JP2001158629A - Method and device for heating fine powder - Google Patents

Method and device for heating fine powder

Info

Publication number
JP2001158629A
JP2001158629A JP33734699A JP33734699A JP2001158629A JP 2001158629 A JP2001158629 A JP 2001158629A JP 33734699 A JP33734699 A JP 33734699A JP 33734699 A JP33734699 A JP 33734699A JP 2001158629 A JP2001158629 A JP 2001158629A
Authority
JP
Japan
Prior art keywords
fine powder
heating
heating furnace
upright
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33734699A
Other languages
Japanese (ja)
Other versions
JP3677518B2 (en
Inventor
Kunio Kimura
邦夫 木村
Yoshitada Nemoto
吉忠 根本
Shigeru Kanamaru
茂 金丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASIA RIKAKI KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
ASIA RIKAKI KK
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASIA RIKAKI KK, National Institute of Advanced Industrial Science and Technology AIST filed Critical ASIA RIKAKI KK
Priority to JP33734699A priority Critical patent/JP3677518B2/en
Publication of JP2001158629A publication Critical patent/JP2001158629A/en
Application granted granted Critical
Publication of JP3677518B2 publication Critical patent/JP3677518B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/102Forming solid beads by blowing a gas onto a stream of molten glass or onto particulate materials, e.g. pulverising
    • C03B19/1025Bead furnaces or burners
    • C03B19/103Fluidised-bed furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1095Thermal after-treatment of beads, e.g. tempering, crystallisation, annealing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for heating fine powder, especially the fine powder having a particle diameter of <=75 μm, by which the fine powder can be treated in a large amount and by which the temperature histories of the particles are uniformed, respectively, and to provide a device therefor. SOLUTION: This method for thermally treating the fine powder, comprising feeding the fine powder D into a particulate dispersion medium-charging zone C, carrying the fine powder with pulsed air flow charged from the lower portion of the charging zone C to lift the fine powder at a speed of 10 to 100 cm/sec, and simultaneously thermally treating the fine powder, characterized by lifting the fine powder through divided routes, bundling the divided routes to form at least three units, and uniformly heating the units with heated gas flows jetted from the sides.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、微粉体、特に粒径
75μm以下の微粉体を大量かつ均一に加熱処理するた
めの方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for heat-treating a fine powder, particularly a fine powder having a particle size of 75 .mu.m or less, in a large amount and uniformly.

【0002】[0002]

【従来の技術】比較的大きいサイズの粉体の加熱には、
大量かつ連続的な処理が可能なことから、一般にロータ
リーキルンが用いられている。しかしながら、粒径75
μm以下というような微粉体にこれを用いると、粒子の
移動が円滑に行われないため、均一に加熱することがで
きない上に、粉塵が発生し、取り扱いにくいなど工業的
に実施するには、解決すべき多くの問題がある。
2. Description of the Related Art For heating relatively large size powder,
A rotary kiln is generally used because a large amount and continuous processing can be performed. However, a particle size of 75
When this is used for fine powders such as μm or less, particles are not smoothly moved, so that it is not possible to heat evenly, dust is generated, and it is difficult to handle industrially, There are many issues to solve.

【0003】したがって、このような微粉体の加熱に
は、主に砂を分散媒体とした流動炉が用いられている。
例えば、火山ガラス質堆積物微粉体を加熱処理して微細
中空ガラス球状体を製造する方法として、ガラス中実球
とケイ砂とを充填した分散部の下方から脈動空気流を送
入し、分散部上方に供給された微粉体を10〜100c
m/秒の速度で搬送上昇させ、900〜1100℃に加
熱した発泡部で発泡させる方法が知られている(特開平
8−73232号公報)。
Therefore, a fluidized-bed furnace using sand as a dispersion medium is mainly used for heating such fine powder.
For example, as a method of producing a fine hollow glass sphere by heating a fine powder of volcanic vitreous sediment, a pulsating air flow is introduced from below a dispersion portion filled with solid glass spheres and silica sand, and dispersed. The fine powder supplied above the part is 10-100c
A method is known in which the sheet is conveyed at a speed of m / sec and foamed in a foaming section heated to 900 to 1100 ° C (Japanese Patent Application Laid-Open No. 8-73232).

