JP2001163870A - Method for producing 9,9-disubstituted-xanthene-2,3,6,7- tetracarboxylic acid and dianhydride thereof - Google Patents

Method for producing 9,9-disubstituted-xanthene-2,3,6,7- tetracarboxylic acid and dianhydride thereof

Info

Publication number
JP2001163870A
JP2001163870A JP34459699A JP34459699A JP2001163870A JP 2001163870 A JP2001163870 A JP 2001163870A JP 34459699 A JP34459699 A JP 34459699A JP 34459699 A JP34459699 A JP 34459699A JP 2001163870 A JP2001163870 A JP 2001163870A
Authority
JP
Japan
Prior art keywords
general formula
producing
tetracarboxylic acid
xanthene
disubstituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34459699A
Other languages
Japanese (ja)
Inventor
Noriyoshi Arai
則義 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HD MicroSystems Ltd
Original Assignee
Hitachi Chemical DuPont Microsystems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical DuPont Microsystems Ltd filed Critical Hitachi Chemical DuPont Microsystems Ltd
Priority to JP34459699A priority Critical patent/JP2001163870A/en
Publication of JP2001163870A publication Critical patent/JP2001163870A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pyrane Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a 9,9-disubstituted-xanthene-2,3,6,7- tetracarboxylic acid in high yield in a short process without the need of any special equipment, and to provide a method for producing the corresponding dianhydride of the above compound. SOLUTION: This method for producing a 9,9-disubstituted-xanthene-2,3,6,7- tetracarboxylic acid comprises the following process: a 3,4-dialkylphenol is reacted with a gem-bis(4-hydroxyphenyl)alkane of the general formula (1), wherein, R1 and R2 are each a univalent organic group or a derivative thereof in the presence of an acid catalyst to form a hexaalkylxanthene derivative of the general formula (2), wherein, R1 and R2 are each a univalent organic group; and R3, R4, R5 and R6 are each an alkyl, followed by oxidation of the side chains respectively shown by R3, R4, R5 and R6 to obtain the objective 9,9- disubstituted-xanthene-2,3,6,7-tetracarboxylic acid of the general formula (3), wherein, R1 and R2 are each a univalent organic group. The other objective method for producing the corresponding dianhydride of the above compound is also provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,半導体装置の層間
絶縁膜、表面保護膜などの形成に使用される高i線透過
性,高速現像性,高解像性,高寸法精度の感光性樹脂組
成物用として用いられる、低熱膨張,低残留応力のポリ
イミド及びその前駆体の材料として有用なテトラカルボ
ン酸及びその二無水物の製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photosensitive resin having high i-ray transmittance, high-speed developability, high resolution, and high dimensional accuracy used for forming an interlayer insulating film and a surface protective film of a semiconductor device. The present invention relates to a method for producing tetracarboxylic acid and a dianhydride thereof, which are useful as a material for a polyimide and a precursor thereof having a low thermal expansion and a low residual stress, which are used for a composition.

【0002】[0002]

【従来の技術】近年,半導体工業にあっては,従来より
無機材料を用いて行われていた層間絶縁材料として,ポ
リイミド樹脂等のような耐熱性に優れた有機物が,その
特性を活かして使用されてきている。しかし,半導体集
積回路やプリント基板上の回路パターン形成は,基材表
面へのレジスト材の造膜,所定箇所への露光,エッチン
グ等により不要箇所の除去,基板表面の洗浄作業等の煩
雑で多岐に亘工程を経てパターン形成が行われることか
ら,露光,現像によるパターン形成後も必要な部分のレ
ジストを絶縁材料としてそのまま残して用いることがで
きる耐熱感光材料の開発が望まれている。
2. Description of the Related Art In recent years, in the semiconductor industry, an organic material having excellent heat resistance, such as a polyimide resin, has been used as an interlayer insulating material which has conventionally been formed using an inorganic material, taking advantage of its characteristics. Have been. However, the formation of circuit patterns on semiconductor integrated circuits and printed circuit boards is complicated and diversified, such as the formation of a resist material on the base material surface, removal of unnecessary portions by exposing and etching predetermined portions, and cleaning of the substrate surface. Therefore, development of a heat-resistant photosensitive material that can use a necessary portion of a resist as an insulating material as it is even after pattern formation by exposure and development is desired.

【0003】これらの材料として,例えば,感光性ポリ
イミド,環化ポリブタジエン等をベースポリマとした耐
熱感光材料が提案されており,特に感光性ポリイミド
は,その耐熱性が優れていることや不純物の排除が容易
であること等の点から特に注目されている。また,この
ような感光性ポリイミドとしては,ポリイミド前駆体と
重クロム酸塩からなる系(特公昭49−17374号公
報)が最初に提案されたが,この材料は,実用的な光感
度を有するとともに膜形成能が高い等の長所を有する反
面,保存安定性に欠け,ポリイミド中にクロムイオンが
残存すること等の欠点があり,実用には至らなかった。
As these materials, for example, heat-resistant photosensitive materials using photosensitive polyimide, cyclized polybutadiene or the like as a base polymer have been proposed. In particular, photosensitive polyimide has excellent heat resistance and eliminates impurities. Has attracted particular attention because of its ease of use. As such a photosensitive polyimide, a system comprising a polyimide precursor and a dichromate (Japanese Patent Publication No. 49-17374) was first proposed, but this material has practical photosensitivity. In addition, it has advantages such as high film-forming ability, but lacks storage stability and has drawbacks such as chromium ions remaining in polyimide, and thus has not been put to practical use.

