the eyepiece concave mirror 3 causes a complicated astigmatism that is not rotationally symmetric with respect to the visual axis because the eyepiece concave mirror 3 is eccentrically arranged. In order to correct this complicated astigmatic difference, it is desirable that the eccentricity correcting optical system 8 is constituted by an anamorphic surface, and Y in the plane of FIG.
-A configuration in which the refractive power in the XZ-axis plane perpendicular to the paper surface is smaller than the refractive power in the Z-axis plane provides an observation image with high resolution to the periphery of the field of view by correcting astigmatism. Needed to do so. More preferably, the eccentricity correction optical system 8
It is preferable from the viewpoint of aberration correction that the surface on the side of the eyepiece concave mirror 3 be formed as a convex surface. This means that one surface of the eccentricity correction optical system 8 matches the shape of the curvature of the image plane 5. by this,
This is because the optical path length of the light beam passing through the eccentricity correction optical system 8 becomes shorter at the peripheral angle of view than near the optical axis, which is advantageous for correcting the field curvature. This becomes important when the role of the eccentricity correction optical system 8 is relatively strong in correcting the field curvature. More preferably, by combining both the eccentricity correction optical system and the relay optical system, the eccentricity of the image plane,
It goes without saying that better aberration correction can be performed.
Further, more preferably, by making the eccentricity correcting optical system or the ocular concave mirror aspherical, it becomes possible to correct the pupil aberration incident on the relay optical system as in the eccentricity correcting optical system 8 of FIG. The burden of correcting the aberration of the optical system is reduced, and the size of the relay optical system can be reduced. More preferably,
By arranging a part or all of the relay optical system at an angle with respect to the optical axis 6 (FIG. 1), the chromatic aberration generated in the eccentricity correcting optical system 8 can also be corrected by the relay optical system. Becomes More preferably, if the two-dimensional image display device is arranged at an angle so as to reduce the burden of correcting the tilt of the image plane of the eccentricity correcting optical system and obtain a good result for the chromatic aberration correction, a good result is obtained for the overall performance. Further, when the position of the pupil 2 of the observer is located at a position farther from the concave mirror 3 than the front focal position of the ocular concave reflective optical system 3, the image plane 5 of the ocular concave mirror 3 can be reduced, and the observer's head and When interference with the eccentricity correcting optical element 8 is easy to avoid, the focal length of the eyepiece concave optical system 3 is F R , and the distance between the eyepiece concave optical system 3 and the observer iris position 2 is D, D> 0.5 × F R · · · · (1) it is preferable to satisfy the conditional expression (1) comprising. If the lower limit of the conditional expression (1) is exceeded, the light beam reflected by the ocular concave mirror 3 will be extremely widened, and the eccentricity correction optical system 8 will become large and hit the observer's head. In addition, the relay optical system becomes large, and the whole device becomes large. Also, if the distance between the concave eyepiece reflective optical system 3 and the iris position 2 or the rotation point of the eyeball of the observer's eyeball 1 is too short because the eyepiece concave reflective optical system 3 is arranged immediately before the observer's eyeball 1, the observer may have a problem. It may hit your eyelashes or give you a sense of fear.
For this purpose, the eyepiece concave reflecting optical system 3 and the observer iris position 2
Alternatively, it is desirable that the distance D to the eyeball rotation point be 30 mm or more. D> 30 [mm] (2) It is preferable to satisfy the following condition (2). Further, as in the second aspect of the present invention, when the bending angle of the visual axis is inclined by 60 ° or more, the inclination of the image plane generated by the ocular concave reflecting mirror with respect to the visual axis after bending and the concave reflecting mirror are inclined. Due to the occurrence of complicated astigmatism caused by the incidence of the light beam, a clear observation image cannot be observed up to the periphery of the observation field angle. In order to correct the above aberration, the radius of curvature of the first surface and the second surface of the eccentricity correcting optical system in the YZ-axis plane (plane including the left-right direction and the visual axis of the observer) is R Y1 , When R Y2 is satisfied, it is important to satisfy the following condition (3): R Y1 / R Y2 <0.5 (3) This condition (3) represents the refractive power of the eccentricity correcting optical system in the YZ plane. However, in the case of the present invention, since the first surface and the second surface of the eccentricity correcting optical system are eccentric to each other, it is impossible to strictly define the refractive power. In the case of an optical system such as the present invention, if the upper limit of 0.5 to condition (3) is exceeded, particularly when a bending angle of 60 ° or more is obtained by an ocular concave mirror, a strong image plane generated by the ocular concave optical system It becomes difficult to correct the curvature. This curvature of field is generated by a concave mirror. When the bending angle is relatively small, the image surface is perpendicular to the visual axis after bending and has a gentle curvature. However, when the bending angle exceeds 60 °, both the inclination with respect to the visual axis and the curvature increase, and the strong curvature of field and the inclination of the image plane exceed the limit that can be corrected by the relay optical system. Further, even with the eccentricity correction optical system, if the value exceeds the range represented by the conditional expression (3), the curvature correction becomes impossible, and a flat and clear observation image cannot be obtained.

