JP2001161795A - Method of electron ray irradiation - Google Patents

Method of electron ray irradiation

Info

Publication number
JP2001161795A
JP2001161795A JP35265099A JP35265099A JP2001161795A JP 2001161795 A JP2001161795 A JP 2001161795A JP 35265099 A JP35265099 A JP 35265099A JP 35265099 A JP35265099 A JP 35265099A JP 2001161795 A JP2001161795 A JP 2001161795A
Authority
JP
Japan
Prior art keywords
irradiation
electron beam
irradiated
dose
auxiliary material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35265099A
Other languages
Japanese (ja)
Inventor
Toru Takeda
透 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP35265099A priority Critical patent/JP2001161795A/en
Publication of JP2001161795A publication Critical patent/JP2001161795A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To economically increase the efficiency of electron ray irradiation by equalizing doses at center portion and an outer peripheral portion within a plane in the direction of depth of the electron ray irradiation, thus achieving uniform sterilization and processing, and eliminating the need for a large investment. SOLUTION: Sterilization processing using electron ray irradiation carried out while an irradiation assisting material tailored to have approximately the same specific gravity as the subject of irradiation is disposed around the subject of irradiation while in close contact therewith and the subject of irradiation is irradiated with electron rays.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子線加速器を用
いて電子線照射を行い滅菌や加工を行う際の、電子線の
照射方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of irradiating an electron beam when sterilizing or processing by irradiating an electron beam with an electron beam accelerator.

【0002】[0002]

【従来の技術】従来から、放射線を照射することによ
り、医療器具の滅菌や高分子材料の加工が行われてき
た。特に電子線はγ線照射に比較して線量率が高いこと
から、照射時間を短縮することが出来、被照射物の酸化
による劣化が少ないことから、経済的で効率の良い滅菌
・加工方法として近年では商業的な照射に広く応用され
ており、段ボール箱に詰めた注射針などの製品を搬送コ
ンベアにより搬送しつつ途中に配置した電子線加速器に
より電子線を照射することなどが行われている。
2. Description of the Related Art Conventionally, sterilization of medical instruments and processing of polymer materials have been performed by irradiating radiation. In particular, since the electron beam has a higher dose rate compared to γ-ray irradiation, the irradiation time can be shortened, and there is little deterioration due to oxidation of the irradiated object. In recent years, it has been widely applied to commercial irradiation, in which products such as injection needles packed in cardboard boxes are conveyed by a conveyer and irradiated with an electron beam by an electron beam accelerator arranged in the middle. .

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記電
子線照射において、密度が大きく有限の大きさの被照射
物を電子線照射した場合、被照射物表面の線量に比較し
て、照射深さ方向の吸収線量が徐々に増加しピークを迎
えた後、徐々に減衰する傾向を示す。
However, in the electron beam irradiation, when an object having a large density and a finite size is irradiated with the electron beam, compared with the dose on the surface of the object, the irradiation depth direction is larger. Shows a tendency that the absorbed dose gradually increases, reaches a peak, and then gradually attenuates.

【0004】また、電子線の進入深さが深くなるととも
に、被照射物中心部の線量に比較して、被照射物の周縁
部分の吸収線量が低下する現象が起こる。これは、照射
された電子線が、被照射物により散乱され、被照射物よ
り密度の小さい外部に漏れることにより、電子線照射深
さ方向のある面内では被照射物中心部に比較して周縁部
の線量が低下するためである。
Further, as the penetration depth of the electron beam becomes deeper, a phenomenon occurs in which the absorbed dose at the peripheral portion of the irradiation object decreases as compared with the dose at the center of the irradiation object. This is because the irradiated electron beam is scattered by the irradiated object and leaks to the outside where the density is smaller than that of the irradiated object. This is because the dose at the peripheral portion decreases.

【0005】ところで、被照射物内部の吸収線量が不均
一な場合、高線量になる部分では過度の照射による材料
の劣化が懸念されるため、商業的な電子線照射において
は滅菌・加工に必要とされる最小限度の線量を確実に照
射し且つ線量は出来るだけ均一であることが求められ
る。
[0005] If the absorbed dose inside the object to be irradiated is not uniform, there is a concern that the material may be deteriorated due to excessive irradiation in the part where the dose is high, so that it is necessary for sterilization and processing in commercial electron beam irradiation. It is necessary to ensure that the required minimum dose is applied and that the dose is as uniform as possible.

