JP2001165076A - Variable displacement gas compressor - Google Patents

Variable displacement gas compressor

Info

Publication number
JP2001165076A
JP2001165076A JP35361699A JP35361699A JP2001165076A JP 2001165076 A JP2001165076 A JP 2001165076A JP 35361699 A JP35361699 A JP 35361699A JP 35361699 A JP35361699 A JP 35361699A JP 2001165076 A JP2001165076 A JP 2001165076A
Authority
JP
Japan
Prior art keywords
drive shaft
refrigerant
sleeve
chamber
control pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35361699A
Other languages
Japanese (ja)
Other versions
JP3717731B2 (en
Inventor
Makoto Ijiri
誠 井尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Seiki KK
Original Assignee
Seiko Seiki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Seiki KK filed Critical Seiko Seiki KK
Priority to JP35361699A priority Critical patent/JP3717731B2/en
Publication of JP2001165076A publication Critical patent/JP2001165076A/en
Application granted granted Critical
Publication of JP3717731B2 publication Critical patent/JP3717731B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a variable displacement gas compressor capable of controlling the optimum refrigerant sealing capacity without making the equipment complex and increasing the cost. SOLUTION: A driving shaft 12 is made of a material having a coefficient of thermal expansion higher than that of a material of a sleeve 14 for making a driving shaft gap G variable on the basis of the difference in the coefficient of thermal expansion between the driving shaft 12 and the sleeve 14. For example, when refrigerant discharging capacity of a compressor is increased, the driving shaft gap G is reduced on the basis of the difference in the coefficients of thermal expansion between the driving shaft 12 and the sleeve 14, an oil feeding-out amount from a control pressure chamber 17 to an intake chamber 7 side through the driving shaft gap G is reduced, and the control pressure Pc of the control pressure chamber 17 is increased in a short time. Thereby, the driving shaft 12 slides in the MAX moving direction, a control plate 9 turns counterclockwise interlocking with this sliding so as to enlarge containment capacity of a refrigerant, and refrigerant discharge is increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、カーエアコンシス
テムなどに用いられる可変容量型気体圧縮機に関し、特
に機器の複雑化やコストアップを招くことなく、より最
適な冷媒吐出容量の制御を可能としたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable displacement gas compressor used in a car air conditioner system and the like, and more particularly, to a more optimal control of a refrigerant discharge capacity without complicating equipment and increasing costs. It was done.

【0002】[0002]

【従来の技術】図2は従来の可変容量型気体圧縮機(以
下「圧縮機」とも略称する。)の一例を示した断面図で
ある。この図2の圧縮機は一端開口型ケーシング1内に
内周略楕円状のシリンダ2を有し、シリンダ2内には円
柱状のロータ3が回転可能に横架されている。
2. Description of the Related Art FIG. 2 is a sectional view showing an example of a conventional variable displacement gas compressor (hereinafter also referred to as "compressor"). The compressor shown in FIG. 2 includes a cylinder 2 having a substantially elliptical inner circumference in a casing 1 having an open end, and a cylindrical rotor 3 is rotatably mounted in the cylinder 2.

【0003】図3に示すように、ロータ3の外周面から
はシリンダ2内面に向かって複数のベーン4、4…が出
没自在に設けられており、また、シリンダ2内面とロー
タ3外周面との間にはその両形状との関係から三日月状
のシリンダ内側空隙5が形成され、該シリンダ内側空隙
5はベーン4、4…により複数の小室に仕切られてい
る。この仕切られた各小室が圧縮室6、6…であり、圧
縮室6は、ロータ3の回転により容積の大小変化を繰返
すとともに、その容積変化により、吸気室7側から冷媒
(低圧冷媒ガス)を吸込み、これを閉じ込めて圧縮した
後、その圧縮後の冷媒(高圧冷媒ガス)を吐出室8側へ
吐出する。
As shown in FIG. 3, a plurality of vanes 4, 4... Are provided so as to be able to protrude and retract from the outer peripheral surface of the rotor 3 toward the inner surface of the cylinder 2. Between them, a crescent-shaped cylinder inner space 5 is formed due to the relationship between the two shapes, and the cylinder inner space 5 is partitioned into a plurality of small chambers by vanes 4, 4,. Each of the partitioned small chambers is a compression chamber 6, 6,..., And the compression chamber 6 repeatedly changes in volume due to the rotation of the rotor 3, and the refrigerant (low-pressure refrigerant gas) flows from the intake chamber 7 side due to the volume change. After confining and compressing the compressed air, the compressed refrigerant (high-pressure refrigerant gas) is discharged to the discharge chamber 8 side.

【0004】そして、この図2の可変容量型気体圧縮機
においては、上記のように圧縮室6内に閉じ込められる
冷媒の容量(以下「冷媒閉じ込め容量」という。)を変
えることにより、吐出室7側へ吐出される圧縮後の冷媒
の容量(以下「冷媒吐出容量」という。)を変えて、冷
房能力を調整しているが、その冷媒閉じ込め容量を増減
変化させる手段が制御プレート9であり(図4参照)、
制御プレート9は圧縮室6と吸気室7との間に回転可能
に装着されている。
In the variable displacement gas compressor shown in FIG. 2, the capacity of the refrigerant confined in the compression chamber 6 (hereinafter, referred to as "refrigerant confinement capacity") is changed as described above to thereby discharge the discharge chamber 7. The cooling capacity is adjusted by changing the capacity of the compressed refrigerant discharged to the side (hereinafter referred to as the “refrigerant discharge capacity”). A means for increasing or decreasing the refrigerant confinement capacity is the control plate 9 ( (See FIG. 4),
The control plate 9 is rotatably mounted between the compression chamber 6 and the intake chamber 7.

【0005】図5を用いて制御プレート9の動作を説明
すると、制御プレート9が右回り(時計回り)に最大に
回転すると、冷媒閉じ込め容量が最小(MIN)とな
る。これは、圧縮室6が最大の容積から最小の容積に移
行し始める間に、一度圧縮室6内に吸込まれた冷媒の一
部が制御プレート9外周の切り欠き部10を介して吸気
室7側に吐き戻されるためである。
The operation of the control plate 9 will be described with reference to FIG. 5. When the control plate 9 rotates clockwise (clockwise) to the maximum, the refrigerant confinement capacity becomes minimum (MIN). This is because, while the compression chamber 6 starts to shift from the maximum volume to the minimum volume, a part of the refrigerant once sucked into the compression chamber 6 is removed through the cutout 10 on the outer periphery of the control plate 9. This is because they are returned to the side.