【実施例】以下、本発明の視覚表示装置の実施例1〜8
について説明する。 実施例1 図5を参照にしてこの実施例を説明する。図中、2は観
察者瞳位置、4は観察者が正面を観察している時の視
軸、3は接眼凹面鏡、8は偏心補正光学系、15はリレ
ー光学系、14は2次元画像表示素子である。座標系を
図示のように、観察者の左右方向の右から左を正方向と
するY軸、観察者の視軸4方向の眼球側から凹面鏡3側
を正方向とするZ軸、上下方向の上から下を正方向とす
るX軸と定義する。以下、この光学系の構成パラメータ
を示すが、面番号は、射出瞳2位置から2次元画像表示
素子14へ向かう逆追跡の面番号として示してある。偏
心量と傾き角は、凹面鏡3(面番号:2)についてはY
軸方向への偏心量のみが与えられ、その頂点が射出瞳2
中心を通る視軸4(Z軸方向)からのY軸方向へ偏心し
ている距離であり、偏心補正光学系8に関しては、各面
(面番号:3、4)の頂点の射出瞳2中心からのY軸正
方向及びZ軸正方向への偏心量と、その面の頂点を通る
中心軸のZ軸方向からの傾き角が与えられる。面の中心
軸の傾き角はZ軸正方向からY軸正方向へ向かう回転角
(図で反時計方向)を正方向の角度として与えられる。
リレー光学系15については、その第1面(面番号:
5)の頂点位置が偏心補正光学系8の各面と同様に与え
られ、その頂点を通る中心軸が光軸になり、その光軸の
傾き角が同様に与えられる。リレー光学系15の中の第
1面以外の特定面(面番号:8)の偏心量と傾き角は、
その面の頂点を通る中心軸(光軸)のその前の面の光軸
に直角な方向への偏心量と傾き角で与えられる。偏心量
と傾き角の表示のない面は、その前の面と同軸であるこ
とを表す。また、2次元画像表示素子14(面番号:1
3)については、その中心の射出瞳2中心からのY軸正
方向及びZ軸正方向への偏心量と、その面の法線のZ軸
方向からの傾き角とを与えてある。また、各面の非球面
形状は、座標系を図示のようにとり、各面の近軸曲率半
径を、Y−Z面(紙面)に垂直な面内での曲率半径をR
x 、Y−Z面内での曲率半径をRy とすると、次の式で
表される。 Z =[( X2/Rx )+ (Y2/Ry ) ]/[1+{ 1-(1+
x ) ( X2/Rx 2)-(1+Ky ) ( Y2/Ry 2)}1/2 ]+
AR[ (1-AP) X2+( 1+AP) Y2 2+BR[ (1-
BP) X2+( 1+BP) Y2 3 ここで、Kx はX方向の円錐係数、Ky はY方向の円錐
係数、AR、BRはそれぞれ回転対称な4次、6次の非
球面係数、AP、BPはそれぞれ非対称な4次、6次の
非球面係数である。また、面間隔は、射出瞳2と凹面鏡
3の間については、射出瞳2中心と凹面鏡3頂点間のZ
軸方向の間隔、リレー光学系15の第1面からその像面
(2次元画像表示素子14)に到る間隔は、その光軸に
沿う間隔で示してある。リレー光学系15については、
面の曲率半径をr1 〜ri で、面間隔をd1 〜di で、
d線の屈折率をn1 〜ni で、アッベ数をν1 〜νi
示す。 面番号 曲率半径 間隔 屈折率 アッベ数 (偏心量) (傾き角) 1(2) ∞(瞳) 47.010 2(3)Ry -71.040 0 Y:-29.891 Rx -53.671 Ky 0.059148 Kx -0.136469 AR 0.360349 ×10-7 BR 0.513037 ×10-12 AP -0.648988 BP -0.313565 3(8)Ry -53.284 0 n =1.554618 ν = 64.3 Rx -39.696 Y:-50.331 -7.811° Ky 1.206766 Z: 25.359 Kx 0.766839 AR -0.134492 ×10-6 BR 0 AP -0.172095 ×10+1 BP 0 4 Ry -42.641 0 Y:-38.199 40.344° Rx -36.603 Z: 23.012 Ky 0.399124 Kx 2.956479 AR 0.219886 ×10-6 BR 0 AP 0.134389 ×10+1 BP 0 5(r1 ) -32.003 (d1 ) -2 n1=1.7466 ν1= 36.2 Y:-46.509 24.174° Z: 7.7456 6(r2 ) -13.011 (d2 ) -13.735 n2=1.5540 ν2= 63.7 7(r3 ) 34.716 (d3 ) -20.957 8(r4 ) -171.983 (d4 ) -2 n3=1.75458 ν3= 27.6 Y: -5.912 2.250° 9(r5 ) -28.012 (d5 ) -5.638 n4=1.49815 ν4= 69.2 10(r6 ) 42.038 (d6 ) -0.5 11(r7 ) -35.519 (d7 ) -11.257 n5=1.64916 ν5= 55.1 12(r8 ) 99.244 (d8 ) -27.944 13(14) ∞(像面) Y: -5.140 19.829° 上記実施例の画角は、左右画角が45°、上下画角が3
4.65°で、瞳径8mmである。この実施例の収差補
正状態を示すスポットダイアグムを図13に示す。図1
3において、スポットダイアグムの左側の4つの数字の
中、上段の2つの数字は、長方形の画面中央の座標
(X,Y)を(0.00,0.00)、右端中央の座標
を(0.00,−1.00)、右上隅の座標を(1.0
0,−1.00)、上端中央の座標を(1.00,0.
00)のように表現した場合の座標(X,Y)を示し、
下段の2つの数字は、視軸(画面中央)に対して上記座
標(X,Y)方向がなす角度のX成分、Y成分(度表
示)を示す。 実施例2 図6を参照にして、実施例2について説明する。この実
施例の構成は実施例1と同じであるが、接眼凹面鏡3が
Y軸を軸とする回転楕円鏡からなる。以下、この光学系
の構成パラメータを示すが、面番号は、射出瞳2位置か
ら2次元画像表示素子14へ向かう逆追跡の面番号とし
て示してある。座標系のとり方、偏心量、傾き角の与え
方、各面の曲率半径、面間隔、屈折率、アッベ数も実施
例1と同様である。各面の非球面形状も同様であるが、
接眼凹面鏡3については、曲率半径をRとすると、次の
式で表される。 Z=(h2/R)/[1+{ 1-(1+K) ( h2/R2)}1/2 ]+
Ah4 +Bh6(h2 =X2 +Y2 ) ここで、Kは円錐係数、A、Bはそれぞれ4次、6次の
非球面係数である。 面番号 曲率半径 間隔 屈折率 アッベ数 (偏心量) (傾き角) 1(2) ∞(瞳) 47.010 2(3)R -41.559 0 Y: 28.650 90° K -0.209269 A 0 B 0 3(8)Ry -58.649 0 n =1.487 ν = 70.4 Rx -72.981 Y:-51.790 -6.803° Ky 1.167701 Z: 24.925 Kx 13.533262 AR 0.433130 ×10-6 BR 0 AP -0.154970 ×10+1 BP 0 4 Ry -39.220 0 Y:-38.119 38.781° Rx -40.106 Z: 21.847 Ky 1.764612 Kx 9.145229 AR -0.608546 ×10-6 BR 0 AP -0.264803 ×10+1 BP 0 5(r1 ) -41.419 (d1 ) -2 n1=1.7393 ν1= 28.3 Y:-36.766 31.972° Z: -0.3364 6(r2 ) -12.892 (d2 ) -9.785 n2=1.5680 ν2= 63.3 7(r3 ) 25.739 (d3 ) -16.142 8(r4 ) -197.047 (d4 ) -2 n3=1.7443 ν3= 28.0 Y: -5.6210 -4.4371 ° 9(r5 ) -29.566 (d5 ) -7.963 n4=1.5191 ν4= 67.2 10(r6 ) 35.243 (d6 ) -0.5 11(r7 ) -39.239 (d7 ) -9.350 n5=1.6552 ν5= 54.2 12(r8 ) 96.655 (d8 ) -29.206 13(14) ∞(像面) Y: -1.865 20.979° 上記実施例の画角は、左右画角が45°、上下画角が3
4.65°で、瞳径8mmである。この実施例の収差補
正状態を示す図13と同様なスポットダイアグムを図1
4に示す。 実施例3 図7を参照にして、実施例3について説明する。この実
施例の構成は実施例1と同じである。以下、この光学系
の構成パラメータを示すが、面番号は、射出瞳2位置か
ら2次元画像表示素子14へ向かう逆追跡の面番号とし
て示してある。座標系のとり方、偏心量、傾き角の与え
方、各面の曲率半径、面間隔、屈折率、アッベ数、非球
面形状も実施例1と同様である。 面番号 曲率半径 間隔 屈折率 アッベ数 (偏心量) (傾き角) 1(2) ∞(瞳) 46.462 2(3) -64.708 0 Y:-27.347 3(8)Ry -26.345 0 n =1.6516 ν = 58.5 Rx -309.984 Y:-46.547 -15.054° Ky -1.243826 Z: 14.919 Kx 281.323532 AR 0 BR 0 AP 0 BP 0 4 Ry -14.212 0 Y:-43.199 34.775° Rx 56.846 Z: 10.906 Ky -5.057 Kx -24.236217 AR 0 BR 0 AP 0 BP 0 5(r1 ) -39.631 (d1 ) -10 n1=1.5517 ν1= 47.1 Y:-47.054 18.088° Z:-25.910 6(r2 ) 8.830 (d2 ) -11.316 n2=1.7541 ν2= 28.5 7(r3 ) 37.113 (d3 ) -1 8(r4 ) -663.767 (d4 ) -2 n3=1.755 ν3= 27.6 9(r5 ) -16.847 (d5 ) -7.08 n4=1.6031 ν4= 60.7 10(r6 ) 24.972 (d6 ) -0.5 11(r7 ) -21.105 (d7 ) -4.427 n5=1.741 ν5= 52.7 12(r8 )1803.805 (d8 ) -18.488 13(14) ∞(像面) 上記実施例の画角は、左右画角が45°、上下画角が3
4.65°で、瞳径6mmである。この実施例の収差補
正状態を示す図13と同様なスポットダイアグムを図1
5に示す。 実施例4 図8を参照にして、実施例4について説明する。この実
施例の構成は実施例1とほぼ同じである。以下、この光
学系の構成パラメータを示すが、面番号は、射出瞳2位
置から2次元画像表示素子14へ向かう逆追跡の面番号
として示してある。座標系のとり方、偏心量、傾き角の
与え方、各面の曲率半径、面間隔、屈折率、アッベ数、
非球面形状も実施例1と同様である。 面番号 曲率半径 間隔 屈折率 アッベ数 (偏心量) (傾き角) 1(2) ∞(瞳) 46.629 2(3)Ry -115.529 0 Y:-33.123 Rx -54.290 Ky 0.523637 Kx -1.860239 AR -0.115605 ×10-5 BR -0.192986 ×10-10 AP -0.249219 ×10-1 BP -0.994737 3(8)Ry -38.676 0 n =1.6204 ν = 60.3 Rx -160.112 Y:-49.396 -16.592° Ky 0.304512 Z: 20.192 Kx 47.168010 AR -0.102748 ×10-4 BR 0.177721 ×10-7 AP 0.359301 BP -0.215675 ×10-1 4 Ry -13.121 0 Y:-50.637 19.980° Rx -33.071 Z: 5.481 Ky -0.838859 Kx -3.037180 AR 0.370764 ×10-5 BR 0.936964 ×10-10 AP 0.148906 ×10+1 BP 0.494624 5(r1 ) -38.818 (d1 ) -1 n1=1.7859 ν1= 44.2 Y:-55.119 38.182° (-42.582) (48.558°) Z:-13.859 ( -4.663) 6(r2 ) -18.672 (d2 ) -9 n2=1.5163 ν2= 64.1 7(r3 ) 33.694 (d3 ) -11.574 8(r4 ) -98.075 (d4 ) -1 n3=1.7618 ν3= 26.6 Y: 7.422 5.524° 9(r5 ) -24.573 (d5 ) -12.075 n4=1.5163 ν4= 64.1 10(r6 ) 57.624 (d6 ) -3 11(r7 ) -42.286 (d7 ) -18 n5=1.6779 ν5= 50.7 Y: -1.452 -26.031° 12(r8 ) 24.749 (d8 ) -1 n6=1.8052 ν6= 25.4 13(r9 ) 48.671 (d9 ) 0 14(14) ∞(像面) Y:-99.083 47.758° Z:-85.700 上記実施例の画角は、左右画角が50°、上下画角が3
5°で、瞳径8mmである。なお、上記の表中、面番
号:5の偏心量、傾き角の括弧内の数値にリレーレンズ
系15を移動することによって、左右の観察画角が50
°から30°に切り換え可能となっている。この実施例
の広い画角時及び狭い画角時の収差補正状態を示す図1
3と同様なスポットダイアグムをそれぞれ図16、図1
7に示す。 実施例5 図9を参照にして、実施例5について説明する。この実
施例の構成は実施例1とほぼ同じである。以下、この光
学系の構成パラメータを示すが、面番号は、射出瞳2位
置から2次元画像表示素子14へ向かう逆追跡の面番号
として示してある。座標系のとり方、偏心量、傾き角の
与え方、各面の曲率半径、面間隔、屈折率、アッベ数、
非球面形状も実施例1と同様である。なお、以下に示す
実施例5〜8の何れも接眼凹面鏡3による屈曲角は70
°である。 面番号 曲率半径 間隔 屈折率 アッベ数 (偏心量) (傾き角) 1(2) ∞(瞳) 59.485 2(3)Ry -77.651 0 Y: -6.338 29.485° Rx -49.777 Ky -0.742715 Kx -0.372467 AR 0 BR 0 AP 0 BP 0 3(8)Ry -20.792 0 n =1.51633 ν = 64.1 Rx -30.737 Y:-30.315 52.929° Ky -3.245698 Z: 34.578 Kx 0.484215 AR 0 BR 0 AP 0 BP 0 4 Ry -51.135 0 Y:-53.172 67.287° Rx -32.115 Z: 46.245 Ky 1.468440 Kx 3.808630 AR 0 BR 0 AP 0 BP 0 5(r1 ) -35.955 (d1 ) -5.7401 n1=1.60311 ν1= 60.7 Y:-60.264 45.566° Z: 28.592 6(r2 ) 37.128 (d2 ) -9.087 7(r3 ) -42.898 (d3 ) -8.175 n2=1.60311 ν2= 60.7 8(r4 ) 13.539 (d4 ) -1 n3=1.80518 ν3= 25.4 9(r5 ) 24.285 (d5 ) -0.1 10(r6 ) -15.116 (d6 ) -8.885 n4=1.60311 ν4= 60.7 11(r7 ) 22.339 (d7 ) -1 n5=1.80518 ν5= 25.4 12(r8 ) 134.077 (d8 ) -7.851 13(14) ∞(像面) Y: -1.030 17.642° RY1/RY2=0.4066 上記実施例の画角は、左右画角が50°、上下画角が3
8.5°で、瞳径10mmである。この実施例の収差補
正状態を示す図13と同様なスポットダイアグムを図1
8〜図20に示す。 実施例6 図10を参照にして、実施例6について説明する。この
実施例の構成は実施例1とほぼ同じである。以下、この
光学系の構成パラメータを示すが、面番号は、射出瞳2
位置から2次元画像表示素子14へ向かう逆追跡の面番
号として示してある。座標系のとり方、偏心量、傾き角
の与え方、各面の曲率半径、面間隔、屈折率、アッベ数
も実施例1と同様である。各面の非球面形状も同様であ
るが、リレー光学系15については、実施例2の式で表
される。 面番号 曲率半径 間隔 屈折率 アッベ数 (偏心量) (傾き角) 1(2) ∞(瞳) 60.816 2(3)Ry -77.651 0 Y: -8.800 27.458° Rx -50.409 Ky -0.878357 Kx -0.672540 AR 0 BR 0 AP 0 BP 0 3(8)Ry -17.110 0 n =1.51633 ν = 64.1 Rx -47.766 Y:-25.755 75.295° Ky -1.360137 Z: 27.357 Kx 5.460714 AR 0 AP 0 BP 0 4 Ry -47.337 0 Y:-48.146 76.445° Rx -38.588 Z: 37.759 Ky 2.800090 Kx 5.582655 AR 0 BR 0 AP 0 BP 0 5(r1 ) -34.080 (d1 ) -5.476 n1=1.51633 ν1= 64.1 K 0 Y:-61.113 40.751° A 0.389918 ×10-4 Z: 21.045 B 0.434491 ×10-7 6(r2 ) 22.097 (d2 ) -13.846 K 0 A -0.141800 ×10-4 B 0.115543 ×10-6 7(r3 ) -90.067 (d3 ) -2.395 n2=1.51633 ν2= 64.1 Y: -3.827 -10.283° 8(r4 ) 51.410 (d4 ) -0.1 9(r5 ) -16.273 (d5 ) -10.090 n3=1.60311 ν3= 60.7 Y: -0.918 9.334° 10(r6 ) 19.173 (d6 ) -1 n4=1.80518 ν4= 25.4 11(r7 ) 55.216 (d7 ) -8.126 12(14) ∞(像面) Y: -0.217 16.176° RY1/RY2=0.3615 上記実施例の画角は、左右画角が50°、上下画角が3