【0004】このような問題を回避するために,例え
ば,ポリイミド前駆体に感光基を有する化合物を混合す
る方法(特開昭54−109828号公報),ポリイミ
ド前駆体中の官能基と感光基を有する化合物の官能基と
を反応させて感光基を付与させる方法(特開昭56−2
4343号公報,特開昭60−100143号公報等)
などが提案されている。
In order to avoid such a problem, for example, a method of mixing a compound having a photosensitive group with a polyimide precursor (Japanese Patent Laid-Open No. 54-109828) discloses a method in which a functional group and a photosensitive group in the polyimide precursor are mixed. A method of reacting with a functional group of a compound having a compound to give a photosensitive group (JP-A-56-2
No. 4343, Japanese Patent Application Laid-Open No. Sho 60-100143)
And so on.

【0005】しかし,これらの感光性ポリイミド前駆体
は耐熱性,機械特性に優れる芳香族系モノマに基本骨格
を用いており,そのポリイミド前駆体自体の吸収のた
め,紫外領域での透光性が低く,露光部における光化学
反応を充分効果的に行うことができず,低感度であった
り,パターンの形状が悪化するという問題があった。ま
た,最近では,半導体の高集積化に伴い,加工ルールが
益々小さくなり,より高い解像度が求められる傾向にあ
る。
[0005] However, these photosensitive polyimide precursors use a basic skeleton as an aromatic monomer having excellent heat resistance and mechanical properties. Due to the absorption of the polyimide precursor itself, its transparency in the ultraviolet region is low. Therefore, the photochemical reaction in the exposed portion cannot be performed sufficiently effectively, resulting in low sensitivity and deterioration of the pattern shape. In recent years, as the integration of semiconductors has increased, processing rules have become increasingly smaller, and there has been a tendency for higher resolution to be required.

【0006】そのため,従来の平行光線を用いるコンタ
クト/プロキシミテイ露光機から,ミラープロジェクシ
ョンと呼ばれる1:1投影露光機,さらにステッパと呼
ばれる縮小投影露光機が用いられるようになってきてい
る。ステッパは,超高圧水銀灯の高出力発振線,エキシ
マレーザのような単色光を利用するものである。これま
でステッパとしては,超高圧水銀灯のg−lineと呼
ばれる可視光(波長:435nm)を使ったg線ステッ
パが主流であったが,さらに加工ルール微細化の要求に
対応するため,使用するステッパの波長を短くすること
が必要である。そのため,使用する露光機は,g線ステ
ッパ(波長:435nm)からi線ステッパ(波長:3
65nm)に移行しつつある。
For this reason, a conventional contact / proximity exposure machine using parallel rays has been replaced by a 1: 1 projection exposure machine called a mirror projection and a reduction projection exposure machine called a stepper. The stepper utilizes a monochromatic light such as an excimer laser and a high-power oscillation line of an ultra-high pressure mercury lamp. Until now, g-line steppers using visible light (wavelength: 435 nm) called g-line of ultra-high pressure mercury lamps have been the mainstream stepper. However, in order to respond to the demand for finer processing rules, the stepper used is Needs to be shortened. Therefore, the exposure equipment used is from a g-line stepper (wavelength: 435 nm) to an i-line stepper (wavelength: 3 nm).
65 nm).

【0007】しかし,コンタクト/プロキシミテイ露光
機,ミラープロジェクション投影露光機、g線ステッパ
用に設計された従来の感光性ポリイミドのベースポリマ
では,先に述べた理由により透明性が低く,特にi線
(波長:365nm)での透過率はほとんどないため,
i線ステッパでは,まともなパターンが得られない。ま
た,半導体素子の高密度実装方式であるLOC(リード
オンチップ)に対応して表面保護用ポリイミド膜はさら
に厚膜のものが求められているが,厚膜の場合には,透
過性が低い問題はさらに深刻になる。このため,i線透
過率の高く,i線ステッパにより良好なパターン形状を
有するポリイミドパターンの得られる感光性ポリイミド
が強く求められている。
However, a conventional photosensitive polyimide base polymer designed for a contact / proximity exposure machine, a mirror projection projection exposure machine, and a g-line stepper has a low transparency for the above-mentioned reason, and particularly has a low i-line. (Wavelength: 365 nm) because there is almost no transmittance.
A proper pattern cannot be obtained with an i-line stepper. In addition, polyimide films for surface protection are required to be thicker in response to LOC (lead-on-chip), which is a high-density mounting method for semiconductor elements. The problem gets worse. Therefore, there is a strong demand for a photosensitive polyimide having a high i-line transmittance and a polyimide pattern having a good pattern shape by an i-line stepper.