【0004】図4は、従来方法に用いられていた装置を
説明するための断面図であり、図5はその分散層の構造
を示す断面図である。この装置は、多孔板7の上にガラ
ス中実球9とケイ砂8とを充填してなる分散層Cを内蔵
し、その分散層C上方に開口する原料供給口2を備えた
分散室Aと、その上部に連結した直立円筒型加熱炉Bか
ら構成され、かつ加熱炉Bを3〜20本の細管を集束し
た集束管構造3としたものである。
FIG. 4 is a cross-sectional view for explaining an apparatus used in the conventional method, and FIG. 5 is a cross-sectional view showing the structure of the dispersion layer. This apparatus has a built-in dispersion layer C filled with a glass solid sphere 9 and silica sand 8 on a perforated plate 7, and a dispersion chamber A having a raw material supply port 2 opened above the dispersion layer C. And an upright cylindrical heating furnace B connected to the upper part thereof, and the heating furnace B has a focusing tube structure 3 in which 3 to 20 thin tubes are focused.

【0005】従来方法によると、微粉体Dは、ホッパー
1からスクリューフィーダーにより搬送され、原料供給
口2から分散室Aへ供給され、分散層Cの下方の脈動空
気流導入口5から送られる脈動空気流により分散層Cで
分散され、分散層Cの上方の加熱炉Bに配置された集束
管3で周囲から加熱され、発泡したのち、粉体排出口4
から取り出される。この際、必要に応じ加熱炉Bの側壁
又は上部に設けられた空気取入口6から空気を導入し、
回収を容易にすることができる。しかしながら、このよ
うな装置を用いる方法では、処理量が限られ、スケール
アップも不可能なため、大量に処理する必要がある工業
的方法として不適当である。
According to the conventional method, fine powder D is conveyed from a hopper 1 by a screw feeder, supplied from a raw material supply port 2 to a dispersion chamber A, and pulsated from a pulsating air flow inlet 5 below the dispersion layer C. The powder is dispersed in the dispersion layer C by an air flow, is heated from the surroundings by a focusing tube 3 disposed in a heating furnace B above the dispersion layer C, foams, and then a powder outlet 4 is formed.
Taken out of At this time, if necessary, air is introduced from the air inlet 6 provided on the side wall or upper part of the heating furnace B,
Recovery can be facilitated. However, the method using such an apparatus has a limited amount of processing and cannot be scaled up, and is therefore unsuitable as an industrial method requiring a large amount of processing.

【0006】[0006]

【発明が解決しようとする課題】本発明は、微粉体、特
に粒径75μm以下の微粉体を加熱処理するに際し、大
量に処理することができ、かつ個々の粒子の温度履歴を
均一にすることができ、等品質の製品が得られる方法及
び装置を提供するためになされたものである。
SUMMARY OF THE INVENTION An object of the present invention is to heat a fine powder, particularly a fine powder having a particle diameter of 75 μm or less, in a large amount and to make the temperature history of each particle uniform. The present invention has been made to provide a method and an apparatus capable of producing a product of equal quality.

【0007】[0007]

【課題を解決するための手段】本発明者らは、微粉体を
均一かつ大量に加熱処理する方法及び装置について種々
研究を重ねた結果、図1及び図2に示された装置を用い
る方法において、加熱炉中に少なくとも3個の集束管を
配設し、これら集束管中を上昇する個々の微粉体が均一
に加熱されるように燃焼バーナーを配置することによ
り、均質な加熱が行われ、大量処理が可能になることを
見出し、この知見に基づいて本発明をなすに至った。
The present inventors have conducted various studies on a method and an apparatus for heat-treating a fine powder uniformly and in large quantities. As a result, the inventors have found that the method using the apparatus shown in FIGS. By arranging at least three focusing tubes in a heating furnace and arranging a combustion burner so that the individual fine powder rising in these focusing tubes is uniformly heated, uniform heating is performed. The present inventors have found that large-scale processing can be performed, and have accomplished the present invention based on this finding.

