JP2001158931A - Cr BASE HEAT RESISTANT MATERIAL - Google Patents

Cr BASE HEAT RESISTANT MATERIAL

Info

Publication number
JP2001158931A
JP2001158931A JP34202999A JP34202999A JP2001158931A JP 2001158931 A JP2001158931 A JP 2001158931A JP 34202999 A JP34202999 A JP 34202999A JP 34202999 A JP34202999 A JP 34202999A JP 2001158931 A JP2001158931 A JP 2001158931A
Authority
JP
Japan
Prior art keywords
phase
mol
heat resistant
resistant material
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP34202999A
Other languages
Japanese (ja)
Inventor
Masakazu Miyaji
正和 宮地
Tatsuo Morimoto
立男 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP34202999A priority Critical patent/JP2001158931A/en
Publication of JP2001158931A publication Critical patent/JP2001158931A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a heat resistant material having high strength at higher temperature compared to the case of a material used as the conventional heat resistant material and moreover having toughness higher than that of ceramics. SOLUTION: This Cr base heat resistant material is obtained by melting and solidifying a raw material mixture prepared in such a manner that B and Re are added to Cr, and the composition after the melting and solidifying is controlled to the one of 5 to 30 mol% B, 5 to 35 mol% Re, and the balance Cu and has a composite structure of a Cr phase in which Re is entered into solid solution and a Cr2B phase in which Re is entered into solid solution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は強度、靭性(延
性)、耐クリープ性、耐酸化性、耐高温腐食性(耐食
性)等の性能が要求されるガスタービン、ボイラ等に用
いられる耐熱材料(耐高温構造材料)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant material used for gas turbines, boilers, etc., which require performance such as strength, toughness (ductility), creep resistance, oxidation resistance, and high temperature corrosion resistance (corrosion resistance). High-temperature structural materials).

【0002】[0002]

【従来の技術】従来の耐熱材料(耐高温構造材料)には
鉄系、Ni系に代表される金属及びアルミナ、窒化珪素
に代表されるセラミックス等がある。前者の金属材料は
高強度、高靭性である反面、耐酸化性及び耐食性に関し
てはアルミナ、窒化珪素等のセラミックスと比較して一
般的に劣り、また後者のセラミックスは高強度、耐酸化
性及び耐食性に優れる反面、靭性に欠けるという課題が
ある。金属材料の中で耐高温構造材料の代表格としてあ
るのがNi基超合金である。この材料は強度(特に高温
強度)、靭性、耐クリープ特性、耐酸化性、耐食性にあ
る程度バランスよく優れており、これらの特性を必要と
するガスタービン、ボイラ等の高温構造部材に多用され
ている。近年エネルギ変換効率のさらなる向上のため、
材料の耐用温度の高温化が強く求められている。ガスタ
ービン等では、Ni基超合金の融点(およそ1300
℃)を超える雰囲気温度1500℃で使用できるように
空冷等の工夫がなされている。しかしさらなる耐用温度
の向上の要求に答えるにはもはやNi基超合金では対応
できないのが現状である。
2. Description of the Related Art Conventional heat-resistant materials (high-temperature structural materials) include metals represented by iron and Ni and ceramics represented by alumina and silicon nitride. The former metal material has high strength and high toughness, but is generally inferior to ceramics such as alumina and silicon nitride in terms of oxidation resistance and corrosion resistance, and the latter has high strength, oxidation resistance and corrosion resistance. However, there is a problem that it lacks toughness. Among the metallic materials, a Ni-based superalloy is a representative high-temperature structural material. This material has a good balance of strength (particularly high-temperature strength), toughness, creep resistance, oxidation resistance, and corrosion resistance, and is often used for high-temperature structural members such as gas turbines and boilers that require these characteristics. . In recent years, to further improve energy conversion efficiency,
There is a strong demand for higher service temperatures of materials. In gas turbines and the like, the melting point of Ni-based superalloys (about 1300
Air cooling or the like has been devised so that it can be used at an ambient temperature of 1500 ° C. exceeding 1500 ° C.). However, at present, the Ni-based superalloy can no longer respond to the demand for further improvement of the service temperature.