8.5°で、瞳径10mmである。 実施例7 図11を参照にして、実施例7について説明する。この
実施例の構成は実施例6とほぼ同じである。以下、この
光学系の構成パラメータを示すが、面番号は、射出瞳2
位置から2次元画像表示素子14へ向かう逆追跡の面番
号として示してある。座標系のとり方、偏心量、傾き角
の与え方、各面の曲率半径、面間隔、屈折率、アッベ
数、非球面形状も実施例6と同様である。 面番号 曲率半径 間隔 屈折率 アッベ数 (偏心量) (傾き角) 1(2) ∞(瞳) 60.230 2(3)Ry -80.972 0 Y: -7.654 28.655° Rx -51.556 Ky -0.868497 Kx -0.539374 AR 0 BR 0 AP 0 BP 0 3(8)Ry -11.437 0 n =1.51633 ν = 64.1 Rx -31.949 Y:-27.643 96.656° Ky -0.916345 Z: 24.394 Kx 0.350858 AR 0 BR 0 AP 0 BP 0 4 Ry -45.201 0 Y:-48.795 70.106° Rx -33.081 Z: 41.953 Ky 2.664361 Kx 3.133791 AR 0 BR 0 AP 0 BP 0 5(r1 ) -25.39504 (d1 ) -9.116 n1=1.51633 ν1= 64.1 K 0 Y:-68.080 39.749° A 0.326222 ×10-4 Z: 17.195 B 0.125536 ×10-7 6(r2 ) 20.93214 (d2 ) -14.008 K 0 A -0.224574 ×10-4 B 0.176739 ×10-7 7(r3 ) -17.27805 (d3 ) -10.874 n2=1.60311 ν2= 60.7 Y: -6.411 -0.236° 8(r4 ) 18.239 (d4 ) -1 n3=1.80518 ν3= 25.4 9(r5 ) 41.362 (d5 ) -7.442 10(14) ∞(像面) Y: -0.228 18.218° RY1/RY2=0.2530 上記実施例の画角は、左右画角が50°、上下画角が3
8.5°で、瞳径10mmである。 実施例8 図12を参照にして、実施例8について説明する。この
実施例の構成は実施例6とほぼ同じである。以下、この
光学系の構成パラメータを示すが、面番号は、射出瞳2
位置から2次元画像表示素子14へ向かう逆追跡の面番
号として示してある。座標系のとり方、偏心量、傾き角
の与え方、各面の曲率半径、面間隔、屈折率、アッベ
数、非球面形状も実施例6と同様である。 面番号 曲率半径 間隔 屈折率 アッベ数 (偏心量) (傾き角) 1(2) ∞(瞳) 60.446 2(3)Ry -82.033 0 Y: -8.037 28.437° Rx -52.269 Ky -0.930764 Kx -0.656131 AR 0 BR 0 AP 0 BP 0 3(8)Ry -11.522 0 n =1.51633 ν = 64.1 Rx -27.685 Y:-28.493 97.541° Ky -0.897431 Z: 24.762 Kx 0.010734 AR 0 BR 0 AP 0 BP 0 4 Ry -45.865 0 Y:-48.482 70.499° Rx -34.708 Z: 42.285 Ky 2.699501 Kx 3.391928 AR 0 BR 0 AP 0 BP 0 5(r1 ) -23.895 (d1 ) -9.116 n1=1.51633 ν1= 64.1 K 0 Y:-68.545 39.647° A 0.335999 ×10-4 Z: 17.148 B 0.104357 ×10-7 6(r2 ) 21.98354 (d2 ) -12.920 K 0 A -0.242064 ×10-4 B 0.306259 ×10-7 7(r3 ) -17.155 (d3 ) -10.789 n2=1.60311 ν2= 60.7 Y: -6.638 0.758° 8(r4 ) 17.650 (d4 ) -1 n3=1.80518 ν3= 25.4 9(r5 ) 40.523 (d5 ) -7.512 10(14) ∞(像面) Y: -0.086 18.909° RY1/RY2=0.2512 上記実施例の画角は、左右画角が50°、上下画角が3
5°で、瞳径10mmである。実施例5〜8の場合、リ
レー光学系15を観察者頭部(眼球上部)に配置するこ
とが可能となり、偏心補正光学系8が眼球の上部に位置
するため、空中像ではなく外界像を観察している時に、
偏心補正光学系8が邪魔をして外界の観察像の視野が観
察できなくなる問題が発生しない。この問題が起こる
と、視覚表示装置を装着したまま他の仕事をしたり、場
所を移動したりする時に、観察者の視野の狭さからくる
不安を与えることになってしまう。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments 1 to 8 of the visual display device of the present invention will be described.
Will be described. Embodiment 1 This embodiment will be described with reference to FIG. In the figure, 2 is the observer's pupil position, 4 is the visual axis when the observer is observing the front, 3 is the ocular concave mirror, 8 is the eccentricity correcting optical system, 15 is the relay optical system, and 14 is the two-dimensional image display. Element. As shown in the figure, the coordinate system is as follows: a Y-axis having a positive direction from right to left in the left-right direction of the observer, a Z-axis having a positive direction from the eyeball side in the visual axis 4 direction of the observer to the concave mirror 3 side, a vertical direction. It is defined as an X axis with the positive direction from top to bottom. Hereinafter, the configuration parameters of the optical system will be described. The surface number is shown as a surface number of reverse tracking from the position of the exit pupil 2 to the two-dimensional image display element 14. The eccentricity and the inclination angle are Y for the concave mirror 3 (surface number: 2).
Only the amount of eccentricity in the axial direction is given, and the vertex is the exit pupil 2
This is the distance decentered in the Y-axis direction from the visual axis 4 (Z-axis direction) passing through the center. For the eccentricity correction optical system 8, the distance from the center of the exit pupil 2 at the vertex of each surface (surface numbers: 3, 4) Are given in the Y-axis positive direction and the Z-axis positive direction, and the inclination angle of the central axis passing through the vertex of the surface from the Z-axis direction. The tilt angle of the center axis of the surface is given by a rotation angle (counterclockwise in the figure) from the positive Z-axis direction to the positive Y-axis direction as a positive angle.
The first surface (surface number:
The vertex position of 5) is given in the same manner as each surface of the eccentricity correction optical system 8, the central axis passing through the vertex becomes the optical axis, and the inclination angle of the optical axis is given in the same manner. The eccentricity and the inclination angle of a specific surface (surface number: 8) other than the first surface in the relay optical system 15 are as follows:
It is given by the amount of eccentricity and the inclination angle of the center axis (optical axis) passing through the vertex of the surface in the direction perpendicular to the optical axis of the surface in front of it. A surface with no display of the amount of eccentricity and the inclination angle indicates that it is coaxial with the surface before it. The two-dimensional image display element 14 (surface number: 1)
In the case of 3), the eccentricity in the positive Y-axis direction and the positive Z-axis direction from the center of the exit pupil 2 at the center and the inclination angle of the normal line of the surface from the Z-axis direction are given. The aspherical shape of each surface is represented by a coordinate system as shown in the drawing, and the paraxial radius of curvature of each surface is represented by R in the plane perpendicular to the YZ plane (paper surface).
Assuming that the radius of curvature in the x , YZ plane is R y , it is expressed by the following equation. Z = [(X 2 / R x) + (Y 2 / R y)] / [1+ {1- (1+
K x) (X 2 / R x 2) - (1 + K y) (Y 2 / R y 2)} 1/2] +
AR [(1-AP) X 2 + (1 + AP) Y 2] 2 + BR [(1-
BP) X 2 + (1 + BP) Y 2] 3 where, K x is a conical coefficient in the X direction, K y is a conical coefficient in the Y direction, AR, BR is a respective rotational symmetry 4, sixth non The spherical coefficients, AP and BP are asymmetric fourth-order and sixth-order aspherical coefficients, respectively. Further, the surface interval is Z between the center of the exit pupil 2 and the vertex of the concave mirror 3 between the exit pupil 2 and the concave mirror 3.
The axial distance and the distance from the first surface of the relay optical system 15 to the image plane (two-dimensional image display element 14) are indicated by the distances along the optical axis. Regarding the relay optical system 15,
The radius of curvature of the surface is r 1 to r i , the surface interval is d 1 to d i ,
The refractive index of the d-line is represented by n 1 to n i , and the Abbe number is represented by v 1 to v i . Surface number Curvature radius Interval Refractive index Abbe number (Eccentricity) (Tilt angle) 1 (2) ∞ (Pupil) 47.010 2 (3) R y -71.040 0 Y: -29.891 R x -53.671 K y 0.059148 K x -0.136469 AR 0.360349 × 10 -7 BR 0.513037 × 10 -12 AP -0.648988 BP -0.313565 3 (8) R y -53.284 0 n = 1.554618 ν = 64.3 R x -39.696 Y: -50.331 -7.811 ° K y 1.206766 Z: 25.359 K x 0.766839 AR -0.134492 × 10 -6 BR 0 AP -0.172095 × 10 +1 BP 0 4 R y -42.641 0 Y: -38.199 40.344 ° R x -36.603 Z: 23.012 K y 0.399124 K x 2.956479 AR 0.219886 × 10 -6 BR 0 AP 0.134389 × 10 +1 BP 05 (r 1 ) -32.003 (d 1 ) -2 n 1 = 1.7466 ν 1 = 36.2 Y: -46.509 24.174 ° Z: 7.7456 6 (r 2 ) -13.011 ( d 2) -13.735 n 2 = 1.5540 ν 2 = 63.7 7 (r 3) 34.716 (d 3) -20.957 8 (r 4) -171.983 (d 4) -2 n 3 = 1.75458 ν 3 = 27.6 Y: -5.912 2.250 ° 9 (r 5 ) -28.012 (d 5 ) -5.638 n 4 = 1.49815 ν 4 = 69.2 10 (r 6 ) 42.038 (d 6 ) -0.5 11 (r 7 ) -35.519 (d 7 ) -11.257 n 5 = 1.64916 ν 5 = 55.1 12 (r 8 ) 99.244 ( d 8) -27.944 13 (14) ∞ ( image plane) Y: -5.140 19.829 ° angle of the above embodiment, 45 ° left and right angle, vertical field angle is 3