【0008】すなわち、本発明は、粒状分散媒充填帯域
上に処理すべき微粉体を供給し、該充填帯域の下方より
送入される脈動空気流に担送させて、10〜100cm
/秒の速度で上昇させながら、加熱処理する方法におい
て、微粉体を分割された経路により上昇させるととも
に、これらの分割された経路を集束して、少なくとも3
個のユニットを形成させ、各ユニットを側方より噴射さ
れる加熱ガス流により均一に加熱することを特徴とする
微粉体加熱方法、及び粒状分散媒充填層を内蔵し、かつ
該充填層上方において開口する微粉体供給口2を備えた
分散室Aと、分散室A上部に気密的に連結した直立円筒
型加熱炉Bと該加熱炉Bの加熱手段とから構成された微
粉体加熱装置において、該直立円筒型加熱炉B中に複数
本の細管を集束した直立集束管3、少なくとも3個を並
列的に配置するとともに、該加熱炉壁面の適所に複数個
の噴射式燃焼バーナー11を偏心放射状に、ほぼ等間隔
で取り付けて加熱手段としたことを特徴とする微粉体加
熱装置を提供するものである。
That is, according to the present invention, a fine powder to be treated is supplied onto a granular dispersion medium filling zone, and the fine powder is carried by a pulsating air flow fed from below the filling zone to form a 10 to 100 cm.
In a method of performing heat treatment while increasing the speed at a rate of 1 / sec, the fine powder is raised along divided paths, and these divided paths are converged to at least 3
A fine powder heating method, wherein each unit is uniformly heated by a heating gas flow injected from the side, and a built-in granular dispersion medium packed layer, and above the packed layer In a fine powder heating apparatus comprising: a dispersion chamber A having an open fine powder supply port 2; an upright cylindrical heating furnace B airtightly connected to the upper part of the dispersion chamber A; and heating means for the heating furnace B, At least three upright focusing tubes 3 each having a plurality of narrow tubes bundled in the upright cylindrical heating furnace B are arranged in parallel, and a plurality of injection-type combustion burners 11 are eccentrically arranged at appropriate positions on the wall surface of the heating furnace. In addition, the present invention provides a fine powder heating apparatus characterized in that the heating means is attached at substantially equal intervals.

【0009】[0009]

【発明の実施の形態】次に添付図面に従って本発明方法
及び本発明装置を詳細に説明する。図1は、本発明装置
の1例を示す略解縦断面図、図2はそのX−X線に沿っ
た横断面図であり、原料微粉体Dはホッパー1からスク
リューフィーダーにより分散室Aの上部に設けられた供
給口2を介して分散室Aに供給され、分散室Aから加熱
炉B中に配置されている複数の直立集束管3,…の中を
上昇して、粉体排出口4から取り出される。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing the structure of a method according to the present invention. FIG. 1 is a schematic longitudinal sectional view showing one example of the apparatus of the present invention, and FIG. 2 is a transverse sectional view taken along the line XX. The raw material fine powder D is supplied from a hopper 1 to an upper part of a dispersion chamber A by a screw feeder. Are supplied to the dispersion chamber A through the supply port 2 provided in the heating chamber B, and rise from the dispersion chamber A through the plurality of upright focusing tubes 3,. Taken out of

【0010】分散室Aは、従来の装置と同様の構造を有
し、多孔板7の上部に粒状分散媒8,9、例えばケイ砂
やガラス中実球を充填して分散層Cが形成され、この分
散層Cの下方には脈動空気流導入口5が設けられてい
る。
The dispersion chamber A has the same structure as that of the conventional apparatus. A dispersion layer C is formed by filling granular dispersion media 8, 9 such as silica sand or glass solid spheres on the upper part of a perforated plate 7. A pulsating air flow inlet 5 is provided below the dispersion layer C.

【0011】加熱炉Bは、直立円筒状本体B′と円錐状
頂部B″から構成され、円錐状頂部B″の最上部は開口
して、排気口10が設けられている。加熱炉の直立円筒
状本体B′の中段部壁面には複数個の噴射式燃焼バーナ
ー11,…が偏心放射状に、ほぼ等間隔で取り付けられ
ている。ここで偏心放射状とは、図2の一点鎖線で示す
ように、各燃焼バーナー11,…の噴射方向を加熱炉本
体の断面の円の直径よりも小さい直径を有する同心円a
の接線に一致させて取り付けられている状態をいう。
The heating furnace B comprises an upright cylindrical main body B 'and a conical top B ". The top of the conical top B" is open and an exhaust port 10 is provided. A plurality of injection-type combustion burners 11,... Are mounted eccentrically at substantially equal intervals on the middle wall surface of the upright cylindrical body B 'of the heating furnace. Here, the eccentric radial means that the injection direction of each of the combustion burners 11,... Is a concentric circle a having a diameter smaller than the diameter of the circle of the cross section of the heating furnace main body, as shown by the dashed line in FIG.
Refers to the state of being attached so as to match the tangent line of.