【0008】また,基板となるシリコンウエハの径は,
年々大きくなり,ポリイミドとシリコンウエハの熱膨張
係数差により,表面保護膜としてのポリイミドを形成し
たシリコンウエハの反りが以前より大きくなるという問
題が発生している。そのため,従来のポリイミドよりも
更に低熱膨張性を有する感光性ポリイミドが強く求めら
れている。一般に分子構造を剛直にすることにより低熱
膨張性は達成できるが,剛直構造の場合,i線をほとん
ど透過しないため,感光性特性が低下する。
The diameter of a silicon wafer serving as a substrate is
As the thermal expansion coefficient increases between polyimide and a silicon wafer, a problem arises in that the warpage of the silicon wafer on which the polyimide as the surface protection film is formed is larger than before. Therefore, there is a strong demand for a photosensitive polyimide having a lower thermal expansion property than conventional polyimides. In general, low thermal expansion can be achieved by making the molecular structure rigid. However, in the case of the rigid structure, the i-line is hardly transmitted, so that the photosensitive characteristics deteriorate.

【0009】i線の透過性を向上させる方法として,フ
ッ素を導入したポリイミド(特開平8−234433号
公報)や分子鎖を屈曲させたポリイミド(特開平8−3
6264号公報)が提案されている。しかし,フッ素を
導入したポリイミドはシリコンウエハに対する接着力が
弱く,半導体素子に用いた場合の信頼性が低い。また,
分子鎖を屈曲させたポリイミドは分子間相互作用が弱い
ため,耐熱性の低下や熱膨張係数の増大のため,半導体
素子とした場合の信頼性が低い。
As a method for improving the transmittance of i-rays, polyimide having fluorine introduced therein (Japanese Patent Laid-Open No. Hei 8-234433) or polyimide having a molecular chain bent (Japanese Patent Laid-Open No. Hei 8-3) is used.
No. 6264) has been proposed. However, polyimide into which fluorine has been introduced has a low adhesive strength to a silicon wafer, and has low reliability when used in a semiconductor device. Also,
Since polyimide having a bent molecular chain has weak intermolecular interaction, the heat resistance is lowered and the thermal expansion coefficient is increased, so that the reliability in the case of a semiconductor device is low.

【0010】本発明者らは、このような問題を解決する
1つの方法として、2つの芳香環の間に2つの架橋部を
形成した、いわゆる、ラダー型のテトラカルボン酸二無
水物を用いたポリイミド前駆体を見いだした。この構造
は、高いi線透過率と低熱膨張性の両方を付与するため
に,二重結合を連続させることなく2つの芳香環を剛直
かつ直線的に連結できる。
The present inventors have used a so-called ladder-type tetracarboxylic dianhydride in which two crosslinked portions are formed between two aromatic rings as one method for solving such a problem. A polyimide precursor was found. In this structure, two aromatic rings can be rigidly and linearly connected without a continuous double bond in order to provide both high i-line transmittance and low thermal expansion.

【0011】このようなラダー型のテトラカルボン酸二
無水物の1つとして、2つの架橋部が、エーテル結合
と、2,2−プロピリデン結合から形成される、9,9
−ジメチル−キサンテン−2,3,6,7−テトラカル
ボン酸二無水物がある。この化合物は、既知である
(S. Trofimenko and B. C.
Auman, Macromolecules, 2
7, 1136 (1994).)。しかしながら、前
記文献に記載される合成方法では、合成過程でフッ化水
素酸を用いているため特殊な設備が必要となる上,全収
率が低く実用的な合成方法とは言い難い。
As one of such ladder-type tetracarboxylic dianhydrides, two cross-linking parts are formed from an ether bond and a 2,2-propylidene bond.
-Dimethyl-xanthene-2,3,6,7-tetracarboxylic dianhydride. This compound is known (S. Trofimenko and BC).
Auman, Macromolecules, 2
7, 1136 (1994). ). However, in the synthesis method described in the above-mentioned literature, special equipment is required because hydrofluoric acid is used in the synthesis process, and the total yield is low and it cannot be said that it is a practical synthesis method.

【0012】[0012]

【発明が解決しようとする課題】本発明は,特殊な設備
を必要とせず、短い工程で合成が可能であり、しかも収
率の高い9,9−ジ置換−キサンテン−2,3,6,7
−テトラカルボン酸及びその二無水物の製造法を提供す
るものである。
The present invention does not require special equipment, can be synthesized in a short process, and has a high yield of 9,9-disubstituted-xanthene-2,3,6,9. 7
To provide a method for producing tetracarboxylic acid and its dianhydride.

【0013】[0013]

【課題を解決するための手段】本発明は、酸触媒の存在
下、3,4−ジアルキルフェノールと一般式(1)
SUMMARY OF THE INVENTION The present invention relates to a process for preparing a 3,4-dialkylphenol of the general formula (1) in the presence of an acid catalyst.