The pupil diameter is 8 mm at 4.65 °. FIG. 13 shows a spot diagram showing the aberration correction state of this embodiment. FIG.
3, the upper two numbers of the four numbers on the left side of the spot diagram indicate the coordinates (X, Y) of the center of the rectangular screen as (0.00, 0.00) and the coordinates of the center of the right end as (0.00, 0.00). 0.00, -1.00) and the coordinates of the upper right corner are (1.0
0, -1.00), and the coordinates of the center of the upper end are (1.00, 0.
00), the coordinates (X, Y) when expressed as
The lower two numbers indicate the X and Y components (in degrees) of the angles formed by the coordinates (X, Y) with respect to the visual axis (center of the screen). Embodiment 2 Embodiment 2 will be described with reference to FIG. The configuration of this embodiment is the same as that of the first embodiment, except that the ocular concave mirror 3 is a spheroidal mirror whose axis is the Y axis. Hereinafter, the configuration parameters of the optical system will be described. The surface number is shown as a surface number of reverse tracking from the position of the exit pupil 2 to the two-dimensional image display element 14. The method of setting the coordinate system, the amount of eccentricity, the method of giving the inclination angle, the radius of curvature of each surface, the surface interval, the refractive index, and the Abbe number are the same as those in the first embodiment. The same applies to the aspherical shape of each surface,
Assuming that the radius of curvature is R, the concave eyepiece mirror 3 is expressed by the following equation. Z = (h 2 / R) / [1+ {1- (1 + K) (h 2 / R 2 )} 1/2 ] +
Ah 4 + Bh 6 (h 2 = X 2 + Y 2 ) Here, K is a conical coefficient, and A and B are fourth-order and sixth-order aspherical coefficients, respectively. Surface number Curvature radius Interval Refractive index Abbe number (Eccentricity) (Tilt angle) 1 (2) ∞ (pupil) 47.010 2 (3) R -41.559 0 Y: 28.650 90 ° K -0.209269 A 0 B 0 3 (8) R y -58.649 0 n = 1.487 ν = 70.4 R x -72.981 Y: -51.790 -6.803 ° K y 1.167701 Z: 24.925 K x 13.533262 AR 0.433130 × 10 -6 BR 0 AP -0.154970 × 10 +1 BP 0 4 R y -39.220 0 Y: -38.119 38.781 ° R x -40.106 Z: 21.847 K y 1.764612 K x 9.145229 AR -0.608546 × 10 -6 BR 0 AP -0.264803 × 10 +1 BP 05 (r 1 ) -41.419 (d 1 ) -2 n 1 = 1.7393 ν 1 = 28.3 Y: -36.766 31.972 ° Z: -0.3364 6 (r 2 ) -12.892 (d 2 ) -9.785 n 2 = 1.5680 ν 2 = 63.37 (r 3 ) 25.739 ( d 3 ) -16.142 8 (r 4 ) -197.047 (d 4 ) -2 n 3 = 1.7443 ν 3 = 28.0 Y: -5.6210 -4.4371 ° 9 (r 5 ) -29.566 (d 5 ) -7.963 n 4 = 1.5191 ν 4 = 67.2 10 (r 6 ) 35.243 (d 6 ) -0.5 11 (r 7 ) -39.239 (d 7 ) -9.350 n 5 = 1.6552 ν 5 = 54.2 12 (r 8 ) 96.655 (d 8 ) -29.206 13 (14) ∞ (image plane) Y: -1.865 20.979 ° , The left and right angles of view are 45 °
The pupil diameter is 8 mm at 4.65 °. FIG. 1 shows a spot diagram similar to FIG. 13 showing the aberration correction state of this embodiment.
It is shown in FIG. Third Embodiment A third embodiment will be described with reference to FIG. The configuration of this embodiment is the same as that of the first embodiment. Hereinafter, the configuration parameters of the optical system will be described. The surface number is shown as a surface number of reverse tracking from the position of the exit pupil 2 to the two-dimensional image display element 14. The method of setting the coordinate system, the amount of eccentricity, the method of giving the inclination angle, the radius of curvature of each surface, the spacing, the refractive index, the Abbe number, and the aspherical shape are the same as those in the first embodiment. Surface number Curvature radius Interval Refractive index Abbe number (Eccentricity) (Tilt angle) 1 (2) ∞ (Pupil) 46.462 2 (3) -64.708 0 Y: -27.347 3 (8) Ry -26.345 0 n = 1.6516 ν = 58.5 R x -309.984 Y: -46.547 -15.054 ° K y -1.243826 Z: 14.919 K x 281.323532 AR 0 BR 0 AP 0 BP 0 4 R y -14.212 0 Y: -43.199 34.775 ° R x 56.846 Z: 10.906 K y -5.057 K x -24.236217 AR 0 BR 0 AP 0 BP 05 (r 1 ) -39.631 (d 1 ) -10 n 1 = 1.5517 ν 1 = 47.1 Y: -47.054 18.088 ° Z: -25.910 6 (r 2 ) 8.830 (d 2) -11.316 n 2 = 1.7541 ν 2 = 28.5 7 (r 3) 37.113 (d 3) -1 8 (r 4) -663.767 (d 4) -2 n 3 = 1.755 ν 3 = 27.6 9 (R 5 ) -16.847 (d 5 ) -7.08 n 4 = 1.6031 ν 4 = 60.7 10 (r 6 ) 24.972 (d 6 ) -0.5 11 (r 7 ) -21.105 (d 7 ) -4.427 n 5 = 1.741 ν 5 = 52.7 12 (r 8) 1803.805 (d 8) -18.488 13 (14) ∞ ( Angle surface) above embodiment, left and right field angle 45 °, the vertical view angle 3
4.65 °, pupil diameter 6 mm. FIG. 1 shows a spot diagram similar to FIG. 13 showing the aberration correction state of this embodiment.
It is shown in FIG. Fourth Embodiment A fourth embodiment will be described with reference to FIG. The configuration of this embodiment is almost the same as that of the first embodiment. Hereinafter, the configuration parameters of the optical system will be described. The surface number is shown as a surface number of reverse tracking from the position of the exit pupil 2 to the two-dimensional image display element 14. Coordinate system, eccentricity, inclination angle, radius of curvature of each surface, spacing, refractive index, Abbe number,
The aspherical shape is the same as in the first embodiment. Surface number radius of curvature Interval refractive index Abbe number (eccentricity) (inclination angle) 1 (2) ∞ (pupil) 46.629 2 (3) R y -115.529 0 Y: -33.123 R x -54.290 K y 0.523637 K x -1.860239 AR -0.115605 × 10 -5 BR -0.192986 × 10 -10 AP -0.249219 × 10 -1 BP -0.994737 3 (8) Ry -38.676 0 n = 1.6204 ν = 60.3 R x -160.112 Y: -49.396 -16.592 ° K y 0.304512 Z: 20.192 K x 47.168010 AR -0.102748 × 10 -4 BR 0.177721 × 10 -7 AP 0.359301 BP -0.215675 × 10 -1 4 R y -13.121 0 Y: -50.637 19.980 ° R x -33.071 Z: 5.481 K y -0.838859 K x -3.037180 AR 0.370764 × 10 -5 BR 0.936964 × 10 -10 AP 0.148906 × 10 +1 BP 0.494624 5 (r 1) -38.818 (d 1) -1 n 1 = 1.7859 ν 1 = 44.2 Y : -55.119 38.182 ° (-42.582) (48.558 °) Z: -13.859 (-4.663) 6 (r 2 ) -18.672 (d 2 ) -9 n 2 = 1.5163 ν 2 = 64.17 (r 3 ) 33.694 (d 3) -11.574 8 (r 4) -98.075 (d 4) -1 3 = 1.7618 ν 3 = 26.6 Y : 7.422 5.524 ° 9 (r 5) -24.573 (d 5) -12.075 n 4 = 1.5163 ν 4 = 64.1 10 (r 6) 57.624 (d 6) -3 11 (r 7) -42.286 (d 7 ) -18 n 5 = 1.6779 ν 5 = 50.7 Y: -1.452 -26.031 ° 12 (r 8 ) 24.749 (d 8 ) -1 n 6 = 1.8052 ν 6 = 25.4 13 (r 9 ) 48.671 ( d 9 ) 0 14 (14) ∞ (image plane) Y: -99.083 47.758 ° Z: -85.700 The angle of view in the above embodiment is such that the left and right angle of view is 50 ° and the vertical angle of view is 3
At 5 °, the pupil diameter is 8 mm. In the above table, by moving the relay lens system 15 to the numerical values in parentheses of the eccentricity and the inclination angle of the surface number: 5, the left and right observation field angles become 50.
The angle can be switched from 30 ° to 30 °. FIG. 1 shows aberration correction states of a wide angle of view and a narrow angle of view of this embodiment.
3 and FIG.