【0006】一方、制御プレート9が上記のように右回
り最大に回転している位置から左回り(反時計回り)に
回転すると、上記のような制御プレート9外周の切り欠
き部10を介する吸気室7側への冷媒吐き戻し量が減
り、その結果、冷媒閉じ込め容量が増加する。そして、
制御プレート9が左回りに最大に回転すると、冷媒閉じ
込め容量が最大(MAX)となる。
On the other hand, when the control plate 9 rotates clockwise (counterclockwise) from the position where the control plate 9 rotates clockwise to the maximum as described above, the intake air passes through the notch 10 on the outer periphery of the control plate 9 as described above. The amount of refrigerant discharged and returned to the chamber 7 decreases, and as a result, the refrigerant confinement capacity increases. And
When the control plate 9 rotates counterclockwise to the maximum, the refrigerant confinement capacity reaches the maximum (MAX).

【0007】上記のような制御プレート9の回転移動は
制御プレート駆動機構により行われる。すなわち、制御
プレート9は駆動ピン11を介して駆動軸12に連結さ
れており、駆動軸12は、フロントヘッド1aの内側に
形成されたスリーブ14内を前後にスライドできるよう
に配設されている。そして、駆動軸12がスリーブ14
内をスライドすると、その直線的な駆動軸12のスライ
ド運動が駆動ピン11により制御プレート9の回転運動
に変換され、制御プレート9が回動移動する。たとえ
ば、図5中矢印イで示す方向に駆動軸12がスライドす
ると、これに連動して制御プレート9が左回りに回転
し、その結果、冷媒閉じ込め容量が増加する。また、駆
動軸12が図5中矢印ハで示す方向にスライドすると、
これに連動して制御プレート9が右回りに回転し、冷媒
閉じ込め容量が減少する。
[0007] The rotational movement of the control plate 9 as described above is performed by a control plate driving mechanism. That is, the control plate 9 is connected to the drive shaft 12 via the drive pin 11, and the drive shaft 12 is disposed so as to be able to slide back and forth in a sleeve 14 formed inside the front head 1a. . Then, the drive shaft 12 is
When the control plate 9 is slid inside, the linear movement of the drive shaft 12 is converted into the rotational movement of the control plate 9 by the drive pin 11, and the control plate 9 rotates. For example, when the drive shaft 12 slides in the direction indicated by the arrow A in FIG. 5, the control plate 9 rotates counterclockwise in conjunction with this, and as a result, the refrigerant confinement capacity increases. When the drive shaft 12 slides in the direction indicated by the arrow C in FIG.
In conjunction with this, the control plate 9 rotates clockwise, and the refrigerant confinement capacity decreases.

【0008】なお、以下の説明では、上記のように冷媒
閉じ込め容量が増加する側への駆動軸12のスライド方
向(図中矢印イで示す方向)を「MAX移行方向」とい
い、冷媒閉じ込め容量が減少する側への駆動軸12のス
ライド方向(図中矢印ハで示す方向)を「MIN移行方
向」という。したがって、駆動軸12がMAX移行方向
にスライドすると、冷媒閉じ込め容量が増加し、一方、
駆動軸12がMIN移行方向にスライドすると、冷媒閉
じ込め容量が減少することになる。
In the following description, the direction in which the drive shaft 12 slides toward the side where the refrigerant confinement capacity increases as described above (the direction indicated by the arrow A in the figure) is referred to as the “MAX transition direction”, and the refrigerant confinement capacity The direction in which the drive shaft 12 slides toward the side where the value decreases (the direction indicated by the arrow C in the figure) is referred to as the “MIN transition direction”. Therefore, when the drive shaft 12 slides in the MAX transition direction, the refrigerant confinement capacity increases, while
When the drive shaft 12 slides in the MIN transition direction, the refrigerant confinement capacity decreases.

【0009】ところで、駆動軸12がMAX移行方向と
MIN移行方向のいずれの方向にスライドするかは、駆
動軸12に加わる力関係によって決まる。すなわち、駆
動軸12の一端面12aには吸気室7内における冷媒の
吸入圧力Psと圧縮バネ21のバネ力Fsが加えられて
いる一方、駆動軸12の他端面12bには制御圧力室1
7内の制御圧力Pcが加わっている。このうち、吸入圧
力Psとバネ力Fsは駆動軸12のMIN移行方向と同
じ方向を向くように作用している。制御圧力Pcは、冷
媒の吐出圧力Pdが作用するオイル、すなわち吐出室8
底部に貯留されているオイル溜り19のオイルを制御弁
13で絞って形成されるものであって、かつ、駆動軸1
2のMAX移行方向と同じ方向を向くように作用してい
る。
The direction in which the drive shaft 12 slides in the MAX transition direction or the MIN transition direction is determined by the force applied to the drive shaft 12. That is, the suction pressure Ps of the refrigerant in the suction chamber 7 and the spring force Fs of the compression spring 21 are applied to one end surface 12a of the drive shaft 12, while the control pressure chamber 1 is applied to the other end surface 12b of the drive shaft 12.
The control pressure Pc in 7 is applied. Among them, the suction pressure Ps and the spring force Fs act so as to be directed in the same direction as the MIN shift direction of the drive shaft 12. The control pressure Pc is controlled by the oil on which the refrigerant discharge pressure Pd acts, that is, the discharge chamber 8.
It is formed by squeezing the oil in an oil sump 19 stored at the bottom by the control valve 13, and
No. 2 acts in the same direction as the MAX transition direction.