【0012】このように燃焼バーナー11,…を配設す
ることにより、加熱炉B内に並列的に配置されている各
直立集束管3,…の中を上昇する微粉体Dは、均一に加
熱される。この各直立集束管3,…の中における微粉体
Dの上昇速度は10〜100cm/秒の範囲内で選ばれ
る。また、この微粉体Dの加熱温度は、処理の目的によ
って左右されるが、通常500〜1300℃、好ましく
は900〜1100℃の範囲である。
By arranging the combustion burners 11, the fine powder D rising in each of the upright focusing tubes 3,... Arranged in parallel in the heating furnace B is uniformly heated. Is done. The rising speed of the fine powder D in each of the upright focusing tubes 3 is selected within a range of 10 to 100 cm / sec. The heating temperature of the fine powder D depends on the purpose of the treatment, but is usually in the range of 500 to 1300C, preferably 900 to 1100C.

【0013】各直立集束管3,…は、図3に示すように
それぞれ複数の管体12,…の集束管体からなり、この
集束管が加熱炉内に少なくとも3本、好ましくは10〜
20本並列的に立設されて内蔵されている。上記の管体
12,…は、それぞれ内径10〜20mmの細長管から
なり、これが10〜30本束ねられて構成されている。
このような構造の加熱炉Bで加熱処理された微粉体D
は、各集束体の上部出口から排出管13,…を経て集め
られ、排出口4から取り出され、回収される。
Each of the upright focusing tubes 3,... Comprises a plurality of focusing tubes 12, as shown in FIG. 3, and at least three, preferably 10 to 10 focusing tubes are provided in the heating furnace.
Twenty of them are erected and installed in parallel. The above-mentioned pipes 12 are each formed of an elongated pipe having an inner diameter of 10 to 20 mm, and 10 to 30 pieces are bundled.
Fine powder D heat-treated in heating furnace B having such a structure
Are collected from the upper outlets of the respective bundles through the discharge pipes 13,..., Taken out from the discharge ports 4, and collected.

【0014】[0014]

【実施例】次に、実施例により本発明をさらに詳細に説
明するが、本発明はこれらによって限定されるものでは
ない。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0015】実施例1 この例においては原料粉末として、火山ガラス質堆積物
(福島市飯坂町産出、通称福島白土)を解砕し、10μ
m及び30μmで分級された10〜30μmの粉末を使
用した。この原料粉末中に含まれる30μmを越える粒
子の割合は、15重量%以下であり、また粒径10μm
未満の粒子の割合は、15重量%以下であった。
Example 1 In this example, volcanic glassy sediment (produced in Iizaka-machi, Fukushima City, commonly known as Fukushima Shirato) was crushed as a raw material powder, and 10 μm was obtained.
Powders of 10-30 μm classified by m and 30 μm were used. The ratio of particles exceeding 30 μm contained in the raw material powder is 15% by weight or less, and the particle diameter is 10 μm.
The proportion of particles less than 15% by weight.

【0016】原料粉末を図1に示す加熱装置に供給し
た。この加熱装置は、加熱炉中央上部に排気口10を有
し、ガスバーナー11,…により、熱風の流れが回転す
るように設置された円筒縦型炉内に、18本の集束管
3,…が分離して設置されている。
The raw material powder was supplied to the heating device shown in FIG. This heating device has an exhaust port 10 at the center upper part of the heating furnace, and 18 focusing tubes 3,... In a cylindrical vertical furnace installed so that the flow of hot air is rotated by gas burners 11,. Are installed separately.

【0017】まず、原料粉末をホッパー1に入れ、多孔
板7の上部に、粒度約200μmに整粒されたケイ砂4
75gを充填した断面積475cm2の分散層Cにスク
リューフィーダーにより1時間当り10kgの割合で供
給し、分散層下部より、脈動数が30回/秒の脈動空気
を1分間当り0.855m3の割合で送入した。このよ
うにして分散させた粒子を、垂直に設置した18本の集
束管を通って上昇させた。なお、個々の集束管は、個々
の内径が13.3mmの細長管を19本束ねて構成し
た。この集束管内部の最高温度は、ガスバーナー11,
…を調整し、1000℃に保った。
First, the raw material powder is put into a hopper 1 and silica sand 4 sized to a particle size of about 200 μm is placed on a perforated plate 7.
A dispersion layer C having a cross-sectional area of 475 cm 2 filled with 75 g is supplied by a screw feeder at a rate of 10 kg per hour, and pulsating air having a pulsation rate of 30 times / second is supplied from the lower part of the dispersion layer at a rate of 0.855 m 3 per minute. Sent at a rate. The particles thus dispersed were lifted through 18 vertically installed focusing tubes. Each focusing tube was configured by bundling 19 elongated tubes each having an inner diameter of 13.3 mm. The maximum temperature inside this focusing tube is gas burner 11,
... was adjusted and kept at 1000 ° C.