【0003】そこでNi基超合金よりも高い融点の材料
の利用が考えられる。金属ではW(融点約3380
℃)、Mo(融点約2630℃)等の高融点金属がある
が、高融点金属のほとんどは耐酸化性に乏しく使用に耐
えない。耐酸化性のある高融点金属としてCr(融点約
1890℃)やPt(融点約1770℃)があるが、こ
れらは単一相では強度が小さいことと、それぞれ低温脆
性を示すこと及び高価であることが課題として挙げられ
る。それでもPtよりも安価なCrについては、例えば
特開平8−291355号及び特開平9−3583号各
公報等に示されているように、いくつかの耐熱合金が開
発されてきた。しかしこれらのCr基耐熱合金は単一相
であり、強度が低く、また耐酸化性や耐食性についても
十分とは言えない。その他高融点材料としてアルミナや
窒化珪素等のセラミックスがあるが、前述した通り靭性
に乏しいことが大きな課題である。金属とセラミックス
の複合材料であるサーメットは金属とセラミックスの利
点を活かそうとしたものであり、そのほとんどが粉末焼
結法で作製されている。しかし粉末焼結法で作製したサ
ーメット材は粒界部分が多く高温で使用する場合、粒界
滑りが起こり、耐クリープ特性が十分発揮できないとい
う問題がある。
Therefore, use of a material having a higher melting point than that of a Ni-based superalloy can be considered. For metals, W (melting point about 3380
C) and Mo (melting point: about 2630 ° C.), but most of the high melting point metals have poor oxidation resistance and cannot be used. There are Cr (melting point about 1890 ° C) and Pt (melting point about 1770 ° C) as oxidation resistant high melting point metals, but these are low in strength in a single phase, exhibit low temperature brittleness, and are expensive. Is one of the issues. Nevertheless, with respect to Cr which is cheaper than Pt, several heat-resistant alloys have been developed as disclosed in, for example, JP-A-8-291355 and JP-A-9-3583. However, these Cr-based heat-resistant alloys are single-phase, have low strength, and have insufficient oxidation resistance and corrosion resistance. Other high melting point materials include ceramics such as alumina and silicon nitride, but as described above, poor toughness is a major problem. Cermet, which is a composite material of metal and ceramics, attempts to take advantage of the advantages of metal and ceramics, and most of them are manufactured by a powder sintering method. However, when the cermet material produced by the powder sintering method has a large number of grain boundaries and is used at a high temperature, there is a problem that grain boundary slip occurs and creep resistance cannot be sufficiently exhibited.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記技術水準
に鑑み、従来の耐熱材料として使用されている金属材料
よりも、より高温下において高強度であり、しかもセラ
ミックスよりも高靱性である耐熱材料、さらにクリープ
特性に優れた耐熱材料を提供しようとするものである。
SUMMARY OF THE INVENTION In view of the state of the art, the present invention provides a heat resistant material which has higher strength at higher temperatures than metal materials used as conventional heat resistant materials and has higher toughness than ceramics. It is an object of the present invention to provide a heat-resistant material having excellent creep characteristics.

【0005】[0005]

【課題を解決するための手段】本発明は、(1)Crに
B及びReを添加し、溶融凝固後の組成がB:5〜30
モル%、Re:5〜35モル%で残部がCrとなるよう
に調製した原料混合物を溶融凝固して得られる、Reを
固溶したCr相とReを固溶したCr2 B相との複合組
織からなることを特徴とするCr基耐熱材料、及び
(2)前記複合組織が、Reを固溶したCr相とReを
固溶したCr2 B相とが一方向に配向した組織であるこ
とを特徴とする前記(1)のCr基耐熱材料である。
According to the present invention, (1) B and Re are added to Cr and the composition after melt-solidification is B: 5 to 30.
Mol%, Re: 5-35 mol%, and a composite of a Cr phase in which Re is dissolved and a Cr 2 B phase in which Re is dissolved, obtained by melting and solidifying a raw material mixture prepared so that the remainder is Cr. And (2) the composite structure is a structure in which a Cr phase in which Re is dissolved and a Cr 2 B phase in which Re is dissolved are oriented in one direction. (1) The Cr-based heat-resistant material according to the above (1).