【0010】ところで、圧縮機の冷媒吐出容量を大きく
した場合には制御弁13の弁開度を大きくすればよい。
そうすると、制御弁13から制御圧力室17へのオイル
流入量が増えて制御圧力Pcが大きくなり、駆動軸12
をMAX移行方向へスライドさせようとする力が増し、
該駆動軸12がMAX移行方向へ移動する。これに連動
して制御プレート9が左回りに回転し、冷媒閉じ込め容
量が大きくなる。
Incidentally, when the refrigerant discharge capacity of the compressor is increased, the valve opening of the control valve 13 may be increased.
Then, the amount of oil flowing into the control pressure chamber 17 from the control valve 13 increases, and the control pressure Pc increases.
Force to slide in the MAX transition direction increases,
The drive shaft 12 moves in the MAX transition direction. In conjunction with this, the control plate 9 rotates counterclockwise, and the refrigerant confinement capacity increases.

【0011】また、駆動軸12とスリーブ14との間に
は隙間G(以下「駆動軸すきま」という。)が設けられ
ており、この駆動軸すきまGを介して制御圧力室17内
のオイルは吸気室7側へ流出することができる。
A gap G (hereinafter referred to as "drive shaft clearance") is provided between the drive shaft 12 and the sleeve 14, and the oil in the control pressure chamber 17 passes through the drive shaft clearance G. It can flow out to the intake chamber 7 side.

【0012】したがって、制御圧力室17内の制御圧力
Pcは、制御弁13側から制御圧力室17側へのオイル
流入量と駆動軸すきまGを介する制御圧力室17からの
オイル流出量との差により決まる。
Accordingly, the control pressure Pc in the control pressure chamber 17 is equal to the difference between the oil inflow from the control valve 13 to the control pressure chamber 17 and the oil outflow from the control pressure chamber 17 via the drive shaft clearance G. Is determined by

【0013】ここで、この種の圧縮機をカーエアコンシ
ステムの一部として車両に搭載した場合を考えてみる
と、車両のエンジン回転速度が急激に低下した場合は、
駆動軸すきまGを小さくすればよい。これは、車両のエ
ンジン回転速度が急激に低下したときは、これに伴い圧
縮機の冷媒吐出容量が減り冷房能力が低下するので、冷
房能力を一定に保つために圧縮機の冷媒吐出容量を大き
くする必要があり、そのためには制御圧力室17側への
オイル流入量を増やして、駆動軸すきまGを介する制御
圧力室17からのオイル流出量を減らすことで、制御圧
力Pcを大きくすればよい。しかし、制御弁13の開口
面積には弁機構上の制約があるので、駆動軸すきまGを
小さくすることにより、制御圧力Pcが大きくなるよう
にしたものである。
Considering a case where this kind of compressor is mounted on a vehicle as a part of a car air conditioner system, if the engine speed of the vehicle suddenly decreases,
The drive shaft clearance G may be reduced. This is because when the engine rotation speed of the vehicle suddenly decreases, the refrigerant discharge capacity of the compressor decreases and the cooling capacity decreases accordingly, so the refrigerant discharge capacity of the compressor increases to keep the cooling capacity constant. It is necessary to increase the control pressure Pc by increasing the amount of oil flowing into the control pressure chamber 17 and reducing the amount of oil flowing out of the control pressure chamber 17 via the drive shaft clearance G. . However, since the opening area of the control valve 13 is restricted by the valve mechanism, the control pressure Pc is increased by reducing the drive shaft clearance G.

【0014】一方、車両のエンジン回転速度が急激に増
加した場合は、制御弁13の開口面積を最小の「0」と
し、かつ駆動軸すきまGを大きくすればよい。これは、
車両のエンジン回転速度が急激に増加したときは、その
低下の場合とは逆に冷房能力が大きくなりすぎるので、
制御圧力室17の制御圧力Pcを急激に下げる必要があ
り、この場合、制御弁13の開口面積を「0」にする
と、駆動軸すきまGを介する制御圧力室17からのオイ
ル流出量だけが、制御圧力Pcの圧力低下に寄与するた
めである。
On the other hand, when the engine rotational speed of the vehicle is rapidly increased, the opening area of the control valve 13 may be set to the minimum "0" and the drive shaft clearance G may be increased. this is,
When the engine speed of the vehicle suddenly increases, the cooling capacity becomes too large contrary to the case of the decrease.
It is necessary to sharply reduce the control pressure Pc of the control pressure chamber 17. In this case, when the opening area of the control valve 13 is set to “0”, only the oil outflow amount from the control pressure chamber 17 via the drive shaft clearance G becomes This is because it contributes to a decrease in the control pressure Pc.

【0015】しかしながら、上記のように駆動軸すきま
Gを可変とする場合には、その可変の新たな機構が必要
になり、機構の複雑化や、それによる信頼性の低下並び
にコストアップを招く等の問題点がある。
However, when the drive shaft clearance G is made variable as described above, a new mechanism for changing the drive shaft clearance is required, which complicates the mechanism, lowers the reliability and increases the cost. There is a problem.

【0016】なお、前記のように車両のエンジン回転数
が急激に増加する場合と低下する場合の双方を考慮し、
このような2つの状況下での駆動軸すきまGの妥協点を
設定すると、制御圧力Pcを高くして冷媒吐出容量を大
きくしたい場合であるにもかかわらず、制御圧力室17
内のオイルが駆動軸すきまGを通じて多量に流出してし
まい、制御圧力Pcを高めることが困難で、最大の冷媒
閉じ込め容量を得るのに時間がかかることや、制御圧力
Pcを低下させて冷媒閉じ込め容量を小さくしたい場合
であるにもかかわらず、制御圧力室17内のオイルが駆
動軸すきまGを通じて流出し難く、制御圧力Pcを低下
させることが困難で、最小の冷媒閉じ込め容量を得るの
に時間がかかる等の不具合があり、上記2つの状況下に
おいて冷房能力の増減を元に戻すことのできる最適な冷
媒閉じ込め容量の制御にはなりえない。
In consideration of both the case where the engine speed of the vehicle rapidly increases and the case where the engine speed decreases, as described above,
When the compromise between the drive shaft clearances G is set in such two situations, the control pressure chamber 17 is increased despite the case where the control pressure Pc is increased to increase the refrigerant discharge capacity.
A large amount of oil flows out through the drive shaft clearance G, so that it is difficult to increase the control pressure Pc, it takes time to obtain the maximum refrigerant confinement capacity, and the control pressure Pc is reduced to confine the refrigerant. Despite the case where it is desired to reduce the capacity, it is difficult for the oil in the control pressure chamber 17 to flow through the drive shaft clearance G, to reduce the control pressure Pc, and to obtain the minimum refrigerant confinement capacity. However, under the above two conditions, it is impossible to control the optimum refrigerant confinement capacity that can restore the increase or decrease in the cooling capacity.