【0018】加熱空気並びに発泡体の冷却と、発泡体回
収部内の水分の凝縮を抑えるために、加熱炉上部の空気
導入口6から空気を導入した。導入量の調整は、発泡体
回収部に直結した吸引ブロワーの流量の調整により行っ
た。生成した発泡体を回収し、その密度及び強度を測定
した。その結果、かさ密度0.50g/cm3、粒子密
度0.85g/cm3、粗粒含有率1.5重量%、強度
90.6重量%の火山ガラス質発泡体が得られた。な
お、この強度は、8MPaの静水圧下に1分間保持した
後の非破壊粒子の含有割合を表わしたものである。
In order to cool the heated air and the foam, and to suppress the condensation of water in the foam recovery section, air was introduced from the air inlet 6 at the upper part of the heating furnace. The introduction amount was adjusted by adjusting the flow rate of a suction blower directly connected to the foam recovery section. The formed foam was recovered, and its density and strength were measured. As a result, a volcanic glassy foam having a bulk density of 0.50 g / cm 3 , a particle density of 0.85 g / cm 3 , a coarse particle content of 1.5% by weight, and a strength of 90.6% by weight was obtained. In addition, this strength represents the content ratio of the non-destructive particles after holding for 1 minute under the hydrostatic pressure of 8 MPa.

【0019】[0019]

【発明の効果】本発明によると、75μm以下の微粉体
を大量かつ均一に加熱処理することができる。
According to the present invention, a large amount of fine powder having a particle size of 75 μm or less can be heat-treated uniformly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明装置の1例の略解縦断面図。FIG. 1 is a schematic longitudinal sectional view of an example of the device of the present invention.

【図2】 図1のX−X線に沿った横断面図。FIG. 2 is a transverse sectional view taken along line XX of FIG. 1;

【図3】 本発明の集束管の断面図。FIG. 3 is a cross-sectional view of the focusing tube of the present invention.

【図4】 従来例の略解縦断面図。FIG. 4 is a schematic vertical sectional view of a conventional example.

【図5】 従来例における分散層の断面図。FIG. 5 is a cross-sectional view of a dispersion layer in a conventional example.

【符号の説明】[Explanation of symbols]

1 ホッパー 2 原料供給口 3 直立集束管 4 粉体排出口 5 脈動空気流導入口 6 空気取入口 7 多孔板 8,9 粒状分散媒 10 排気口 11 燃焼バーナー 12 管体 13 排出管 A 分散室 B 直立円筒型加熱炉 C 分散層 D 微粉体 REFERENCE SIGNS LIST 1 Hopper 2 Raw material supply port 3 Upright focusing tube 4 Powder discharge port 5 Pulsating air flow inlet 6 Air intake 7 Perforated plate 8, 9 Granular dispersion medium 10 Exhaust port 11 Combustion burner 12 Pipe 13 Discharge pipe A Dispersion chamber B Upright cylindrical heating furnace C Dispersion layer D Fine powder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 邦夫 佐賀県鳥栖市萱方町218番地の34 (72)発明者 根本 吉忠 福岡県福岡市東区雁の巣2丁目24番47号 (72)発明者 金丸 茂 福岡県嘉穂郡稲築町大字鴨生589番地 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Kunio Kimura 218-34, Kayakata-cho, Tosu-shi, Saga Prefecture (72) Inventor Yoshitada Nemoto 2-24-47, Wild-nest, Higashi-ku, Fukuoka City, Fukuoka Prefecture (72) Inventor Shigeru Kanamaru 589, Kamo, Inazuki-cho, Kaho-gun, Fukuoka