【化5】 (式中、R及びRは各々独立に1価の有機基を示
す)で表されるgem−ビス(4−ヒドロキシフェニ
ル)アルカン又はその誘導体を反応させて一般式(2)
Embedded image (Wherein, R 1 and R 2 each independently represent a monovalent organic group), and reacted with gem-bis (4-hydroxyphenyl) alkane or a derivative thereof represented by general formula (2):

【化6】 (式中、R及びRは各々独立に1価の有機基を示
し、R、R,R及びRは各々独立にアルキル基
を示す)で表されるヘキサアルキルキサンテン誘導体を
合成し、ついで、R、R,R及びRで示される
側鎖を酸化することを特徴とする、一般式(3)
Embedded image (Wherein, R 1 and R 2 each independently represent a monovalent organic group, and R 3 , R 4 , R 5 and R 6 each independently represent an alkyl group). Synthesis, and then oxidizing the side chains represented by R 3 , R 4 , R 5 and R 6 , characterized by the general formula (3)

【化7】 (式中、R及びRは各々独立に1価の有機基を示
す)で示される9,9−ジ置換−キサンテン−2,3,
6,7−テトラカルボン酸の製造法に関する。
Embedded image (Wherein, R 1 and R 2 each independently represent a monovalent organic group).
The present invention relates to a method for producing 6,7-tetracarboxylic acid.

【0014】また本発明は、前記一般式(3)で示され
るテトラカルボン酸を、さらに脱水閉環反応する、一般
式(4)
The present invention also relates to a compound of the general formula (4) wherein the tetracarboxylic acid represented by the general formula (3) further undergoes a dehydration ring closure reaction.

【化8】 (式中、R及びRは各々独立に1価の有機基を示
す)で示される9,9−ジ置換−キサンテン−2,3,
6,7−テトラカルボン酸無水物の製造法に関する。
Embedded image (Wherein, R 1 and R 2 each independently represent a monovalent organic group).
The present invention relates to a method for producing 6,7-tetracarboxylic anhydride.

【0015】[0015]

【発明の実施の形態】本発明の製造法では、まず、3,
4−ジアルキルフェノールと前記一般式(1)で示され
るgem−ビス(4−ヒドロキシフェニル)アルカン又
はその誘導体を反応させる。3,4−ジアルキルフェノ
ールとしては、3,4−ジメチルフェノール、3,4−
ジエチルフェノール、3,4−ジプロピルフェノール、
3,4−ジブチルフェノール等、アルキル基の炭素原子
数が1〜6のものが好ましいものとして挙げられるが、
中でも3,4−ジメチルフェノールが合成や入手の容易
さ等の点で好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION In the production method of the present invention,
A 4-dialkylphenol is reacted with gem-bis (4-hydroxyphenyl) alkane represented by the general formula (1) or a derivative thereof. As the 3,4-dialkylphenol, 3,4-dimethylphenol, 3,4-
Diethylphenol, 3,4-dipropylphenol,
Preferred are those having 1 to 6 carbon atoms in the alkyl group, such as 3,4-dibutylphenol,
Among them, 3,4-dimethylphenol is preferred in terms of synthesis and availability.

【0016】一方、前記一般式(1)で示されるgem
−ビス(4−ヒドロキシフェニル)アルカン又はその誘
導体において、R及びRで示される1価の有機基と
しては、メチル基、エチル基、プロピル基、ブチル基等
の炭素原子数1〜6のアルキル基、フェニル基等のアリ
ール基、トリフルオロメチル基等のフッ素化アルキル
基、メトキシメチル基、ジメトキシメチル基などのアル
コキシ置換アルキル基、などが挙げられ、中でも炭素数
1〜6の有機基が好ましく,炭素数1〜4のアルキル基
がより好ましい。具体例としては、ビスフェノールA、
2,2−ビス(4−ヒドロキシフェニル)ブタン、3,
3−ビス(4−ヒドロキシフェニル)ヘキサン、1,1
−ビス(4−ヒドロキシフェニル)−1−フェニルエタ
ン、3,3−ビス(4−ヒドロキシフェニル)ペンタ
ン、1,1,1−トリフルオロ−2,2−ビス(4−ヒ
ドロキシフェニル)プロパン等が挙げられ、ビスフェノ
ールA、2,2−ビス(4−ヒドロキシフェニル)ブタ
ン、3,3−ビス(4−ヒドロキシフェニル)ヘキサ
ン、3,3−ビス(4−ヒドロキシフェニル)ペンタン
等が好ましい。
On the other hand, gem represented by the general formula (1)
In the -bis (4-hydroxyphenyl) alkane or a derivative thereof, the monovalent organic group represented by R 1 and R 2 is a monovalent organic group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, and a butyl group. Alkyl groups, aryl groups such as phenyl groups, fluorinated alkyl groups such as trifluoromethyl groups, methoxymethyl groups, alkoxy-substituted alkyl groups such as dimethoxymethyl groups, etc., among which organic groups having 1 to 6 carbon atoms are preferred. Preferably, an alkyl group having 1 to 4 carbon atoms is more preferable. Specific examples include bisphenol A,
2,2-bis (4-hydroxyphenyl) butane, 3,
3-bis (4-hydroxyphenyl) hexane, 1,1
-Bis (4-hydroxyphenyl) -1-phenylethane, 3,3-bis (4-hydroxyphenyl) pentane, 1,1,1-trifluoro-2,2-bis (4-hydroxyphenyl) propane and the like Preferred are bisphenol A, 2,2-bis (4-hydroxyphenyl) butane, 3,3-bis (4-hydroxyphenyl) hexane, 3,3-bis (4-hydroxyphenyl) pentane, and the like.