【0006】商業的な電子線照射工程では、被照射物内
部の線量分布を均一化するために、電子線照射後に被照
射物の上下を反転させて再度電子線照射を行う両面照射
等の方法があるが、この方法では電子線照射深さ方向の
線量分布を平坦化させることが出来るものの、電子線に
垂直なある深さの面内での線量分布が不均一になること
は避けられず、被照射物の中心部に比較して被照射物周
縁では電子線の漏れによる線量の低下が起こる。
In the commercial electron beam irradiation step, in order to make the dose distribution inside the object to be irradiated uniform, a method such as double-sided irradiation in which the object to be irradiated is turned upside down after the electron beam irradiation and electron beam irradiation is performed again. Although this method can flatten the dose distribution in the direction of electron beam irradiation depth, it is unavoidable that the dose distribution in a plane at a certain depth perpendicular to the electron beam becomes non-uniform. At the periphery of the irradiation object, the dose is reduced due to the leakage of the electron beam as compared with the center of the irradiation object.

【0007】本発明者は上述の如き実状に鑑み、これに
対処すべく鋭意検討した結果、被照射物の周囲に照射用
補助材料を置いて電子線照射することにより、電子線照
射深さの方向のある面内における中心部と外周部の線量
を均一化することができることを見出すに至った。
In view of the above-mentioned situation, the present inventor has conducted intensive studies to deal with this situation. As a result, the irradiation depth of the electron beam is reduced by placing an irradiation auxiliary material around the object to be irradiated. They have found that the dose in the central part and the peripheral part in a plane having a direction can be made uniform.

【0008】本発明はかかる知見にもとづき、被照射物
の周りに照射用補助材料を配置し、電子線照射深さ方向
のある面内における中心部と外周部の線量の均一化を達
成し、大きな投資を必要とせず経済的に電子線照射の効
率を良好ならしめることを目的とするものである。
According to the present invention, based on such knowledge, an auxiliary material for irradiation is arranged around an object to be irradiated, and the dose in the central portion and the outer peripheral portion in a certain plane in the depth direction of the electron beam irradiation is achieved, An object of the present invention is to improve the efficiency of electron beam irradiation economically without requiring a large investment.

【0009】[0009]

【課題を解決するための手段】即ち、上記目的に適合す
る本発明の特徴は、電子線照射による滅菌または加工に
おいて、被照射物の周りに照射用補助材料をおいて照射
する電子線の照射方法にある。ここで、照射用補助材料
としては特に材質に限定はないが、通常、発泡ポリエチ
レン、発泡ポリスチレンの如き発泡合成樹脂材料が用い
られる。
That is, a feature of the present invention that meets the above-mentioned object is that, in sterilization or processing by electron beam irradiation, irradiation of an electron beam is performed by irradiating an irradiation auxiliary material around an object to be irradiated. In the way. Here, the auxiliary material for irradiation is not particularly limited in material, but a foamed synthetic resin material such as foamed polyethylene or foamed polystyrene is usually used.

【0010】請求項2に係る発明は、前記請求項1に係
る発明を具体化したものであり、被照射物が段ボールに
詰めたプラスチック材料製品であり、その周りに発泡合
成樹脂材料からなる照射用補助材料を密着するように配
置して電子線を照射することを特徴とするものである。
A second aspect of the present invention is an embodiment of the first aspect of the present invention, wherein an object to be irradiated is a plastic material product packed in cardboard, and an irradiation object made of a foamed synthetic resin material is provided therearound. It is characterized in that an auxiliary material is arranged so as to be in intimate contact with it and is irradiated with an electron beam.

【0011】[0011]

【発明の実施の形態】以下、更に上記本発明について具
体的に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described more specifically.

【0012】本発明電子線の照射方法は、前述の如く電
子線照射による滅菌又は加工において、被照射物の周り
に照射用補助材料を置いて照射し、電子線照射深さ方向
のある面内における中心部と外周部の線量を均一化する
ことに特徴を有するものである。
In the electron beam irradiation method of the present invention, in the sterilization or processing by electron beam irradiation as described above, an irradiation auxiliary material is placed around an object to be irradiated, and irradiation is performed within a certain plane in the electron beam irradiation depth direction. Is characterized in that the doses in the central part and the outer peripheral part are uniform.

【0013】電子線透過厚さは、物質内の吸収線量が表
面から内部へ向かってはじめ上昇し、その後下降して再
び表面線量に等しくなる厚さであるが、例えば比重1の
高分子材料では10MeV電子線透過厚さは約4cmで
あり、5MeV電子線透過厚さは約2cmである。
The electron beam transmission thickness is a thickness at which the absorbed dose in a substance starts increasing from the surface toward the inside, then decreases and then becomes equal to the surface dose again. The 10 MeV electron beam transmission thickness is about 4 cm, and the 5 MeV electron beam transmission thickness is about 2 cm.