FIG. Fifth Embodiment A fifth embodiment will be described with reference to FIG. The configuration of this embodiment is almost the same as that of the first embodiment. Hereinafter, the configuration parameters of the optical system will be described. The surface number is shown as a surface number of reverse tracking from the position of the exit pupil 2 to the two-dimensional image display element 14. Coordinate system, eccentricity, inclination angle, radius of curvature of each surface, spacing, refractive index, Abbe number,
The aspherical shape is the same as in the first embodiment. In all of Examples 5 to 8 described below, the bending angle by the ocular concave mirror 3 is 70.
°. Surface number radius of curvature Interval refractive index Abbe number (eccentricity) (inclination angle) 1 (2) ∞ (pupil) 59.485 2 (3) R y -77.651 0 Y: -6.338 29.485 ° R x -49.777 K y -0.742715 K x -0.372467 AR 0 BR 0 AP 0 BP 0 3 (8) R y -20.792 0 n = 1.51633 ν = 64.1 R x -30.737 Y: -30.315 52.929 ° K y -3.245698 Z: 34.578 K x 0.484215 AR 0 BR 0 AP 0 BP 0 4 R y -51.135 0 Y: -53.172 67.287 ° R x -32.115 Z: 46.245 K y 1.468440 K x 3.808630 AR 0 BR 0 AP 0 BP 0 5 (r 1) -35.955 (d 1) -5.7401 n 1 = 1.60311 ν 1 = 60.7 Y: -60.264 45.566 ° Z: 28.592 6 (r 2 ) 37.128 (d 2 ) -9.087 7 (r 3 ) -42.898 (d 3 ) -8.175 n 2 = 1.60311 ν 2 = 60.7 8 (r 4) 13.539 (d 4) -1 n 3 = 1.80518 ν 3 = 25.4 9 (r 5) 24.285 (d 5) -0.1 10 (r 6) -15.116 (d 6) -8.885 n 4 = 1.60311 ν 4 = 60.7 11 (r 7) 22.339 (d 7) -1 n 5 = 1.80518 ν 5 = 25.4 12 (r 8) 134.077 (d 8) -7.851 13 (14) ∞ ( image plane) Y: -1.030 17.642 ° R Y1 / R Y2 = 0.4066 of Example As for the angle of view, the left and right angles of view are 50 °, and the upper and lower angles of view are 3
At 8.5 °, the pupil diameter is 10 mm. FIG. 1 shows a spot diagram similar to FIG. 13 showing the aberration correction state of this embodiment.
8 to 20. Embodiment 6 Embodiment 6 will be described with reference to FIG. The configuration of this embodiment is almost the same as that of the first embodiment. Hereinafter, the configuration parameters of this optical system will be described.
This is shown as a surface number of reverse tracking from the position to the two-dimensional image display element 14. The method of setting the coordinate system, the amount of eccentricity, the method of giving the inclination angle, the radius of curvature of each surface, the surface interval, the refractive index, and the Abbe number are the same as those in the first embodiment. The same applies to the aspherical shape of each surface, but the relay optical system 15 is represented by the equation of the second embodiment. Surface number radius of curvature Interval refractive index Abbe number (eccentricity) (inclination angle) 1 (2) ∞ (pupil) 60.816 2 (3) R y -77.651 0 Y: -8.800 27.458 ° R x -50.409 K y -0.878357 K x -0.672540 AR 0 BR 0 AP 0 BP 0 3 (8) R y -17.110 0 n = 1.51633 ν = 64.1 R x -47.766 Y: -25.755 75.295 ° K y -1.360137 Z: 27.357 K x 5.460714 AR 0 AP 0 BP 0 4 R y -47.337 0 Y : -48.146 76.445 ° R x -38.588 Z: 37.759 K y 2.800090 K x 5.582655 AR 0 BR 0 AP 0 BP 0 5 (r 1) -34.080 (d 1) -5.476 n 1 = 1.51633 ν 1 = 64.1 K 0 Y: -61.113 40.751 ° A 0.389918 × 10 -4 Z: 21.045 B 0.434491 × 10 -7 6 (r 2 ) 22.097 (d 2 ) -13.846 K 0 A -0.141800 × 10 -4 B 0.115543 × 10 -6 7 (r 3) -90.067 (d 3) -2.395 n 2 = 1.51633 ν 2 = 64.1 Y: -3.827 -10.283 ° 8 (r 4) 51.410 (d 4) -0.1 9 (r 5 ) -16.273 (d 5 ) -10.090 n 3 = 1.60311 ν 3 = 60.7 Y: -0.918 9.334 ° 10 (r 6 ) 19.173 (d 6 ) -1 n 4 = 1.80518 ν 4 = 25.4 11 (r 7 ) 55.216 (d 7 ) -8.126 12 (14) ∞ (image plane) Y: -0.217 16.176 ° R Y1 / R Y2 = 0.3615 The angle of view in the above embodiment is such that the left and right angles of view are 50 ° and the upper and lower angles of view are 3
At 8.5 °, the pupil diameter is 10 mm. Embodiment 7 Embodiment 7 will be described with reference to FIG. The configuration of this embodiment is almost the same as that of the sixth embodiment. Hereinafter, the configuration parameters of this optical system will be described.
This is shown as a surface number of reverse tracking from the position to the two-dimensional image display element 14. The method of setting the coordinate system, the amount of eccentricity, the method of giving the inclination angle, the radius of curvature of each surface, the surface interval, the refractive index, the Abbe number, and the aspherical shape are the same as those in the sixth embodiment. Surface number radius of curvature Interval refractive index Abbe number (eccentricity) (inclination angle) 1 (2) ∞ (pupil) 60.230 2 (3) R y -80.972 0 Y: -7.654 28.655 ° R x -51.556 K y -0.868497 K x -0.539374 AR 0 BR 0 AP 0 BP 0 3 (8) R y -11.437 0 n = 1.51633 ν = 64.1 R x -31.949 Y: -27.643 96.656 ° K y -0.916345 Z: 24.394 K x 0.350858 AR 0 BR 0 AP 0 BP 0 4 R y -45.201 0 Y: -48.795 70.106 ° R x -33.081 Z: 41.953 K y 2.664361 K x 3.133791 AR 0 BR 0 AP 0 BP 0 5 (r 1) -25.39504 (d 1) -9.116 n 1 = 1.51633 ν 1 = 64.1 K 0 Y: -68.080 39.749 ° A 0.326222 × 10 -4 Z: 17.195 B 0.125536 × 10 -7 6 (r 2) 20.93214 (d 2) -14.008 K 0 A -0.224574 × 10 -4 B 0.176739 × 10 -7 7 (r 3 ) -17.27805 (d 3 ) -10.874 n 2 = 1.60311 ν 2 = 60.7 Y: -6.411 -0.236 ° 8 (r 4 ) 18.239 (d 4 ) -1 n 3 = 1.80518 ν 3 = 25.4 9 ( r 5) 41.362 ( 5) -7.442 10 (14) ∞ ( image plane) Y: -0.228 18.218 ° R Y1 / R Y2 = 0.2530 angle of the above embodiment, the left and right field angle 50 °, the vertical view angle 3
At 8.5 °, the pupil diameter is 10 mm. Embodiment 8 Embodiment 8 will be described with reference to FIG. The configuration of this embodiment is almost the same as that of the sixth embodiment. Hereinafter, the configuration parameters of this optical system will be described.
This is shown as a surface number of reverse tracking from the position to the two-dimensional image display element 14. The method of setting the coordinate system, the amount of eccentricity, the method of giving the inclination angle, the radius of curvature of each surface, the surface interval, the refractive index, the Abbe number, and the aspherical shape are the same as those in the sixth embodiment. Surface number radius of curvature Interval refractive index Abbe number (eccentricity) (inclination angle) 1 (2) ∞ (pupil) 60.446 2 (3) R y -82.033 0 Y: -8.037 28.437 ° R x -52.269 K y -0.930764 K x -0.656131 AR 0 BR 0 AP 0 BP 0 3 (8) R y -11.522 0 n = 1.51633 ν = 64.1 R x -27.685 Y: -28.493 97.541 ° K y -0.897431 Z: 24.762 K x 0.010734 AR 0 BR 0 AP 0 BP 0 4 R y -45.865 0 Y: -48.482 70.499 ° R x -34.708 Z: 42.285 K y 2.699501 K x 3.391928 AR 0 BR 0 AP 0 BP 0 5 (r 1) -23.895 (d 1) -9.116 n 1 = 1.51633 ν 1 = 64.1 K 0 Y: -68.545 39.647 ° A 0.335999 × 10 -4 Z: 17.148 B 0.104357 × 10 -7 6 (r 2) 21.98354 (d 2) -12.920 K 0 A -0.242064 × 10 -4 B 0.306259 × 10 -7 7 (r 3 ) -17.155 (d 3 ) -10.789 n 2 = 1.60311 ν 2 = 60.7 Y: -6.638 0.758 ° 8 (r 4 ) 17.650 (d 4 ) -1 n 3 = 1.80518 ν 3 = 25.4 9 (r 5 ) 40.523 (d 5 -7.512 10 (14) ∞ (image plane) Y: -0.086 18.909 ° R Y1 / R Y2 = 0.2512 The angle of view in the above embodiment is such that the left and right angle of view is 50 ° and the vertical angle of view is 3
At 5 °, the pupil diameter is 10 mm. In the case of Examples 5 to 8, the relay optical system 15 can be disposed on the observer's head (upper part of the eyeball), and the eccentricity correction optical system 8 is located above the eyeball. While observing,
There is no problem that the eccentricity correction optical system 8 hinders the visual field of the external observation image from being observed. When this problem occurs, when performing other work or moving places while wearing the visual display device, the observer may have anxiety due to the narrow visual field.