【0006】本発明者らは、先に上記課題解決のため高
融点金属の一つで耐酸化性のあるCrにB(ホウ素)を
添加し、これを溶融凝固してCrとCr2 B相からなる
Cr−B系溶融凝固材を提案した(特願平10−541
54号)。本発明は、更にこのCr−B系溶融凝固材の
強度特性の向上について種々検討した結果に基づくもの
であって、このCr−B系溶融凝固材にRe(レニウ
ム)を添加することにより、上記課題を解決したもので
ある。
The present inventors first added B (boron) to oxidation-resistant Cr, one of the refractory metals, and melt-solidified the Cr and Cr 2 B phases to solve the above-mentioned problems. Proposed a Cr-B-based melt-solidified material consisting of (Japanese Patent Application No. 10-541).
No. 54). The present invention is further based on the results of various studies on the improvement of the strength characteristics of the Cr-B-based melt-solidified material, and by adding Re (rhenium) to the Cr-B-based melt-solidified material, It is a solution to the problem.

【0007】[0007]

【発明の実施の形態】Cr−B二元系状態図から、Cr
とCr2 B(Cr−33.3モル%Bに相当する)は共
晶反応を有し、その共晶組成物を溶融凝固して得られる
材料は、Cr相とCr2 B相からなる層状あるいは棒状
の共晶系特有の複合組織を形成する。この系にReを適
量添加するとReはCr2 B相にも一部固溶するが主に
Cr相に固溶し、Reを固溶したCr相とReがCrの
一部と置換固溶したCr2 B相からなる複合材となる。
BEST MODE FOR CARRYING OUT THE INVENTION From the Cr-B binary phase diagram,
And Cr 2 B (corresponding to Cr-33.3 mol% B) have a eutectic reaction, and the material obtained by melting and solidifying the eutectic composition is a layered material composed of a Cr phase and a Cr 2 B phase. Alternatively, a complex structure unique to a rod-shaped eutectic system is formed. When an appropriate amount of Re was added to this system, Re partially dissolved in the Cr 2 B phase, but mainly dissolved in the Cr phase, and the Cr phase in which Re was dissolved and Re was substituted and dissolved in part of Cr. A composite material comprising the Cr 2 B phase is obtained.

【0008】添加するBの量は、好ましくは5〜30モ
ル%、更に好ましくは10〜20モル%、最も好ましく
は凝固組織の均一性から共晶組成である13.5モル%
である。なお、材料の強度及び硬さを重視する場合に
は、硬い相であるCr2 B相の体積分率が大きくなるよ
うにその添加量を13.5モル%よりも多くしてもよ
く、また延性を重視する場合には、その添加量を13.
5モル%以下としてもよい。ただし、33モル%以上に
なるとCr相が消失し、Cr2 B、Cr5 3 及びCr
B等の硬く脆いクロムホウ化物相からなる組織になり構
造材料の重要な特性の一つである延性(靭性)が損なわ
れることからBの添加量としてはおよそ30モル%が限
度である。また、延性を重視する場合にはCr2 B相の
体積分率が小さくなるようにBの添加量を少なくしても
よい。ただしBの添加量が少ないとCr2 B相が強化相
として働く効果が小さいことから、およそ5モル%以上
であることが望ましい。
[0008] The amount of B to be added is preferably 5 to 30 mol%, more preferably 10 to 20 mol%, and most preferably 13.5 mol% which is a eutectic composition from the viewpoint of homogeneity of solidified structure.
It is. When importance is placed on the strength and hardness of the material, the addition amount thereof may be larger than 13.5 mol% so that the volume fraction of the hard phase, Cr 2 B phase, increases. When emphasis is placed on ductility, the addition amount is 13.
It may be 5 mol% or less. However, when the content exceeds 33 mol%, the Cr phase disappears, and Cr 2 B, Cr 5 B 3 and Cr
Since a structure consisting of a hard and brittle chromium boride phase such as B is formed and ductility (toughness) which is one of the important properties of the structural material is impaired, the amount of B added is limited to about 30 mol%. When emphasis is placed on ductility, the amount of B added may be reduced so that the volume fraction of the Cr 2 B phase is reduced. However, if the amount of B is small, the effect of the Cr 2 B phase acting as a strengthening phase is small, so it is preferable that the amount is about 5 mol% or more.