【0017】これらの化合物は酸触媒の存在下で反応さ
せる。酸触媒の例としては、メタンスルホン酸、エタン
スルホン酸、プロパンスルホン酸、ブタンスルホン酸、
ベンゼンスルホン酸、トルエンスルホン酸等の有機スル
ホン酸が好ましいものとしてあげられる。
These compounds are reacted in the presence of an acid catalyst. Examples of acid catalysts include methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, butanesulfonic acid,
Organic sulfonic acids such as benzenesulfonic acid and toluenesulfonic acid are preferred.

【0018】これらの使用割合としては、反応効率向上
等の点から、前記一般式(1)で示される化合物1モル
に対して、3,4−ジアルキルフェノールは、20〜6
0モル用いることが好ましく、40〜50モル用いるこ
とがより好ましい。また、同様の理由で、前記酸触媒
は、前記一般式(1)で示される化合物1モルに対し
て、0.3〜0.6モル用いることが好ましい。
From the viewpoint of improving the reaction efficiency and the like, 3,4-dialkylphenol is used in an amount of 20 to 6 based on 1 mol of the compound represented by the general formula (1).
It is preferable to use 0 mol, and it is more preferable to use 40 to 50 mol. For the same reason, it is preferable to use 0.3 to 0.6 mol of the acid catalyst per 1 mol of the compound represented by the general formula (1).

【0019】反応温度としては、80〜150℃が好ま
しく、100〜120℃がより好ましい。反応時間とし
ては、30〜50時間が好ましく、40〜50時間がよ
り好ましい。反応は、一般に、無溶媒で行うことができ
る。
[0019] The reaction temperature is preferably from 80 to 150 ° C, more preferably from 100 to 120 ° C. The reaction time is preferably 30 to 50 hours, more preferably 40 to 50 hours. The reaction can be generally performed without a solvent.

【0020】上記反応により、前記一般式(2)で示さ
れるヘキサアルキルキサンテン誘導体が生成する。この
生成物は、各種方法により精製できる。例えば、反応混
合物をトルエン、ベンゼン、キシレン等の芳香族炭化水
素溶媒で希釈し、10重量%程度の水酸化ナトリウム、
水酸化カリウム、水酸化ナトリウム等の水溶液で洗浄し
て過剰の酸触媒と過剰の3,4−ジアルキルフェノール
を除去し、無水硫酸マグネシウム等で乾燥後、濃縮する
ことにより得ることができる。
By the above reaction, a hexaalkylxanthene derivative represented by the general formula (2) is formed. This product can be purified by various methods. For example, the reaction mixture is diluted with an aromatic hydrocarbon solvent such as toluene, benzene, or xylene, and about 10% by weight of sodium hydroxide,
It can be obtained by washing with an aqueous solution of potassium hydroxide, sodium hydroxide or the like to remove excess acid catalyst and excess 3,4-dialkylphenol, drying over anhydrous magnesium sulfate or the like, and concentrating.

【0021】なお、上記の方法は、A. J. Car
uso and J. L. Lee, J. Or
g. Chem., 62, 1058 (1997)
が、本発明で製造する化合物の中間体の合成に応用でき
るか否かを鋭意検討した結果見いだしたものである。
The above method is described in A. J. Car
uso and J.S. L. Lee, J.M. Or
g. Chem. , 62, 1058 (1997).
Have been found as a result of intensive studies as to whether or not they can be applied to the synthesis of intermediates of the compounds produced in the present invention.

【0022】ついで、上記一般式(2)の化合物の、R
、R,R及びRで示される側鎖を酸化すること
により、上記一般式(3)で示される9,9−ジ置換−
キサンテン−2,3,6,7−テトラカルボン酸が得ら
れる。この工程は、例えば、文献の方法(C. S.
Marvel and J. H. Rassweil
er, J. Am. Chem. Soc., 8
0, 1197 (1958).)に従い行うことがで
きる。
Next, R of the compound of the general formula (2)
By oxidizing the side chain represented by 3 , R 4 , R 5 and R 6 , the 9,9-disubstituted compound represented by the above general formula (3) is obtained.
Xanthene-2,3,6,7-tetracarboxylic acid is obtained. This step is carried out, for example, by the method of literature (CS
Marvel and J.M. H. Lassweil
er, J.A. Am. Chem. Soc. , 8
0, 1197 (1958). ).

【0023】溶媒としては、水、ピリジン、水−ピリジ
ン混合物等が用いられる。溶媒の量とは、前記一般式
(2)で示されるヘキサアルキルキサンテン誘導体0.
1モルに対して好ましくは0.6〜1.6リットル、特
に好ましくは1.2リットルとされる。この反応には、
一般に過マンガン酸塩が用いられ、中でも過マンガン酸
カリウムが好ましい。過マンガン酸塩の量としては、ヘ
キサアルキルキサンテン誘導体1モルに対して、10〜
15モルが好ましい。
As the solvent, water, pyridine, a water-pyridine mixture or the like is used. The amount of the solvent refers to the hexaalkylxanthene derivative represented by the general formula (2).
The amount is preferably 0.6 to 1.6 liter, and particularly preferably 1.2 liter, per mole. In this reaction,
Generally, permanganate is used, and potassium permanganate is particularly preferred. The amount of permanganate is 10 to 10 moles of the hexaalkylxanthene derivative.
15 moles are preferred.