【発明の効果】以上の説明から明らかなように、本発明
に基づき、広い提示画角で、周辺の画角まで鮮明に観察
できる頭部装着式視覚表示装置用偏心光学系を提供する
ことができる。また、眼鏡等を装着したまま空間に投影
された広い観察画角の空中像を鮮明に観察することが可
能な頭部装着式視覚表示装置偏心光学系を提供すること
ができる。
As is apparent from the above description, according to the present invention, it is possible to provide an eccentric optical system for a head-mounted visual display device which can clearly observe a peripheral angle of view with a wide angle of view. it can. Further, it is possible to provide an eccentric optical system of a head-mounted visual display device capable of clearly observing an aerial image with a wide observation field angle projected on a space while wearing glasses or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の視覚表示装置の概念図である。FIG. 1 is a conceptual diagram of a visual display device of the present invention.

【図2】本発明による偏心補正光学系の光路図である。FIG. 2 is an optical path diagram of an eccentricity correction optical system according to the present invention.

【図3】視覚表示装置の接眼凹面鏡によって発生する像
面湾曲を示す図である。
FIG. 3 is a diagram illustrating a field curvature generated by an eyepiece concave mirror of a visual display device.

【図4】眼の回旋運動によって視野がケラレる様子を示
す図である。
FIG. 4 is a diagram showing a state in which a visual field is vignetted by a rotational movement of an eye.