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粒状分散媒充填帯域上に処理すべき微粉
体を供給し、該充填帯域の下方より送入される脈動空気
流に担送させて、10〜100cm/秒の速度で上昇さ
せながら、加熱処理する方法において、微粉体を分割さ
れた経路により上昇させるとともに、これらの分割され
た経路を集束して、少なくとも3個のユニットを形成さ
せ、各ユニットを側方より噴射される加熱ガス流により
均一に加熱することを特徴とする微粉体加熱方法。
1. A fine powder to be treated is supplied onto a granular dispersion medium filling zone, and is carried by a pulsating air flow fed from below the filling zone, and is raised at a speed of 10 to 100 cm / sec. Meanwhile, in the heat treatment method, the fine powder is raised by the divided paths, and the divided paths are converged to form at least three units, and each unit is heated by a side jet. A fine powder heating method characterized by heating uniformly by a gas flow.
【請求項2】 粒状分散媒充填層を内蔵し、かつ該充填
層上方において開口する微粉体供給口を備えた分散室
と、分散室上部に気密的に連結した直立円筒型加熱炉と
該加熱炉の加熱手段とから構成された微粉体加熱装置に
おいて、該直立円筒型加熱炉中に複数本の細管を集束し
た直立集束管、少なくとも3個を並列的に配置するとと
もに、該加熱炉壁面の適所に複数個の噴射式燃焼バーナ
ーを偏心放射状に、ほぼ等間隔で取り付けて加熱手段と
したことを特徴とする微粉体加熱装置。
2. A dispersion chamber which contains a granular dispersion medium packed layer and has a fine powder supply port opened above the packed bed, an upright cylindrical heating furnace airtightly connected to the upper part of the dispersion chamber, and And a heating means for the furnace, wherein at least three upright converging tubes each comprising a plurality of thin tubes converged in the upright cylindrical heating furnace are arranged in parallel, and A fine powder heating apparatus characterized in that a plurality of injection-type combustion burners are eccentrically mounted at appropriate positions at substantially equal intervals as heating means.
JP33734699A 1999-11-29 1999-11-29 Fine powder heating method and apparatus Expired - Lifetime JP3677518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33734699A JP3677518B2 (en) 1999-11-29 1999-11-29 Fine powder heating method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33734699A JP3677518B2 (en) 1999-11-29 1999-11-29 Fine powder heating method and apparatus

Publications (2)

Publication Number Publication Date
JP2001158629A true JP2001158629A (en) 2001-06-12
JP3677518B2 JP3677518B2 (en) 2005-08-03

Family

ID=18307772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33734699A Expired - Lifetime JP3677518B2 (en) 1999-11-29 1999-11-29 Fine powder heating method and apparatus

Country Status (1)

Country Link
JP (1) JP3677518B2 (en)

Also Published As

Publication number Publication date
JP3677518B2 (en) 2005-08-03

Similar Documents

Publication Publication Date Title
JP2579799B2 (en) Pelletizing furnace and method for producing vitreous beads
EP3401596B1 (en) Continuous filtering system comprising a moving bed particle layer with adjustable thickness of filtering layer
JP2591612B2 (en) Method for producing spherical particles
CN103468323B (en) Raw coke oven gas dedusting device and raw coke oven gas dedusting method
US4904292A (en) Spherulizing furnace and process of manufacturing vitreous beads
CN105670709A (en) Raw gas purification plant
US4511384A (en) Thermally toughening glass
JP2001158629A (en) Method and device for heating fine powder
SE425257B (en) SET AND DEVICE FOR DEGRADING OF MOLD METAL
CA1111650A (en) Heating of glass batch material
EP3943465A1 (en) Method for producing hollow granules from inorganic raw material and device for implementing same
JP5674018B2 (en) Perlite manufacturing method, inorganic foam material manufacturing method, and foam material manufacturing apparatus
CN103435253B (en) Silica glass rotary cooling device
CN209166115U (en) Continuous-type furnace
US2846369A (en) Conversion method and apparatus
JPH1157451A (en) Method and apparatus for producing inorganic spherical particle
JPS60179140A (en) Method and apparatus for regenerating loaded dry powdery carbon-containing adsorbent
JPH1029842A (en) Method for preheating lightweight aggregate raw material and device therefor
US3533610A (en) Apparatus for the heat treatment of comminuted material
CN216191916U (en) System for utilize gasification sediment preparation low unit weight rock wool
JP2011126762A (en) Methods for producing perlite and inorganic foamed material, and fluidized bed firing furnace
CN203545869U (en) Quartz glass rotation cooling device
SU734493A1 (en) Granular material heat-treating method
US3142481A (en) Shaft furnace
RU2382083C2 (en) Device for forward recovery of iron from iron ore

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041118

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041220

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050127

R150 Certificate of patent or registration of utility model

Ref document number: 3677518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term