【0014】被照射物の厚さが電子線透過厚さに満たな
い場合には、電子線照射を被照射物の片面又は両面から
行うことが出来る。また、被照射物の厚さが電子線透過
厚さの1倍以上2倍以下の厚さを持つ場合には、被照射
物の両面から電子線照射を行うことが出来る。そして、
このような照射時に被照射物の周りには照射用補助材料
を密着させて配置し、電子線照射を行う。照射用補助材
料の材質は特に限定はしないが、被照射物と同程度の密
度を持つ材料を選択することが好ましい。特に破損しな
いかぎり繰り返し使用可能であるものが好適であり、例
えば発泡ポリエチレン、発泡ポリスチレンの如き合成樹
脂材料が使用される。このとき、被照射物と可及的同じ
比重になるよう調整して用いるのが好適である。また、
照射用補助材料の大きさは、電子線の外周部から外への
漏れを考慮し、且つ作業性等を考慮して適宜選択するこ
とが好ましい。
When the thickness of the irradiation object is less than the electron beam transmission thickness, the irradiation of the electron beam can be performed from one side or both sides of the irradiation object. Further, when the thickness of the object to be irradiated has a thickness of 1 to 2 times the electron beam transmission thickness, electron beam irradiation can be performed from both surfaces of the object to be irradiated. And
At the time of such irradiation, an auxiliary material for irradiation is placed in close contact with the object to be irradiated, and electron beam irradiation is performed. The material of the irradiation auxiliary material is not particularly limited, but it is preferable to select a material having the same density as that of the irradiation object. Those which can be used repeatedly as long as they are not particularly damaged are preferable. For example, synthetic resin materials such as expanded polyethylene and expanded polystyrene are used. At this time, it is preferable to adjust and use the specific gravity as much as possible with the irradiation object. Also,
It is preferable that the size of the irradiation auxiliary material is appropriately selected in consideration of the leakage of the electron beam from the outer peripheral portion to the outside, the workability, and the like.

【0015】[0015]

【実施例】以下に本発明の実施例について説明する。な
お、本発明は以下の実施例に何ら限定されるものではな
いことは勿論である。
Embodiments of the present invention will be described below. The present invention is, of course, not limited to the following embodiments.

【0016】実施例:被照射物として、段ボール箱に詰
めたプラスチック材料を用いた。被照射物の見かけの比
重は約0.1であり、箱の大きさは40cm×40cm
×40cmであった。被照射物の上面及び下面の各面の
対角線に沿ってCTA線量計を等間隔に取り付け、電子
線照射後にCTA線量計の吸光度測定値より吸収線量を
算出した。また、照射用補助材料として比重約0.1と
なるように調整した発泡ポリエチレンを用い、被照射物
の周りに密着するように配置した。発泡ポリエチレンの
厚さは、5cmまたは10cmとした。電子線の照射条
件として、加速電圧10MeV、電流5mA、ビームス
キャン幅1m、コンベア搬送速度5m/minとし、電
子ビームを上部のスキャニングホーンから下部のビーム
キャッチャーに向かってコンベア搬送方向と垂直に走査
し、被照射物をスキャニングホーンとビームキャッチャ
ーの間に設置されたコンベアにのせて搬送し、搬送中に
電子線を照射した。
Example: A plastic material packed in a cardboard box was used as an object to be irradiated. The apparent specific gravity of the irradiation object is about 0.1, and the size of the box is 40 cm × 40 cm.
× 40 cm. CTA dosimeters were installed at equal intervals along the diagonal lines of the upper and lower surfaces of the irradiation object, and the absorbed dose was calculated from the measured absorbance of the CTA dosimeter after electron beam irradiation. In addition, foamed polyethylene adjusted to have a specific gravity of about 0.1 was used as an auxiliary material for irradiation, and was disposed so as to be in close contact with an object to be irradiated. The thickness of the foamed polyethylene was 5 cm or 10 cm. Electron beam irradiation conditions were an acceleration voltage of 10 MeV, a current of 5 mA, a beam scan width of 1 m, and a conveyor conveyance speed of 5 m / min. The electron beam was scanned from the upper scanning horn to the lower beam catcher in a direction perpendicular to the conveyor conveyance direction. The object to be irradiated was conveyed on a conveyor provided between the scanning horn and the beam catcher, and was irradiated with an electron beam during the conveyance.