【0009】Reの添加量は、添加量が多すぎるとCr
−Re系の化合物を形成することからおよそ35モル%
が限度である。また、添加量が少量であると強度特性向
上の効果がないので添加量としては5モル%以上である
ことが望ましい。
If the amount of Re added is too large, Cr
About 35 mol% from forming a Re-based compound
Is the limit. Further, if the addition amount is small, there is no effect of improving the strength properties, so the addition amount is desirably 5 mol% or more.

【0010】本発明のCr基耐熱材料であるCr−Re
−B系溶融凝固材の製造方法は、溶融凝固過程を経るも
のであればどのような製造方法でも構わない。Crに添
加するB及びReとしては、純B塊及び純Re粉末のほ
か、CrB、Cr2 B及びCrB2 等のCr−B系化合
物、及びRe3 B、Re7 3 、ReB2 等のRe−B
系化合物も利用可能である。
[0010] The Cr-based heat-resistant material of the present invention, Cr-Re
The method for producing the -B-based melt-solidified material may be any method as long as it goes through a melt-solidification process. As B and Re to be added to Cr, in addition to pure B lump and pure Re powder, Cr-B-based compounds such as CrB, Cr 2 B and CrB 2 and Re 3 B, Re 7 B 3 , ReB 2 and the like Re-B
A series compound can also be used.

【0011】本発明のCr−Re−B系溶融凝固材にお
いて、その構成相であるCr相とCr2 B相を一方向に
配向させることによって、クリープ特性を更に向上させ
ることができる。組織を配向させるための方法として
は、ブリッジマン法、チョクラルスキー法、浮遊帯域溶
融法等の一方向凝固法があるが、なんらこれらを制限す
るものではない。
In the Cr-Re-B-based melt-solidified material of the present invention, the creep characteristics can be further improved by orienting the constituent phases, Cr phase and Cr 2 B phase, in one direction. Examples of a method for orienting the tissue include a unidirectional solidification method such as a Bridgman method, a Czochralski method, and a floating zone melting method, but these methods are not limited thereto.

【0012】[0012]