【図5】本発明の実施例1の光学的構成を示す断面図で
ある。
FIG. 5 is a cross-sectional view illustrating an optical configuration according to the first embodiment of the present invention.

【図6】実施例2の光学的構成を示す断面図である。FIG. 6 is a sectional view showing an optical configuration of a second embodiment.

【図7】実施例3の光学的構成を示す断面図である。FIG. 7 is a sectional view showing an optical configuration of a third embodiment.

【図8】実施例4の光学的構成を示す断面図である。FIG. 8 is a sectional view showing an optical configuration of a fourth embodiment.

【図9】実施例5の光学的構成を示す断面図である。FIG. 9 is a sectional view showing an optical configuration of a fifth embodiment.

【図10】実施例6の光学的構成を示す断面図である。FIG. 10 is a sectional view showing an optical configuration of a sixth embodiment.

【図11】実施例7の光学的構成を示す断面図である。FIG. 11 is a cross-sectional view illustrating an optical configuration of a seventh embodiment.

【図12】実施例8の光学的構成を示す断面図である。FIG. 12 is a sectional view showing an optical configuration of an eighth embodiment.

【図13】実施例1の収差補正状態を示すスポットダイ
アグムである。
FIG. 13 is a spot diagram showing an aberration correction state according to the first embodiment.

【図14】実施例2の収差補正状態を示すスポットダイ
アグムである。
FIG. 14 is a spot diagram showing an aberration correction state according to the second embodiment.

【図15】実施例3の収差補正状態を示すスポットダイ
アグムである。
FIG. 15 is a spot diagram showing an aberration correction state according to the third embodiment.

【図16】実施例4の広い画角時の収差補正状態を示す
スポットダイアグムである。
FIG. 16 is a spot diagram showing an aberration correction state in a wide angle of view according to the fourth embodiment.

【図17】実施例4の狭い画角時の収差補正状態を示す
スポットダイアグムである。
FIG. 17 is a spot diagram illustrating an aberration correction state at the time of a narrow angle of view according to the fourth embodiment.

【図18】実施例5の収差補正状態を示すスポットダイ
アグムの一部である。
FIG. 18 is a part of a spot diagram showing an aberration correction state according to the fifth embodiment.

【図19】実施例5の収差補正状態を示すスポットダイ
アグムの別の一部である。
FIG. 19 is another part of the spot diagram showing the aberration correction state of the fifth embodiment.

【図20】実施例5の収差補正状態を示すスポットダイ
アグムの残りの部分である。
FIG. 20 is a remaining part of the spot diagram showing the aberration correction state of the fifth embodiment.

【図21】従来の頭部装着式視覚表示装置の構成を示す
平面図である。
FIG. 21 is a plan view showing a configuration of a conventional head-mounted visual display device.

【図22】本出願人による先行技術の頭部装着式視覚表
示装置の構成を示す断面図である。
FIG. 22 is a cross-sectional view showing the configuration of a prior art head-mounted visual display device by the present applicant.

【符号の説明】[Explanation of symbols]

1…観察者眼球 2…観察者瞳位置 3…接眼凹面鏡 4…観察者の視軸 5…接眼凹面鏡による無限遠物体の像面 6…接眼凹面鏡によって屈曲した光軸 7…観察者の瞳投影位置 8…偏心補正光学系 9…偏心補正光学系を射出した後の光軸 14…2次元画像表示素子 15…リレー光学系 18…偏心補正光学系で補正された像面 DESCRIPTION OF SYMBOLS 1 ... Observer's eyeball 2 ... Observer's pupil position 3 ... Eyepiece concave mirror 4 ... Observer's visual axis 5 ... Image plane of an object at infinity by an eyepiece concave mirror 6 ... Optical axis bent by an eyepiece concave mirror 7 ... Observer's pupil projection position 8: eccentricity correction optical system 9: optical axis after emitting the eccentricity correction optical system 14: two-dimensional image display element 15: relay optical system 18: image plane corrected by the eccentricity correction optical system