【0017】[0017]

【発明が解決しようとする課題】本発明は上記従来の問
題点を解決するためになされたものであり、その目的と
するところは、機器の複雑化やコストアップを招くこと
なく、より最適な冷媒閉じ込め容量の制御、すなわち圧
縮機の冷房能力の増減変動に対して適切な冷媒閉じ込め
容量の制御を行い得る可変容量型気体圧縮機を提供する
ことにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a more optimal device without complicating the equipment and increasing the cost. An object of the present invention is to provide a variable displacement gas compressor capable of controlling the refrigerant confinement capacity, that is, controlling the refrigerant confinement capacity appropriately in response to an increase or decrease in the cooling capacity of the compressor.

【0018】[0018]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、容積の大小変化を繰り返すとともに、そ
の容積変化により、吸気室側から冷媒を吸い込み、これ
を閉じ込めて圧縮した後、圧縮後の冷媒を吐出する圧縮
室と、上記圧縮室と吸気室との間に回転可能に設けられ
るとともに、その回転角度の調節により上記圧縮室の冷
媒閉じ込め容量を増減変化させる制御プレートと、上記
制御プレートを駆動軸のスライドにより回転移動させる
制御プレート駆動機構とを備え、上記駆動軸は、その一
端面側が吸気室に露出し、その他端面が制御圧力室に臨
むように設けられるとともに、上記吸気室内の冷媒の吸
入圧力と、バネ力と、上記制御圧力室内の制御圧力との
力関係によりスライドする構造の可変容量型気体圧縮機
において、上記駆動軸とこれをスライド可能に収納する
スリーブとの間に、上記駆動軸に加わる制御圧力を形成
するオイルの流出用の隙間が設けられ、上記駆動軸全体
または上記隙間を形成している上記駆動軸の隙間形成部
位のみが、上記スリーブの構成材料より熱膨張率の大き
い材料からなることを特徴とするものである。
In order to achieve the above-mentioned object, the present invention is directed to a method of repeatedly changing the size of a volume, sucking a refrigerant from an intake chamber side by the volume change, confining the refrigerant, and compressing the refrigerant. A compression chamber that discharges the compressed refrigerant, a control plate that is rotatably provided between the compression chamber and the intake chamber, and that increases or decreases the refrigerant confinement capacity of the compression chamber by adjusting the rotation angle thereof; A control plate drive mechanism for rotating the control plate by sliding a drive shaft, wherein the drive shaft is provided such that one end surface thereof is exposed to the intake chamber and the other end surface faces the control pressure chamber. In the variable displacement gas compressor having a structure that slides by a force relationship among a suction pressure of a refrigerant in a chamber, a spring force, and a control pressure in the control pressure chamber, A gap is provided between the shaft and a sleeve that slidably accommodates the shaft so as to allow oil to flow out to form a control pressure applied to the drive shaft, and the entire drive shaft or the drive shaft that forms the gap Is characterized in that only the gap forming portion is made of a material having a higher coefficient of thermal expansion than the constituent material of the sleeve.

【0019】本発明は、上記駆動軸全体または上記隙間
を形成している上記駆動軸の隙間形成部位のみがプラス
チック材からなり、上記スリーブが鉄材からなることを
特徴とするものである。
The present invention is characterized in that the entirety of the drive shaft or only the gap forming portion of the drive shaft forming the gap is made of a plastic material, and the sleeve is made of an iron material.

【0020】本発明では、吸気室内の吸入冷媒の温度変
化によって駆動軸とスリーブの温度が変化するととも
に、その駆動軸とスリーブの熱膨張率の差により、駆動
軸とスリーブの間の隙間(駆動軸すきま)が大小変化
し、この駆動軸すきまの大小変化により、圧縮機の冷房
能力の増減変動に対して適切な冷媒閉じ込め容量の調節
を行うことができるようにしている。
In the present invention, the temperature of the drive shaft and the sleeve changes due to the change in the temperature of the refrigerant sucked in the intake chamber, and the gap between the drive shaft and the sleeve (drive) varies due to the difference in the coefficient of thermal expansion between the drive shaft and the sleeve. The shaft clearance) changes so that the change in the drive shaft clearance makes it possible to appropriately adjust the refrigerant confinement capacity with respect to fluctuations in the cooling capacity of the compressor.

【0021】[0021]

【発明の実施の形態】以下、本発明に係る可変容量型気
体圧縮機の実施形態について図1を基に詳細に説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of a variable displacement gas compressor according to the present invention will be described in detail with reference to FIG.

【0022】なお、圧縮機の基本的な構造、たとえば図
2乃至図3を用いて説明すると、機器内部に圧縮室6や
制御プレート9等が設けられ、圧縮室6は、ロータ3の
回転により容積の大小変化を繰り返すとともに、その容
積変化により、吸気室7側から冷媒を吸い込み、これを
閉じ込めて圧縮した後、圧縮後の冷媒を吐出するように
構成され、また、制御プレート9は、圧縮室6と吸気室
7との間に回転可能に設けられ、その回転角度の調節に
より圧縮室6の冷媒閉じ込め容量を増減変化させるよう
に構成されていること、制御プレート9の回転移動は制
御プレート駆動機構により行われること、すなわち駆動
軸12が前後にスライドすると、これに連動して制御プ
レート9が左右に回転移動し冷媒閉じ込め容量が増減変
化すること、および駆動軸12のスライドは冷媒の吸入
圧力Psと、バネ力Fsと、制御圧力Pcとの力関係に
よるものであること等は従来と同様なため、それと同一
部材には同一符号を付し、その詳細説明は省略する。
When the basic structure of the compressor is described with reference to FIGS. 2 and 3, for example, a compression chamber 6 and a control plate 9 are provided inside the apparatus. In addition to repeating the change in the volume, the change in the volume causes the refrigerant to be sucked in from the intake chamber 7 side, confined and compressed, and then the compressed refrigerant is discharged. It is provided so as to be rotatable between the chamber 6 and the intake chamber 7, and is configured to increase or decrease the refrigerant confinement capacity of the compression chamber 6 by adjusting the rotation angle. This is performed by the drive mechanism, that is, when the drive shaft 12 slides back and forth, the control plate 9 rotates left and right in conjunction with this, and the refrigerant confinement capacity increases and decreases, and Since the slide of the drive shaft 12 is based on the force relationship between the refrigerant suction pressure Ps, the spring force Fs, and the control pressure Pc as in the conventional case, the same members as those are denoted by the same reference numerals. Detailed description is omitted.