【0017】実施例の電子線照射後の線量測定結果を図
1に示し、これに被照射物上下面における線量分布を示
す。図1に示すように被照射物上面では略均一な線量分
布が得られている。また、被照射物の下面では被照射物
の中心部と周縁部の線量の違いは小さく、照射用補助材
料の厚さが10cmと厚い場合には被照射物周縁部にお
ける線量の低下はほとんどないことが分かる。
FIG. 1 shows the results of dose measurement after electron beam irradiation in the embodiment, and shows the dose distribution on the upper and lower surfaces of the object to be irradiated. As shown in FIG. 1, a substantially uniform dose distribution is obtained on the upper surface of the irradiation object. In addition, on the lower surface of the irradiation object, the difference in dose between the center and the periphery of the irradiation object is small, and when the thickness of the auxiliary material for irradiation is as thick as 10 cm, there is almost no decrease in the dose at the periphery of the irradiation object. You can see that.

【0018】比較例:被照射物は実施例と同一のものを
用い、照射用補助材料は使用せずに、他の条件は実施例
と同一の条件として電子線照射を行った。比較例の電子
線照射後の線量測定結果を図2に示し、被照射物上下面
における線量分布を示す。図2に示すように被照射物上
面では比較的均一な線量分布が得られているが、一方、
被照射物の下面では被照射物の中心部に比較して、周縁
部の線量の低下が見られ、約60〜70%程度に低下す
ることが分かる。
Comparative Example: The irradiation object was the same as that of the embodiment, and electron beam irradiation was performed under the same conditions as those of the embodiment except that no auxiliary material for irradiation was used. FIG. 2 shows a dose measurement result after electron beam irradiation in the comparative example, and shows a dose distribution on the upper and lower surfaces of the irradiation target. As shown in FIG. 2, a relatively uniform dose distribution is obtained on the upper surface of the irradiation object.
On the lower surface of the irradiation object, the dose at the peripheral portion is lower than that at the center of the irradiation object, and it can be seen that the dose is reduced to about 60 to 70%.

【0019】以上のように、本発明によると、被照射物
の周りに照射用補助材料を置いて照射することにより、
照射用補助材料を使用しない場合に比し電子線照射深さ
方向のある面内における中心部と外周部の線量を均一化
出来ることが分かる。また、この本発明の電子線照射方
法は簡便な方法であり、大きな設備等を必要とせず、し
かも照射用補助材料は繰り返し使用できるため、経済的
である。
As described above, according to the present invention, by irradiating with the irradiation auxiliary material placed around the irradiation object,
It can be seen that the dose at the center and the outer periphery in a certain plane in the depth direction of electron beam irradiation can be made uniform as compared with the case where the irradiation auxiliary material is not used. Further, the electron beam irradiation method of the present invention is a simple method, does not require a large facility or the like, and is economical because the irradiation auxiliary material can be used repeatedly.

【0020】[0020]

【発明の効果】本発明は以上説明したように電子線を照
射するにあたり、被照射物の周りに照射用補助材料を置
いて電子線照射を行う方法であり、電子線照射深さ方向
のある面内における中心部と外周部の線量を均一化する
ことができ、線量不均一による材料の部分的な劣化や、
周縁部における電子線漏れによる線量の低下の懸念がな
く、滅菌・加工に必要とされる線量を確実に照射して滅
菌・加工の均一性を確保し、経済的で効率のよい滅菌・
加工を行う効果を有している。しかも、本発明照射方法
によれば大きな設備投資を必要とせず簡便であって頗る
経済性に優れた実効を有する。
As described above, the present invention relates to a method of irradiating an electron beam by irradiating an electron beam with an auxiliary material for irradiation placed around an object to be irradiated. It is possible to equalize the dose at the central part and the outer peripheral part in the plane.
There is no concern about a decrease in dose due to electron beam leakage at the periphery, and the dose required for sterilization and processing is reliably applied to ensure uniformity of sterilization and processing, resulting in economical and efficient sterilization and processing.
It has the effect of processing. Moreover, according to the irradiation method of the present invention, it is simple and does not require a large capital investment, and has an extremely economical effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】被照射物の外周部に、厚さ5cmまたは10c
mの照射用補助材料を密着して配置した本発明の場合の
被照射物上下面における線量分布を各面の対角線に沿っ
て測定した結果を示すグラフであり、横軸は被照射物外
周部の一端からの距離(cm)、縦軸は電子線照射によ
る吸収線量(kGy)を示す。
FIG. 1 shows a thickness of 5 cm or 10 c on an outer peripheral portion of an irradiation object.
m is a graph showing the results of measurement of the dose distribution on the upper and lower surfaces of the irradiation object in the case of the present invention in which the irradiation auxiliary material of m is arranged in close contact with each other, along the diagonal line of each surface, and the horizontal axis is the outer periphery of the irradiation object , The distance from one end (cm), and the vertical axis indicates the absorbed dose (kGy) by electron beam irradiation.