【0024】反応温度は90〜110℃が好ましく、反
応時間は1〜2時間が好ましい。以上の方法により、一
般式(3)で示される9,9−ジ置換−キサンテン−
2,3,6,7−テトラカルボン酸が生成するが、つい
で、これを分取することができる。例えば、まず、副生
成物である二酸化マンガンを熱時ろ過によりろ別し、つ
いで、溶媒を減圧下留去し、さらに濃塩酸等を加えて溶
液のpHを1未満として、生じるテトラカルボン酸をろ
取することができる。
The reaction temperature is preferably from 90 to 110 ° C., and the reaction time is preferably from 1 to 2 hours. By the above method, 9,9-disubstituted-xanthene- represented by the general formula (3)
2,3,6,7-tetracarboxylic acid is produced, which can then be fractionated. For example, first, manganese dioxide as a by-product is filtered off by hot filtration, and then the solvent is distilled off under reduced pressure. Can be filtered.

【0025】こうして得られる、一般式(3)で示され
る9,9−ジ置換−キサンテン−2,3,6,7−テト
ラカルボン酸は、さらに、脱水閉環反応させて前記一般
式(4)で示されるテトラカルボン酸二無水物とするこ
とができる。脱水閉環反応は、例えば、無水酢酸を加え
て加熱環流下反応させるか、減圧下180〜200℃に
加熱することにより行うことができる。無水酢酸を用い
る場合、その量は、9,9−ジ置換−キサンテン−2,
3,6,7−テトラカルボン酸1モルに対して5〜15
mlとすることが好ましい。環流により生じた固体をろ
別することにより前記一般式(4)で示されるテトラカ
ルボン酸二無水物を得ることができる。
The thus obtained 9,9-disubstituted-xanthene-2,3,6,7-tetracarboxylic acid represented by the general formula (3) is further subjected to a dehydration ring-closure reaction to obtain the compound represented by the general formula (4) The tetracarboxylic dianhydride represented by The dehydration ring closure reaction can be carried out, for example, by adding acetic anhydride and reacting under reflux with heating, or by heating to 180 to 200 ° C. under reduced pressure. If acetic anhydride is used, the amount is 9,9-disubstituted-xanthene-2,
5 to 15 per mol of 3,6,7-tetracarboxylic acid
ml. The tetracarboxylic dianhydride represented by the general formula (4) can be obtained by filtering off the solid produced by the reflux.

【0026】本発明によればフッ化水素酸を用いないた
め特殊な装置を必要とせず,より簡便な操作と高い収率
で目的物を得ることができる。
According to the present invention, since no hydrofluoric acid is used, a special apparatus is not required, and the desired product can be obtained with a simpler operation and a higher yield.

【0027】[0027]

【実施例】以下,実施例により本発明を説明する。 実施例 最初の合成工程を次式に示す。The present invention will be described below with reference to examples. EXAMPLES The first synthesis step is shown in the following formula.

【化9】 Embedded image

【0028】3,4−ジメチルフェノール(1)(20
0g, 1.64mol),ビスフェノールA(2)
(10.0g, 43.9mmol),メタンスルホン
酸(2.0g, 21mmol)の混合物を100℃に
加熱し,40時間反応させた。反応混合物をトルエンで
希釈後,10重量%水酸化ナトリウム水溶液で洗浄し,
無水硫酸マグネシウム30gを加えて乾燥させた。乾燥
剤をろ別し、ろ液を濃縮したところ2,3,6,7,
9,9−ヘキサメチルキサンテンが得られた((3)
(6.73g, 25mmol, 収率 57%))。
3,4-dimethylphenol (1) (20
0 g, 1.64 mol), bisphenol A (2)
(10.0 g, 43.9 mmol) and a mixture of methanesulfonic acid (2.0 g, 21 mmol) were heated to 100 ° C. and reacted for 40 hours. The reaction mixture was diluted with toluene and washed with a 10% by weight aqueous sodium hydroxide solution.
30 g of anhydrous magnesium sulfate was added and dried. The desiccant was filtered off, and the filtrate was concentrated.
9,9-Hexamethylxanthene was obtained ((3)
(6.73 g, 25 mmol, 57% yield)).

【0029】次の合成工程を次式に示す。The following synthesis step is shown by the following equation.