【0023】図1に示した本実施形態の圧縮機において
は、フロントヘッド1aの内側に吸気室7が設けられ
(図2参照)、この吸気室7内にスリーブ14が形成さ
れ、該スリーブ14内に駆動軸12が前後にスライド可
能に配設されている。また、駆動軸12とスリーブ14
との間には駆動軸すきまGが設けられているが、その駆
動軸すきまGを可変とするために、駆動軸12全体がス
リーブ14の構成材料より熱膨張率の大きい材料から形
成されている。
In the compressor of the present embodiment shown in FIG. 1, an intake chamber 7 is provided inside the front head 1a (see FIG. 2), and a sleeve 14 is formed in the intake chamber 7, and the sleeve 14 is formed. Inside, a drive shaft 12 is slidably disposed back and forth. The drive shaft 12 and the sleeve 14
A drive shaft clearance G is provided between the sleeve 14 and the sleeve 14. In order to make the drive shaft clearance G variable, the entire drive shaft 12 is formed of a material having a higher coefficient of thermal expansion than the material of the sleeve 14. .

【0024】つまり、本実施形態の圧縮機では、駆動軸
12とスリーブ14の構成材料が異なり、その構成材料
の相違に基づく駆動軸12とスリーブ14の熱膨張率の
差によって駆動軸すきまGが大小変化する機構を採用し
ている。要するに、駆動軸すきまGは可変可能である
が、その可変機構はメカニカル的なものでなく、駆動軸
12とスリーブ14の熱膨張率の差という材料の物理的
性質によるものである。
In other words, in the compressor of the present embodiment, the constituent materials of the drive shaft 12 and the sleeve 14 are different, and the difference between the thermal expansion coefficients of the drive shaft 12 and the sleeve 14 based on the difference in the constituent materials causes the drive shaft clearance G to be reduced. It employs a mechanism that changes in size. In short, the drive shaft clearance G is variable, but the variable mechanism is not mechanical, but is due to the difference in the thermal expansion coefficient between the drive shaft 12 and the sleeve 14 due to the physical properties of the material.

【0025】また、駆動軸12の一端面12a側(冷媒
の吸入圧力Psと圧縮バネ21のバネ力Fsが加えられ
ている側)は、スリーブ14の開口端から突出して吸気
室7内に露出している一方、駆動軸12の他端面12b
(制御圧力Pcが加えられている側)は、制御圧力室1
7内に臨むように設けられている。
The one end face 12a of the drive shaft 12 (the side to which the suction pressure Ps of the refrigerant and the spring force Fs of the compression spring 21 are applied) protrudes from the open end of the sleeve 14 and is exposed in the intake chamber 7. The other end surface 12b of the drive shaft 12
(The side to which the control pressure Pc is applied) is the control pressure chamber 1
7 are provided.

【0026】駆動軸12の温度は、図示しないエアコン
システムのエバポレータ側から圧縮機の吸気室7内に導
かれ充満している冷媒(以下「吸入冷媒」という)の温
度に大きな影響を受ける。これは、上述のように駆動軸
12を収納するスリーブ14自体が吸気室7内にあるた
め、および駆動軸一端面12a側が吸気室7内に露出し
ているためである。したがって、吸気室7内において吸
入冷媒の温度が高くなると、これに伴い駆動軸12やス
リーブ14の温度も高くなり、逆に、吸気室7内におけ
る吸入冷媒の温度が低くなると、これに伴い駆動軸12
やスリーブ14の温度も低くなる。
The temperature of the drive shaft 12 is greatly affected by the temperature of the refrigerant (hereinafter referred to as "intake refrigerant") which is guided from the evaporator side of the air conditioner system (not shown) into the intake chamber 7 of the compressor and is full. This is because the sleeve 14 for accommodating the drive shaft 12 itself is in the intake chamber 7 as described above, and the drive shaft one end surface 12a side is exposed in the intake chamber 7. Therefore, when the temperature of the suction refrigerant in the intake chamber 7 increases, the temperature of the drive shaft 12 and the sleeve 14 also increases, and conversely, when the temperature of the suction refrigerant in the intake chamber 7 decreases, the drive Axis 12
Also, the temperature of the sleeve 14 decreases.

【0027】ここで、駆動軸12とスリーブ14の熱膨
張は駆動軸12の方が大きいことから、吸入冷媒の温度
が高くなった場合は、駆動軸12がスリーブ14より多
く熱膨張するので、駆動軸すきまGは小さくなり、よっ
て、該駆動軸すきまGを介する制御圧力室17から吸気
室7側へのオイル流出量が減少し、かつ、制御圧力室1
7内の制御圧力Pcが高くなりやすい状態になる。逆
に、吸入冷媒の温度が低くなった場合は、駆動軸12が
スリーブ14より多く収縮するので、駆動軸すきまGは
大きくなり、よって、該駆動軸すきまGを介する制御圧
力室17からのオイル流出量が増え、かつ、制御圧力室
17内の制御圧力Pcが低くなりやすい状態になる。
Here, since the thermal expansion of the drive shaft 12 and the sleeve 14 is larger in the drive shaft 12, when the temperature of the suction refrigerant becomes higher, the drive shaft 12 thermally expands more than the sleeve 14. The drive shaft clearance G becomes smaller, so that the amount of oil flowing out from the control pressure chamber 17 to the intake chamber 7 via the drive shaft clearance G decreases, and the control pressure chamber 1
The state in which the control pressure Pc in 7 tends to increase is brought about. Conversely, when the temperature of the suction refrigerant decreases, the drive shaft 12 contracts more than the sleeve 14, so that the drive shaft clearance G increases, and therefore the oil from the control pressure chamber 17 via the drive shaft clearance G The outflow amount increases, and the control pressure Pc in the control pressure chamber 17 tends to decrease.