【実施例】以下、本発明の具体的実施例により、本発明
の効果を実証する。 (実施例1)組成がCr−26.0モル%Re−13.
5モル%BになるようにCr、B及びReを混合し、A
r雰囲気中でアーク溶解法により溶融凝固材を作製し
た。本実施例では、B及びRe添加に純B塊及び純Re
粉末を用いた。得られた溶融凝固材の代表的な組織写真
を図1に示す。X線回折法により構成相は主にCrとC
2 B相からなることが確認できた。EPMAによる分
析からReは、Cr相及びCr2 B相の両相に存在が確
認されたが、主にCr相に存在していることが確認でき
た。なお、Cr相中に存在するReの割合は約35モル
%であった。これらの結果から図1の組織写真で明るい
コントラスト部分がReを固溶したCr相で、暗いコン
トラスト部分がReを固溶したCr2 B相である。この
溶融凝固材から曲げ試験片を加工し、室温で曲げ試験を
行った。比較材として組成Cr−13.5モル%Bの同
条件で作製した溶融凝固材を用いた。
EXAMPLES Hereinafter, the effects of the present invention will be demonstrated by specific examples of the present invention. (Example 1) The composition was Cr-26.0 mol% Re-13.
A mixture of Cr, B and Re so that the content becomes 5 mol% B
A melt-solidified material was produced by an arc melting method in an r atmosphere. In this example, pure B lumps and pure Re were added to B and Re additions.
Powder was used. FIG. 1 shows a typical structure photograph of the obtained melt-solidified material. The constituent phases are mainly Cr and C by X-ray diffraction.
It could be confirmed that it consisted of r 2 B phase. Analysis by EPMA confirmed that Re was present in both the Cr phase and the Cr 2 B phase, but it was confirmed that Re was mainly present in the Cr phase. The proportion of Re present in the Cr phase was about 35 mol%. From these results, in the structure photograph of FIG. 1, the bright contrast portion is the Cr phase in which Re is dissolved, and the dark contrast portion is the Cr 2 B phase in which Re is dissolved. A bending test piece was processed from the molten and solidified material, and a bending test was performed at room temperature. As a comparative material, a melt-solidified material produced under the same conditions with a composition of Cr-13.5 mol% B was used.

【0013】作製した試料の曲げ試験の結果を表1に示
す。本発明のCr−Re−B系溶融凝固材は、比較材の
Cr−B系溶融凝固材に比べて2倍以上も強度に優れ、
Reを添加することにより強度特性が向上することが明
らかである。
Table 1 shows the results of the bending test of the manufactured samples. The Cr-Re-B-based melt-solidified material of the present invention is twice as strong as the Cr-B-based melt-solidified material of the comparative material,
It is clear that the strength characteristics are improved by adding Re.

【0014】[0014]

【表1】 [Table 1]

【0015】(実施例2)実施例1で作製したCr−2
6.0モル%Re−13.5モル%Bの組成の溶融凝固
材約100gを内径約12mmのアルミナ製タンマン管
に挿入し、Ar雰囲気中、温度1850℃、保持時間1
時間、降温速度10℃/minの溶融凝固条件で棒状の
溶融凝固材(普通凝固材)を作製した。また、同様にC
r−13.5モル%Bの溶融凝固材約100gを内径約
11mmのアルミナ製保護管に挿入し、これを中心部最
高温度1850℃、温度勾配約50℃/cmの鉛直管状
炉内に釣り下げて、上部から下方向に約30mm/hで
移動させて一方向凝固材を作製した。普通凝固材のマク
ロ組織は等軸結晶粒からなり、結晶粒内ミクロ組織はR
eを固溶したCr相とCr2 B相が層状あるいは棒状に
ランダム配向した組織であった。一方向凝固材のマクロ
組織は、結晶粒が凝固方向に成長した柱状結晶粒からな
り、その結晶粒内ミクロ組織はCr2 B相が凝固方向に
ある程度配向した組織(Cr2 B相の長手方向がアスペ
クト比2以上で凝固方向に成長した組織)であった。ま
た2種類の溶融凝固材からクリープ試験片を加工し、大
気中、温度950℃、応力400MPaでクリープ試験
を行った。
(Example 2) Cr-2 produced in Example 1
About 100 g of a melt-solidified material having a composition of 6.0 mol% Re-13.5 mol% B was inserted into an alumina tanman tube having an inner diameter of about 12 mm, and a temperature of 1850 ° C. and a holding time of 1 in an Ar atmosphere.
A rod-shaped melt-solidified material (ordinary solidified material) was produced under melt-solidification conditions at a time and a temperature-falling rate of 10 ° C./min. Similarly, C
About 100 g of the melt-solidified material of r-13.5 mol% B was inserted into an alumina protective tube having an inner diameter of about 11 mm, and this was fished in a vertical tubular furnace having a central maximum temperature of 1850 ° C and a temperature gradient of about 50 ° C / cm. It was lowered and moved downward from the upper part at about 30 mm / h to produce a unidirectional solidified material. The macrostructure of the normally solidified material is composed of equiaxed grains, and the microstructure within the grains is R
e had a structure in which a Cr phase and a Cr 2 B phase in which a solid solution was formed were randomly oriented in a layered or rod shape. The macrostructure of the unidirectionally solidified material is composed of columnar crystal grains in which crystal grains are grown in the solidification direction, and the microstructure in the crystal grains is a structure in which the Cr 2 B phase is oriented to some extent in the solidification direction (the longitudinal direction of the Cr 2 B phase). Was a structure grown in the solidification direction at an aspect ratio of 2 or more). Further, creep test pieces were processed from two types of melt-solidified materials, and subjected to a creep test at a temperature of 950 ° C. and a stress of 400 MPa in the atmosphere.