【化10】 Embedded image

【0030】2,3,6,7,9,9−ヘキサメチルキ
サンテン(3)(53.3g, 200mmol)をピ
リジン(1600ml)−水(800ml)に溶解して
溶液とした。これに対し,加熱還流下メカニカルスター
ラーで激しく撹拌しながら,過マンガン酸カリウム(2
10g, 1.33mol)少量ずつ加えた。加え終わ
ってからさらに1時間加熱還流し,セライトろ過した。
この溶液を300〜400mlまで濃縮し,水700m
lと50重量%水酸化ナトリウム水溶液250mlを加
え,加熱還流下、過マンガン酸カリウム(200g,
1.27mol)で再度酸化した。反応終了後,過剰の
過マンガン酸カリウムをイソプロピルアルコールで分解
し,セライトろ過後,ろ液に濃硫酸を加え酸性にした。
生じた固体をろ別,水洗し,風乾することでテトラカル
ボン酸(4)が得られた。これを過剰量(350ml)
の無水酢酸中で加熱還流し,生じた固体をろ別すること
で酸無水物が得られた(収率 30%)。さらに、ろ液
を濃縮することにより第二晶が得られた(収率 15
%)。
2,3,6,7,9,9-Hexamethylxanthene (3) (53.3 g, 200 mmol) was dissolved in pyridine (1600 ml) -water (800 ml) to form a solution. On the other hand, while stirring vigorously with a mechanical stirrer under heating reflux, potassium permanganate (2
(10 g, 1.33 mol). After the addition was completed, the mixture was heated under reflux for an additional hour and filtered through celite.
This solution is concentrated to 300-400 ml, and water 700m
l and 50 ml of a 50% by weight aqueous solution of sodium hydroxide were added thereto, and the mixture was heated under reflux with potassium permanganate (200 g,
(1.27 mol). After completion of the reaction, excess potassium permanganate was decomposed with isopropyl alcohol, filtered through celite, and concentrated by adding concentrated sulfuric acid to the filtrate.
The resulting solid was separated by filtration, washed with water, and air-dried to obtain tetracarboxylic acid (4). Excess amount (350ml)
The solution was heated under reflux in acetic anhydride, and the resulting solid was filtered off to obtain an acid anhydride (yield 30%). Further, the filtrate was concentrated to obtain a second crystal (yield 15).
%).

【0031】得られた酸無水物をNMRで分析した結果
は次の通りであり、9,9−ジメチルキサンテン−2,
3,6,7−テトラカルボン酸二無水物が生成している
ことが確認された。 1H NMR(400MHz, DMSO−d6) δ
=1.79(6H,s), 7.84(2H, s),
8.47(2H, s).
The results of NMR analysis of the obtained acid anhydride were as follows, and it was found that 9,9-dimethylxanthene-2,
It was confirmed that 3,6,7-tetracarboxylic dianhydride was generated. 1H NMR (400 MHz, DMSO-d6) δ
= 1.79 (6H, s), 7.84 (2H, s),
8.47 (2H, s).

【0032】比較例 S. Trofimenko and B. C. A
uman, Macromolecules, 27,
1136 (1994)に記載される合成工程は次の
通りである。
Comparative Example Trofimenko and B.A. C. A
uman, Macromolecules, 27,
The synthesis process described in 1136 (1994) is as follows.

【化11】 Embedded image

【0033】この方法による収率は、ビス(3,4−ジ
メチルフェニル)エーテルの前駆体からの収率でわずか
8%である。これに対して、本発明の方法によれば、2
6%の高収率で製造できる。
The yield from this method is only 8% from the precursor of bis (3,4-dimethylphenyl) ether. In contrast, according to the method of the present invention, 2
It can be produced in a high yield of 6%.

【0034】[0034]

【発明の効果】本発明の製造法によれば、特殊な設備を
必要とせず、短い工程で、しかも高収率で9,9−ジ置
換−キサンテン−2,3,6,7−テトラカルボン酸及
びその二無水物が得られる。
According to the production method of the present invention, 9,9-disubstituted-xanthene-2,3,6,7-tetracarboxylic acid can be produced in a short process and in a high yield without requiring special equipment. The acid and its dianhydride are obtained.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4C062 HH17 4C071 AA01 AA08 CC13 EE05 FF15 GG01 HH08 KK01 KK11 KK14 LL03 LL07 4J043 PA02 PB15 QB31 TA14 ZA31 ZA35 ZA36 ZA46 ZA51 ZB11 ZB47  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4C062 HH17 4C071 AA01 AA08 CC13 EE05 FF15 GG01 HH08 KK01 KK11 KK14 LL03 LL07 4J043 PA02 PB15 QB31 TA14 ZA31 ZA35 ZA36 ZA46 ZA51 ZB11 ZB47