【0028】次に、上記の如く構成された本実施形態の
圧縮機をカーエアコンシステムの一部として車両に搭載
した場合の動作について図1を基に説明する。
Next, the operation when the compressor of the present embodiment configured as described above is mounted on a vehicle as a part of a car air conditioner system will be described with reference to FIG.

【0029】本実施形態の圧縮機においても、たとえ
ば、車両のエンジン回転速度が急激に低下した場合は、
これに伴い圧縮機の冷媒吐出容量が減り冷房能力が低下
するので、圧縮機の冷媒吐出容量を大きくしたい。この
ように冷媒吐出容量を大きくしたい時とは、冷房能力が
不足し冷やせない時、つまりエアコンシステムのエバポ
レータからの噴出する空気温度が最も高い時であるが、
この時に吸気室7内の吸入冷媒の温度は高くなる。その
ため、駆動軸12とスリーブ14の熱膨張率の差によ
り、駆動軸12がスリーブ14より大きく熱膨張するの
で、駆動軸12とスリーブ14とのギャップが狭くな
る。つまり、図1(a)に示すように、駆動軸すきまG
が小さくなる。従って、駆動軸すきまGを介する制御圧
力室17から吸気室7側へのオイル流出量が減り、短時
間で制御圧力室17の制御圧力Pcが高くなる。これに
より、駆動軸12がMAX移行方向(図中矢印イの方
向)へスライドするとともに、これに連動して制御プレ
ート9が左回りに回転し、その結果、冷媒閉じ込め容量
が大きくなる。よって、この場合は冷媒吐出容量が増
え、圧縮機の冷房能力が高くなり、早期によく冷やすこ
とができる。
In the compressor of the present embodiment, for example, if the engine speed of the vehicle suddenly decreases,
As a result, the refrigerant discharge capacity of the compressor is reduced and the cooling capacity is reduced, so it is desired to increase the refrigerant discharge capacity of the compressor. When it is desired to increase the refrigerant discharge capacity in this way, when the cooling capacity is insufficient and cooling cannot be performed, that is, when the temperature of the air ejected from the evaporator of the air conditioning system is the highest,
At this time, the temperature of the suction refrigerant in the suction chamber 7 increases. Therefore, the difference between the thermal expansion coefficients of the drive shaft 12 and the sleeve 14 causes the drive shaft 12 to thermally expand more than the sleeve 14, so that the gap between the drive shaft 12 and the sleeve 14 is reduced. That is, as shown in FIG.
Becomes smaller. Therefore, the amount of oil flowing out from the control pressure chamber 17 to the intake chamber 7 via the drive shaft clearance G decreases, and the control pressure Pc of the control pressure chamber 17 increases in a short time. As a result, the drive shaft 12 slides in the MAX transition direction (the direction of the arrow A in the figure), and in conjunction with this, the control plate 9 rotates counterclockwise, thereby increasing the refrigerant confinement capacity. Therefore, in this case, the refrigerant discharge capacity increases, the cooling capacity of the compressor increases, and the compressor can be cooled well early.

【0030】上記の場合とは逆に、圧縮機の冷媒吐出容
量を小さくしたい時、つまり冷房能力が過剰で冷え過ぎ
の時は、吸気室7内の吸入冷媒の温度が低くなるから、
駆動軸12とスリーブ14の熱膨張率の差により、図1
(b)に示すように、駆動軸12がスリーブ14より大
きく収縮するので、駆動軸すきまGが大きくなる。この
ため、駆動軸すきまGを介する制御圧力室17から吸気
室側へのオイル流出量が増え、短時間で制御圧力室17
の制御圧力Pcが低下する。その結果、駆動軸12がバ
ネ力Fsと吸入圧力Psとの総力でMIN移行方向(図
中矢印ハの方向)へ押し戻されるとともに、これに連動
して制御プレート9が右回りに回転し、冷媒閉じ込め容
量が小さくなる。よって、この場合は冷媒吐出容量が減
り、圧縮機の冷房能力が小さくなり、冷え過ぎを早期に
回避できる。
Contrary to the case described above, when it is desired to reduce the refrigerant discharge capacity of the compressor, that is, when the cooling capacity is excessive and the temperature is too low, the temperature of the refrigerant sucked in the intake chamber 7 decreases.
Due to the difference in the coefficient of thermal expansion between the drive shaft 12 and the sleeve 14, FIG.
As shown in (b), since the drive shaft 12 contracts more than the sleeve 14, the drive shaft clearance G increases. Therefore, the amount of oil flowing out from the control pressure chamber 17 to the intake chamber via the drive shaft clearance G increases, and the control pressure chamber 17
Control pressure Pc decreases. As a result, the drive shaft 12 is pushed back in the MIN transition direction (the direction of arrow C in the figure) by the total force of the spring force Fs and the suction pressure Ps, and in conjunction with this, the control plate 9 rotates clockwise, and the refrigerant The confinement capacity is reduced. Therefore, in this case, the refrigerant discharge capacity is reduced, the cooling capacity of the compressor is reduced, and excessive cooling can be avoided at an early stage.