【0016】これら2種類の溶融凝固材のクリープ試験
結果を、比較材Cr−B系一方向凝固材及びNi基超合
金の一例についての試験結果と共に表2に示す。本実施
例で作製したCr−Re−B系普通凝固材、一方向凝固
材共にNi基超合金及びCr−B系一方向凝固材よりも
破断時間が長くクリープ特性に優れており、Reを添加
することによりクリープ特性が向上していることが明ら
かである。また、Cr−Re−B系一方向凝固材の方が
普通凝固材よりも破断時間が長く、組織を配向させるこ
とによりさらにクリープ特性が向上することがわかる。
Table 2 shows the creep test results of these two types of melt-solidified materials together with the test results of an example of the comparative material Cr-B-based directional solidified material and an example of the Ni-based superalloy. Both the Cr-Re-B type normal solidified material and the unidirectional solidified material produced in this example have a longer rupture time than the Ni-based superalloy and the Cr-B type unidirectional solidified material and are superior in creep characteristics. It is apparent that the creep characteristics have been improved by doing so. Further, it can be seen that the Cr-Re-B-based unidirectionally solidified material has a longer rupture time than the ordinary solidified material, and the creep characteristics are further improved by orienting the structure.

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【発明の効果】本発明に係るCr−Re−B系溶融凝固
材からなるCr基耐熱材料は、従来の金属材料よりも高
強度、高靱性を有するReを添加しないCr−B系溶融
凝固材よりも、更に高温強度及びクリープ特性が優れた
耐熱材料である。また、構成組織であるReを固溶した
Cr相とCr2 B相を一方向に配向させることにより、
さらにクリープ特性が向上する。
The Cr-based heat-resistant material comprising a Cr-Re-B-based melt-solidified material according to the present invention is a Cr-B-based melt-solidified material which has higher strength and higher toughness than conventional metal materials and does not contain Re. It is a heat-resistant material that is more excellent in high-temperature strength and creep characteristics. Further, by orienting the Cr phase and the Cr 2 B phase in which Re, which is a constituent structure, is dissolved in one direction,
Further, the creep characteristics are improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で得られた本発明のCr−Re−B系
溶融凝固材の組織写真。
FIG. 1 is a structural photograph of a Cr—Re—B-based melt-solidified material of the present invention obtained in Example 1.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 CrにB及びReを添加し、溶融凝固後
の組成がB:5〜30モル%、Re:5〜35モル%で
残部がCrとなるように調製した原料混合物を溶融凝固
して得られる、Reを固溶したCr相とReを固溶した
Cr2 B相との複合組織からなることを特徴とするCr
基耐熱材料。
1. A raw material mixture prepared by adding B and Re to Cr and adjusting the composition after melt solidification to B: 5 to 30 mol%, Re: 5 to 35 mol%, and the balance to Cr. Characterized by having a composite structure of a Cr phase in which Re is dissolved and a Cr 2 B phase in which Re is dissolved, obtained by
Base heat resistant material.
【請求項2】 前記複合組織が、Reを固溶したCr相
とReを固溶したCr2 B相とが一方向に配向した組織
であることを特徴とする請求項1に記載のCr基耐熱材
料。
2. The Cr-based composite according to claim 1, wherein the composite structure is a structure in which a Cr phase in which Re is dissolved and a Cr 2 B phase in which Re is dissolved are oriented in one direction. Heat resistant material.
JP34202999A 1999-12-01 1999-12-01 Cr BASE HEAT RESISTANT MATERIAL Withdrawn JP2001158931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34202999A JP2001158931A (en) 1999-12-01 1999-12-01 Cr BASE HEAT RESISTANT MATERIAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34202999A JP2001158931A (en) 1999-12-01 1999-12-01 Cr BASE HEAT RESISTANT MATERIAL