【図2】従前の被照射物を単独で照射した場合の被照射
物上下面における線量分布を各面の対角線に沿って測定
した結果を示すグラフであり、横軸は被照射物外周部の
一端からの距離(cm)、縦軸は電子線照射による吸収
線量(kGy)である。
FIG. 2 is a graph showing the results of measurement of the dose distribution on the upper and lower surfaces of the object to be irradiated when the object to be irradiated alone is irradiated along the diagonal line of each surface. The distance from one end (cm) and the vertical axis are the absorbed dose (kGy) by electron beam irradiation.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電子線照射による滅菌または加工におい
て、被照射物の周りに照射用補助材料をおいて照射する
ことを特徴とする電子線の照射方法。
1. A method for irradiating an electron beam, wherein in irradiation or sterilization by electron beam irradiation, irradiation is carried out with an irradiation auxiliary material placed around an object to be irradiated.
【請求項2】被照射物が段ボールに詰めたプラスチック
材料製品であり、その周りに発泡合成樹脂材料からなる
照射用補助材料を密着するように配置して電子線を照射
する請求項1記載の電子線照射方法。
2. The object according to claim 1, wherein the object to be irradiated is a plastic material product packed in a corrugated cardboard, and an irradiation auxiliary material made of a foamed synthetic resin material is arranged so as to be in close contact therewith and irradiated with an electron beam. Electron beam irradiation method.
JP35265099A 1999-12-13 1999-12-13 Method of electron ray irradiation Pending JP2001161795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35265099A JP2001161795A (en) 1999-12-13 1999-12-13 Method of electron ray irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35265099A JP2001161795A (en) 1999-12-13 1999-12-13 Method of electron ray irradiation

Publications (1)

Publication Number Publication Date
JP2001161795A true JP2001161795A (en) 2001-06-19

Family

ID=18425505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35265099A Pending JP2001161795A (en) 1999-12-13 1999-12-13 Method of electron ray irradiation

Country Status (1)

Country Link
JP (1) JP2001161795A (en)

Similar Documents

Publication Publication Date Title
JP5970516B2 (en) Method and apparatus for radiation decontamination of products such as packages containing medical devices
US4983849A (en) Apparatus and method for promoting uniform dosage of ionizing radiation in targets
US7187752B2 (en) Product irradiator for optimizing dose uniformity in products
JP2009529993A (en) Apparatus and method for electronically changing the properties of a three-dimensional molded part and use of the method
US7486771B2 (en) Process and apparatus for irradiating product pallets or containers
ES2732328T3 (en) Use of polylactide and procedures to manufacture a container or packaging of cardboard or heat-sealed paper
US2904392A (en) Method of packaging and treating articles
US20060192140A1 (en) Process for electron sterilization of a container
US6914253B2 (en) System for measurement of absorbed doses of electron beams in an irradiated object
JP5632616B2 (en) Semiconductor device manufacturing method and substrate housing structure
US20090173039A1 (en) Inline processing and irradiation system
JP2001161795A (en) Method of electron ray irradiation
US4178220A (en) Uniformly irradiated polymer film
US6180951B1 (en) Process for irradiation producing constant depth/dose profile
US20040223870A1 (en) Apparatus and process for irradiating product pallets
US2858441A (en) Method of increasing the uniformity of dose produced by a beam of high energy electrons throughout the volume of objects irradiated thereby
ES2356078T3 (en) PROCEDURE AND APPARATUS FOR X-RAY IRRADATION WITH AN AMOUNT OF PASSAGE AND A RATIO OF DIFFERENT DOSAGE UNIFORMITY.
JP2001149446A (en) Electron beam irradiation method
JP3730850B2 (en) Particle transport mechanism in electron beam irradiation equipment
JP4469029B2 (en) Electron beam sterilization method and sterilization apparatus for containers
WO1999061224A1 (en) Multiple-pass irradiation of polyolefin films
CN113491307A (en) Movable electron beam irradiation sterilization device
EP1459770A1 (en) Process and apparatus for irradiating product pallets
CA1118386A (en) Apparatus for irradiating film
JPH03123900A (en) Irradiation quantity controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080527