【0031】以上の説明から明らかなように、本実施形
態の圧縮機にあっては、駆動軸12全体をスリーブ14
の構成材料より熱膨張率の大きい材料によって構成した
ものである。このため、何らメカニカル的な機構を用い
ることなく、駆動軸12とスリーブ14の熱膨張率の差
という材料の物理的性質によるだけで、駆動軸12とス
リーブ14の間の駆動軸すきまGを大小変化させること
ができ、また、この駆動軸すきまGの大小変化により、
圧縮機の冷房能力の増減変動に対して適切な冷媒閉じ込
め容量の調節を行うことができ、機器の複雑化やそれに
よる信頼性の低下並びにコストアップを招くことなく、
より最適な冷媒閉じ込め容量の制御をなし得る。
As is apparent from the above description, in the compressor of the present embodiment, the entire drive shaft 12 is
Is made of a material having a higher coefficient of thermal expansion than that of the above material. Therefore, the drive shaft clearance G between the drive shaft 12 and the sleeve 14 can be increased or decreased only by the physical property of the material, that is, the difference in the coefficient of thermal expansion between the drive shaft 12 and the sleeve 14 without using any mechanical mechanism. Can be changed, and by the change of the drive shaft clearance G,
Appropriate adjustment of the refrigerant confinement capacity can be performed in response to fluctuations in the cooling capacity of the compressor, without complicating the equipment and reducing its reliability and cost.
More optimal control of the refrigerant confinement capacity can be achieved.

【0032】なお、上記実施形態では、駆動軸12全体
をスリーブ14より熱膨張率の大きい材料で形成するこ
ととしたが、駆動軸12の全体でなく一部、具体的には
駆動軸すきまGを形成している駆動軸12の隙間形成部
位12cのみ、具体的には駆動軸の外周部を、スリーブ
14の構成材料より熱膨張率の大きい材料で形成しても
よく、この場合も、駆動軸12の隙間形成部位12cと
スリーブ14との熱膨張率の差により、駆動軸すきまG
が大小変化するから、上記実施形態と同様な効果が得ら
れる。
In the above embodiment, the entire drive shaft 12 is formed of a material having a higher coefficient of thermal expansion than the sleeve 14. However, the drive shaft 12 is not part of the entire drive shaft, specifically, a drive shaft clearance G. Only the gap forming portion 12c of the drive shaft 12 forming the drive shaft 12, specifically, the outer peripheral portion of the drive shaft may be formed of a material having a higher coefficient of thermal expansion than the material of the sleeve 14; Due to the difference in the thermal expansion coefficient between the gap forming portion 12c of the shaft 12 and the sleeve 14, the drive shaft clearance G
Changes in magnitude, the same effect as in the above embodiment can be obtained.

【0033】熱膨張率の異なる材料の組み合わせとして
は各種考えられるが、たとえば、プラスチックと鉄材の
組み合わせを採用することもでき、この場合は、駆動軸
12全体、または駆動軸すきまGを形成している駆動軸
12の隙間形成部位12cをプラスチック材で形成し、
スリーブ14側を鉄材で形成すれば、その熱膨張率の差
により上記のような実施形態の作用効果が得られる。
Various combinations of materials having different coefficients of thermal expansion are conceivable. For example, a combination of a plastic and an iron material may be employed. In this case, the entire drive shaft 12 or the drive shaft clearance G is formed. The gap forming portion 12c of the drive shaft 12 is formed of a plastic material,
If the sleeve 14 is formed of an iron material, the effects of the above-described embodiment can be obtained due to the difference in the coefficient of thermal expansion.

【0034】[0034]

【発明の効果】本発明にあっては、上記の如く、駆動軸
全体または駆動軸とスリーブの間の隙間(駆動軸すき
ま)を形成している駆動軸の隙間形成部位のみを、スリ
ーブの構成材料より熱膨張率の大きい材料によって構成
したものである。このため、何らメカニカル的な機構を
用いることなく、駆動軸とスリーブの熱膨張率の差とい
う材料の物理的性質によるだけで、駆動軸すきまを大小
変化させることができ、また、また、この駆動軸すきま
の大小変化により、圧縮機の冷房能力の増減変動に対し
て適切な冷媒閉じ込め容量の調節を迅速に行うことがで
き、機器の複雑化やそれによる信頼性の低下並びにコス
トアップを招くことなく、より最適な冷媒閉じ込め容量
の制御をなし得る可変容量型気体圧縮機を提供すること
ができる。
According to the present invention, as described above, only the gap forming portion of the drive shaft, which forms the gap (drive shaft clearance) between the drive shaft and the sleeve, constitutes the sleeve. It is made of a material having a higher coefficient of thermal expansion than the material. Therefore, without using any mechanical mechanism, the drive shaft clearance can be changed in size only by the physical property of the material, that is, the difference in the coefficient of thermal expansion between the drive shaft and the sleeve. Due to the change in the shaft clearance, it is possible to quickly adjust the refrigerant confinement capacity appropriately in response to fluctuations in the cooling capacity of the compressor, resulting in equipment complexity, resulting in reduced reliability and increased costs. Thus, it is possible to provide a variable displacement gas compressor that can control the refrigerant confinement capacity more optimally.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の要部である冷媒閉じ込め容量の
制御機構の説明図であり、同図(a)は熱膨張率の差に
より駆動軸すきまが小となった状態を、同図(b)は熱
膨張率の差により駆動軸すきまが小となった状態をそれ
ぞれ示す。
FIG. 1 is an explanatory view of a control mechanism of a refrigerant confinement capacity which is a main part of the present invention. FIG. 1 (a) shows a state in which a drive shaft clearance is reduced due to a difference in thermal expansion coefficient. FIG. 2B shows a state in which the drive shaft clearance becomes small due to the difference in the coefficient of thermal expansion.

【図2】従来の可変容量型気体圧縮機の断面図。FIG. 2 is a sectional view of a conventional variable displacement gas compressor.

【図3】図2のA−A線断面図。FIG. 3 is a sectional view taken along line AA of FIG. 2;

【図4】図2のB−B線断面図。FIG. 4 is a sectional view taken along line BB of FIG. 2;

【図5】図2に示した従来の可変容量型気体圧縮機にお
ける冷媒閉じ込め容量の制御機構の説明図。
FIG. 5 is an explanatory diagram of a control mechanism of a refrigerant confinement capacity in the conventional variable displacement gas compressor shown in FIG.