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】酸触媒の存在下、3,4−ジアルキルフェ
ノールと一般式(1) 【化1】 (式中、R及びRは各々独立に1価の有機基を示
す)で表されるgem−ビス(4−ヒドロキシフェニ
ル)アルカン又はその誘導体を反応させて一般式(2) 【化2】 (式中、R及びRは各々独立に1価の有機基を示
し、R、R,R及びRは各々独立にアルキル基
を示す)で表されるヘキサアルキルキサンテン誘導体を
合成し、ついで、R、R,R及びRで示される
側鎖を酸化することを特徴とする、一般式(3) 【化3】 (式中、R及びRは各々独立に1価の有機基を示
す)で示される9,9−ジ置換−キサンテン−2,3,
6,7−テトラカルボン酸の製造法。
(1) A 3,4-dialkylphenol and a compound of the formula (1) in the presence of an acid catalyst. (Wherein, R 1 and R 2 each independently represent a monovalent organic group), and reacted with gem-bis (4-hydroxyphenyl) alkane or a derivative thereof to obtain a compound represented by the general formula (2). ] (Wherein, R 1 and R 2 each independently represent a monovalent organic group, and R 3 , R 4 , R 5 and R 6 each independently represent an alkyl group). Synthesis, and then oxidizing the side chains represented by R 3 , R 4 , R 5 and R 6 , characterized by the general formula (3) (Wherein, R 1 and R 2 each independently represent a monovalent organic group).
A method for producing 6,7-tetracarboxylic acid.
【請求項2】一般式(3)で示されるテトラカルボン酸
を、さらに脱水閉環反応する、一般式(4) 【化4】 (式中、R及びRは各々独立に1価の有機基を示
す)で示される9,9−ジ置換−キサンテン−2,3,
6,7−テトラカルボン酸無水物の製造法。
2. The general formula (4) wherein the tetracarboxylic acid represented by the general formula (3) is further subjected to a dehydration and ring closure reaction. (Wherein, R 1 and R 2 each independently represent a monovalent organic group).
A method for producing 6,7-tetracarboxylic anhydride.
JP34459699A 1999-12-03 1999-12-03 Method for producing 9,9-disubstituted-xanthene-2,3,6,7- tetracarboxylic acid and dianhydride thereof Pending JP2001163870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34459699A JP2001163870A (en) 1999-12-03 1999-12-03 Method for producing 9,9-disubstituted-xanthene-2,3,6,7- tetracarboxylic acid and dianhydride thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34459699A JP2001163870A (en) 1999-12-03 1999-12-03 Method for producing 9,9-disubstituted-xanthene-2,3,6,7- tetracarboxylic acid and dianhydride thereof

Publications (1)

Publication Number Publication Date
JP2001163870A true JP2001163870A (en) 2001-06-19

Family

ID=18370503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34459699A Pending JP2001163870A (en) 1999-12-03 1999-12-03 Method for producing 9,9-disubstituted-xanthene-2,3,6,7- tetracarboxylic acid and dianhydride thereof

Country Status (1)

Country Link
JP (1) JP2001163870A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112424261A (en) * 2018-04-06 2021-02-26 杜邦电子公司 Polymers for use in electronic devices

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6010001554, Swiatoslaw Trofimenko et al., "Polyimides based on 9,9−disubstituted xanthene dianhydrides", Macromolecules, 1994, 27, p.1136−1146 *
JPN6010001556, Andrew J. Caruso et al., "A new reaction of bisphenol A and preparation of polysubstituted 9,9−dimethylxanthenes", J. Org. Chem., 1997, 62, p.1058−1063 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112424261A (en) * 2018-04-06 2021-02-26 杜邦电子公司 Polymers for use in electronic devices

Similar Documents

Publication Publication Date Title
JPH055995A (en) Heat resistant positive photoresist composition, photosensitive base material using the same and method of forming pattern
JP3311600B2 (en) Process for producing poly-o-hydroxyamide and poly-o-mercaptoamide
JPH07271034A (en) Heat-resistant negative photoresist composition, photosensitive substrate and negative pattern forming method
EP0502400B1 (en) Heat-resistant positive photoresist composition, photosensitive substrate, and process for preparing heat-resistant positive pattern
JP2001181249A (en) Amidophenols
JP2001066781A (en) Polyamide having side chain of acetal or cyclic derivative thereof and heat-resistant photoresist composition prepared from the same
JPH1039510A (en) Negative type photoresist composition and its utilization
CN112142769B (en) Silicon-containing polyphenyl monomolecular resin and photoresist composition thereof
JP2001163870A (en) Method for producing 9,9-disubstituted-xanthene-2,3,6,7- tetracarboxylic acid and dianhydride thereof
CN113698329B (en) 193nm immersion lithography photoacid generator and intermediate thereof
US5591871A (en) Bislactone compound and a process for producing the same
JP3093055B2 (en) Heat resistant negative photoresist composition, photosensitive substrate, and negative pattern forming method
JPH10168173A (en) Production of polybenzoxazole and polybenzothiazole precursors
JP3369344B2 (en) Photosensitive resin composition
KR101749874B1 (en) Photosensitive resin composition, relief pattern film thereof, method for producing relief pattern film, electronic component or optical product including relief pattern film, and adhesive including photosensitive resin composition
CN113816885B (en) Preparation method of multi-onium salt type photoacid generator for dry-process ArF light source photoetching
CN113820919B (en) Application of multi-onium salt type photoacid generator for ArF light source dry lithography
US4851506A (en) Photostructurable polyimide mixtures
JP2002167367A (en) Phenol derivative containing amino group
JP2001181285A (en) Method of producing 10,10-dialkylphenoxasilin-2,3,7,8-tetra- carboxylic acid and its dianhydride and its intermediate
JP2001163869A (en) Method for producing 9,9-disubstituted-xanthene-2,3,6,7- tetracarboxylic acid and dianhydride thereof and their intermediate
JPS62276543A (en) Pattern forming method
CN113801042B (en) Multi-onium salt type photoacid generator for dry-process photoetching of ArF light source
CN113703285B (en) 193nm immersion type photoacid generator for lithography and photoresist composition
CN113698330B (en) Preparation method of 193nm immersion type photoacid generator for lithography

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100525