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 像面と瞳との間に配置され、少なくとも
光軸に対して偏心した光学面を含んだ偏心光学系におい
て、 前記偏心光学系は、前記像面をリレー像として光路中に
形成し、前記リレー像を前記瞳に導くように、少なくと
も、第1透過面と、第1反射面とを含み、 前記第1反射面が、光線を反射させる方向に凹面を向け
て偏心配置され、その形状が回転対称ではなく、回転非
対称な非球面係数を含んだ非球面形状にて構成され、 前記第1透過面が、光路上、前記第1反射面よりも前記
像面側に配置され、少なくとも前記第1反射面によって
発生する回転対称ではない非点隔差を補正するために回
転非対称な非球面係数を含んだ非球面形状にて構成され
ていることを特徴とする偏心光学系。
1. An eccentric optical system disposed between an image plane and a pupil and including at least an optical surface decentered with respect to an optical axis, wherein the eccentric optical system uses the image plane as a relay image in an optical path. And at least a first transmission surface and a first reflection surface so as to guide the relay image to the pupil, wherein the first reflection surface is eccentrically arranged with a concave surface facing in a direction in which light rays are reflected. The shape is not a rotationally symmetric but an aspherical shape including a rotationally asymmetrical aspherical coefficient, and the first transmission surface is disposed on an optical path, closer to the image surface side than the first reflection surface. A decentered optical system having an aspherical shape including a rotationally asymmetrical aspherical coefficient for correcting at least an astigmatic difference that is not rotationally symmetric and is generated by the first reflecting surface.
【請求項2】 像面と瞳との間に配置され、少なくとも
光軸に対して偏心した光学面を含んだ偏心光学系におい
て、 前記偏心光学系は、前記像面をリレー像として光路中に
形成し、前記リレー像を前記瞳に導くように、少なくと
も、第1透過面と、第1反射面とを含み、 前記第1反射面が、光線を反射させる方向に凹面を向け
て偏心配置され、その面形状が前記第1反射面に入射す
る光軸と反射後に射出する光軸の両方の光軸を含んだY
−Z平面を断面とした時の面形状と、前記Y−Z平面と
光軸上垂直なX−Z平面を断面とした時の面形状とが互
いに異なった回転非対称な非球面形状にて構成され、 前記第1透過面が、光路上、前記第1反射面よりも前記
像面側に配置され、少なくとも前記第1反射面によって
発生する回転対称ではない非点隔差を補正するために前
記Y−Z平面を断面した時の面形状と、前記Y−Z平面
と光軸上垂直なX−Z平面を断面とした時の面形状とが
互いに異なった回転非対称な非球面形状にて構成されて
いることを特徴とする偏心光学系。
2. An eccentric optical system which is disposed between an image plane and a pupil and includes at least an optical surface decentered with respect to an optical axis, wherein the eccentric optical system uses the image plane as a relay image in an optical path. And at least a first transmission surface and a first reflection surface so as to guide the relay image to the pupil, wherein the first reflection surface is eccentrically arranged with a concave surface facing in a direction in which light rays are reflected. Y whose surface shape includes both the optical axis incident on the first reflecting surface and the optical axis emitted after reflection.
-A rotationally asymmetric aspherical shape in which the surface shape when the cross section is the Z plane and the surface shape when the XZ plane perpendicular to the optical axis is the cross section are different from each other. Wherein the first transmission surface is disposed on the optical path on the image plane side with respect to the first reflection surface, and the Y-axis is used to correct at least an astigmatic difference that is not rotationally symmetric and is caused by the first reflection surface. The surface shape when the -Z plane is cross-section and the surface shape when the X-Z plane perpendicular to the optical axis is a cross-section are different rotationally asymmetric aspherical shapes. An eccentric optical system characterized by:
【請求項3】 前記偏心光学系が、前記第1透過面とは
別に、第2透過面を有し、 前記第2透過面は、前記第1透過面と相関して、少なく
とも前記第1反射面によって発生する回転対称ではない
非点隔差を補正する回転非対称な非球面形状にて構成さ
れていることを特徴とする請求項1又は2記載の偏心光
学系。
3. The decentered optical system has a second transmission surface separately from the first transmission surface, and the second transmission surface is at least the first reflection surface in correlation with the first transmission surface. 3. The decentered optical system according to claim 1, wherein the decentered optical system is configured to have a rotationally asymmetric aspherical shape that corrects an astigmatic difference that is not rotationally symmetric generated by a surface.
【請求項4】 前記偏心光学系は、前記第1透過面と前
記像面との間に、前記リレー像を形成するリレー光学群
を配置し、 前記リレー光学群は、平面状の前記像面を、湾曲した曲
面状のリレー像として光路内にリレーするように構成さ
れていることを特徴とする請求項3記載の偏心光学系。
4. The decentering optical system includes a relay optical group that forms the relay image between the first transmission surface and the image surface, wherein the relay optical group is a planar image surface. 4. The eccentric optical system according to claim 3, wherein the optical path is relayed into the optical path as a curved curved relay image.
【請求項5】 前記第1反射面は、前記瞳中心を透過す
る光軸の直線上に傾いて配置されていることを特徴とす
る請求項4記載の偏心光学系。
5. The decentered optical system according to claim 4, wherein said first reflecting surface is arranged obliquely on a straight line of an optical axis passing through the center of said pupil.
【請求項6】 前記第1反射面は、その反射面にて前記
光軸が反射屈曲される時の屈曲角度が60°以上となる
ように構成されていることを特徴とする請求項4記載の
偏心光学系。
6. The apparatus according to claim 4, wherein the first reflecting surface is configured such that a bending angle when the optical axis is reflected and bent at the reflecting surface is 60 ° or more. Decentered optical system.
【請求項7】 前記像面上に配置された画像表示素子
と、請求項1から6の何れか1項記載の偏心光学系とを
含んだことを特徴とする視覚表示装置。
7. A visual display device comprising: an image display element arranged on the image plane; and the decentered optical system according to claim 1. Description:
JP2000305806A 1993-02-09 2000-10-05 Eccentric optical system and visual display device using the same Expired - Lifetime JP3597456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000305806A JP3597456B2 (en) 1993-02-09 2000-10-05 Eccentric optical system and visual display device using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2120893 1993-02-09
JP5-21208 1993-02-09
JP2000305806A JP3597456B2 (en) 1993-02-09 2000-10-05 Eccentric optical system and visual display device using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP27076893A Division JP3212203B2 (en) 1993-02-09 1993-10-28 Visual display device

Publications (2)

Publication Number Publication Date
JP2001166211A true JP2001166211A (en) 2001-06-22
JP3597456B2 JP3597456B2 (en) 2004-12-08

Family

ID=26358242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000305806A Expired - Lifetime JP3597456B2 (en) 1993-02-09 2000-10-05 Eccentric optical system and visual display device using the same

Country Status (1)

Country Link
JP (1) JP3597456B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109298517A (en) * 2018-11-05 2019-02-01 中国航空工业集团公司洛阳电光设备研究所 A kind of multispectral coaxial refraction-reflection type non-focus optical system
JP2019522234A (en) * 2016-06-21 2019-08-08 株式会社Nttドコモ Optical system of wearable display device
US10634915B2 (en) 2016-03-24 2020-04-28 Seiko Epson Corporation Image display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10634915B2 (en) 2016-03-24 2020-04-28 Seiko Epson Corporation Image display device
JP2019522234A (en) * 2016-06-21 2019-08-08 株式会社Nttドコモ Optical system of wearable display device
JP7093729B2 (en) 2016-06-21 2022-06-30 株式会社Nttドコモ See-through display system
CN109298517A (en) * 2018-11-05 2019-02-01 中国航空工业集团公司洛阳电光设备研究所 A kind of multispectral coaxial refraction-reflection type non-focus optical system
CN109298517B (en) * 2018-11-05 2020-10-30 中国航空工业集团公司洛阳电光设备研究所 Multispectral coaxial catadioptric afocal optical system

Also Published As

Publication number Publication date
JP3597456B2 (en) 2004-12-08

Similar Documents

Publication Publication Date Title
JP3212203B2 (en) Visual display device
US5986812A (en) Image display apparatus
US5940218A (en) Optical system and optical apparatus
US5745295A (en) Image display apparatus
JP3392929B2 (en) Video display device
USRE37579E1 (en) Image display apparatus comprising an internally reflecting ocular optical system
JP3599828B2 (en) Optical device
JP3672951B2 (en) Image display device
JP3155360B2 (en) Visual display device
US5793339A (en) Visual display apparatus
US6097542A (en) Optical system having reflecting surface of non-rotationally symmetric surface configuration
US6097354A (en) Image display apparatus
JPH07191274A (en) Image display device
JP3212204B2 (en) Visual display device
JP3497594B2 (en) Image display device
JP3542214B2 (en) Image display device
JP2001166211A (en) Decentering optical system and visual display device using the sme
JP3346640B2 (en) Video display device
JP3340118B2 (en) Eccentric optical system and visual display device using it
JP3542213B2 (en) Image display device
JP3683338B2 (en) Head-mounted image display device
JP3607736B2 (en) Image display device
JP3394758B2 (en) Video display device
JP3683337B2 (en) Head-mounted image display device
JPH09166760A (en) Picture display device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040908

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8