Publications (1)

Publication Number Publication Date
JP2001158931A true JP2001158931A (en) 2001-06-12

Family

ID=18350635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34202999A Withdrawn JP2001158931A (en) 1999-12-01 1999-12-01 Cr BASE HEAT RESISTANT MATERIAL

Country Status (1)

Country Link
JP (1) JP2001158931A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6692587B2 (en) * 2001-03-07 2004-02-17 National Institute For Materials Science Cr-base heat resisting alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6692587B2 (en) * 2001-03-07 2004-02-17 National Institute For Materials Science Cr-base heat resisting alloy

Similar Documents

Publication Publication Date Title
JP2881626B2 (en) Single crystal nickel-based superalloy
WO2014142089A1 (en) HEAT-RESISTANT Ni-BASED ALLOY AND METHOD FOR MANUFACTURING SAME
US4849168A (en) Ti-Al intermetallics containing boron for enhanced ductility
JP6826879B2 (en) Manufacturing method of Ni-based super heat-resistant alloy
WO2012026354A1 (en) Co-based alloy
JPH0754085A (en) Creep-resistant aluminized titanium alloy composition and investment casting made of said composition
KR102273787B1 (en) Complex copper alloy comprising high entropy alloy and method for manufacturing the same
JP5127144B2 (en) Ni3Al-based intermetallic compound containing V and Ti having two-phase structure, method for producing the same, heat-resistant structural material
JP2009084684A (en) Nickel-based alloy for turbine rotor of steam turbine, and turbine rotor of steam turbine
JPWO2020110326A1 (en) Ni-based alloy softened powder and method for producing the softened powder
JP4719583B2 (en) Unidirectional solidification nickel-base superalloy excellent in strength, corrosion resistance and oxidation resistance and method for producing unidirectional solidification nickel-base superalloy
JP4266196B2 (en) Nickel-base superalloy with excellent strength, corrosion resistance and oxidation resistance
US5167732A (en) Nickel aluminide base single crystal alloys
JP2012126982A (en) Method for manufacturing heat-resistant magnesium alloy, heat-resistant magnesium alloy casting and method for manufacturing the same
JP2020196951A (en) Ni-BASED ALLOY FOR HOT DIE, HOT FORGING DIE USING THE Ni-BASED ALLOY FOR HOT DIE, AND METHOD FOR MANUFACTURING FORGED PRODUCT USING THE HOT FORGING DIE
JP2001158931A (en) Cr BASE HEAT RESISTANT MATERIAL
JPH04501440A (en) Improved nickel aluminide alloy for high temperature structural materials
JP2005060731A (en) SINGLE CRYSTAL Ni-BASED SUPERALLOY HAVING EXCELLENT STRENGTH, CORROSION RESISTANCE AND OXIDATION RESISTANCE
JP4184648B2 (en) Ni-based single crystal alloy excellent in strength and corrosion resistance and its manufacturing method
JP2579316B2 (en) Single crystal Ni-base superalloy with excellent strength and corrosion resistance
JP3407054B2 (en) Copper alloy with excellent heat resistance, strength and conductivity
JP2003306736A (en) Niobium silicide based composite material and production method thereof
JP4276853B2 (en) Niobium-based composite material
JP2021031717A (en) Titanium alloy, method for manufacturing the same, and engine part using the same
KR950003051B1 (en) Heat-resistant nickel forging alloy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070206