【符号の説明】[Explanation of symbols]

1 ケーシング 1a フロントヘッド 2 シリンダ 3 ロータ 4 ベーン 5 三日月状のシリンダ内側空隙 6 圧縮室 7 吸気室 8 吐出室 9 制御プレート 10 制御プレート外周の切り欠き部 11 駆動ピン 12 駆動軸 12a 駆動軸一端面 12b 駆動軸他端面 12c 駆動軸の隙間形成部位 13 制御弁 14 スリーブ 17 制御圧力室 19 オイル溜り 21 圧縮バネ Pc 制御圧力 Pd 吐出圧力 Ps 吸入圧力 Fs バネ力 DESCRIPTION OF SYMBOLS 1 Casing 1a Front head 2 Cylinder 3 Rotor 4 Vane 5 Crescent shaped cylinder inner space 6 Compression chamber 7 Intake chamber 8 Discharge chamber 9 Control plate 10 Notch on control plate outer periphery 11 Drive pin 12 Drive shaft 12a Drive shaft end surface 12b Drive shaft other end surface 12c Drive shaft gap forming portion 13 Control valve 14 Sleeve 17 Control pressure chamber 19 Oil reservoir 21 Compression spring Pc Control pressure Pd Discharge pressure Ps Suction pressure Fs Spring force

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 容積の大小変化を繰り返すことにより、
吸気室側から冷媒を吸い込み、これを閉じ込めて圧縮し
た後、圧縮後の冷媒を吐出する圧縮室と、 上記圧縮室と吸気室との間に回転可能に設けられるとと
もに、その回転角度の調節により上記圧縮室の冷媒閉じ
込め容量を増減変化させる制御プレートと、 上記制御プレートを駆動軸のスライドにより回転移動さ
せる制御プレート駆動機構とを備え、 上記駆動軸は、その一端面側が吸気室に露出し、その他
端面が制御圧力室に臨むように設けられるとともに、上
記吸気室内の冷媒の吸入圧力と、バネ力と、上記制御圧
力室内の制御圧力との力関係によりスライドする構造の
可変容量型気体圧縮機において、 上記駆動軸とこれをスライド可能に収納するスリーブと
の間に、上記駆動軸に加わる制御圧力を形成するオイル
の流出用の隙間が設けられ、 上記駆動軸全体または上記隙間を形成している上記駆動
軸の隙間形成部位のみが、上記スリーブの構成材料より
熱膨張率の大きい材料からなることを特徴とする可変容
量型気体圧縮機。
1. By repeating a change in volume,
After sucking the refrigerant from the intake chamber side, confining and compressing the refrigerant, a compression chamber that discharges the compressed refrigerant, and a rotatably provided between the compression chamber and the intake chamber, the rotation angle of which is adjusted. A control plate for increasing or decreasing the refrigerant confinement capacity of the compression chamber; and a control plate drive mechanism for rotating the control plate by sliding a drive shaft, wherein the drive shaft has one end surface exposed to the intake chamber, The other end face is provided so as to face the control pressure chamber, and the variable displacement gas compressor has a structure in which the end face slides according to the force relationship between the suction pressure of the refrigerant in the suction chamber, the spring force, and the control pressure in the control pressure chamber. In the above, a gap for oil outflow forming a control pressure applied to the drive shaft is provided between the drive shaft and a sleeve for slidably storing the drive shaft. The variable displacement gas compressor, wherein the entire drive shaft or only the gap forming portion of the drive shaft forming the gap is made of a material having a higher coefficient of thermal expansion than the material of the sleeve.
【請求項2】 上記駆動軸全体または上記隙間を形成し
ている上記駆動軸の隙間形成部位のみがプラスチック材
からなり、上記スリーブが鉄材からなることを特徴とす
る請求項1に記載の可変容量型気体圧縮機。
2. The variable capacitor according to claim 1, wherein the entirety of the drive shaft or only a gap forming portion of the drive shaft forming the gap is made of a plastic material, and the sleeve is made of an iron material. Type gas compressor.
JP35361699A 1999-12-13 1999-12-13 Variable capacity gas compressor Expired - Fee Related JP3717731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35361699A JP3717731B2 (en) 1999-12-13 1999-12-13 Variable capacity gas compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35361699A JP3717731B2 (en) 1999-12-13 1999-12-13 Variable capacity gas compressor

Publications (2)

Publication Number Publication Date
JP2001165076A true JP2001165076A (en) 2001-06-19
JP3717731B2 JP3717731B2 (en) 2005-11-16

Family

ID=18432059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35361699A Expired - Fee Related JP3717731B2 (en) 1999-12-13 1999-12-13 Variable capacity gas compressor

Country Status (1)

Country Link
JP (1) JP3717731B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6648605B2 (en) * 2001-10-10 2003-11-18 Caterpillar Inc Pump utilizing dissimilar materials to compensate for temperature change

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6648605B2 (en) * 2001-10-10 2003-11-18 Caterpillar Inc Pump utilizing dissimilar materials to compensate for temperature change

Also Published As

Publication number Publication date
JP3717731B2 (en) 2005-11-16

Similar Documents

Publication Publication Date Title
JP3119946B2 (en) Combined lift / piston / axial port unloader for screw compressor
US7150610B2 (en) Gas compressor
JPS6220688A (en) Vane type compressor
WO2011077724A1 (en) Single-screw compressor
JP2008509326A (en) Capacity changing device for rotary compressor and operation method of air conditioner provided with the same
JP2003013872A (en) Scroll type compressor and its refrigerant compressing method
WO2010146793A1 (en) Screw compressor
US11300124B2 (en) Single-screw compressor with a gap adjuster mechanism
JP4005035B2 (en) Variable capacity rotary compressor
JP2002266777A (en) Scroll fluid machine provided with multi-stage fluid compression part
US8568119B2 (en) Single screw compressor
KR101842333B1 (en) Scroll compressor
JP2001165076A (en) Variable displacement gas compressor
JP4735757B2 (en) Single screw compressor
JP4654629B2 (en) Scroll type expander
JP5526760B2 (en) Single screw compressor
JPS63186982A (en) Vane type compressor
JPH073235B2 (en) Capacity control compressor
KR100193914B1 (en) Scroll compressor with variable displacement mechanism
JPS59108896A (en) Capacity control mechanism for scroll type compressor
JP2001241392A (en) Variable displacement type gas compressor
JP3598210B2 (en) Variable displacement compressor
JP2950643B2 (en) Scroll compressor
JPH0533786A (en) Scroll type compressor
JPH06323268A (en) Scroll type fluid machine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees