JP2001157585A - Enhancer for anticancer therapy and method for screening the enhancer - Google Patents

Enhancer for anticancer therapy and method for screening the enhancer

Info

Publication number
JP2001157585A
JP2001157585A JP34032299A JP34032299A JP2001157585A JP 2001157585 A JP2001157585 A JP 2001157585A JP 34032299 A JP34032299 A JP 34032299A JP 34032299 A JP34032299 A JP 34032299A JP 2001157585 A JP2001157585 A JP 2001157585A
Authority
JP
Japan
Prior art keywords
substance
xaa
gly
phase
ser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34032299A
Other languages
Japanese (ja)
Inventor
Takumi Kawabe
拓己 河邊
Masaji Suganuma
正司 菅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYANBASU KK
Canbas Co Ltd
Original Assignee
KYANBASU KK
Canbas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYANBASU KK, Canbas Co Ltd filed Critical KYANBASU KK
Priority to JP34032299A priority Critical patent/JP2001157585A/en
Priority to AT00964563T priority patent/ATE292677T1/en
Priority to PCT/IB2000/001438 priority patent/WO2001021771A2/en
Priority to JP2001525330A priority patent/JP4610828B2/en
Priority to DE60019318T priority patent/DE60019318T2/en
Priority to DK00964563T priority patent/DK1218494T3/en
Priority to ES00964563T priority patent/ES2239037T3/en
Priority to CA002385257A priority patent/CA2385257A1/en
Priority to AU75485/00A priority patent/AU7548500A/en
Priority to PT00964563T priority patent/PT1218494E/en
Priority to US09/667,365 priority patent/US6881575B1/en
Priority to EP00964563A priority patent/EP1218494B1/en
Publication of JP2001157585A publication Critical patent/JP2001157585A/en
Priority to US10/967,008 priority patent/US7851592B2/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for screening a substance which specifically destroys the G2 period checkpoint mechanism of a cancer cell by a DNA- damaging treatment, and a substance which destroys the G2 period checkpoint method mechanism in its cell cycle. SOLUTION: A method for selecting a substance which inhibits the phosphorylation of an oligonucleotide by adding a candidate substance to the phosphorylation system consisting of an oligopeptide having amino acid sequence 1 in the specification, a phosphorylase involved in the G2 period termination, and a labelled phosphorus donor, or a method for selecting a substance which does not allow the DNA amount in a cancer cell to increase after allowing the cell having a defect in the cell cycle G2 period checkpoint mechanism to receive a DNA-damaging treatment, followed by adding a candidate substance to a culture of the cell to incubate, and a substance which destroys the G2 period checkpoint mechanism in the cell cycle are provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この出願の発明は、細胞周期
G2期チェックポイント機構破壊物質のスクリーニング
方法と、この方法によって選択された細胞周期G2期チ
ェックポイント機構破壊物質、並びにこの細胞周期G2
期チェックポイント機構破壊物質を有効成分とする抗癌
処置増強剤に関するものである。
The present invention relates to a screening method for a cell cycle G2 phase checkpoint mechanism-disrupting substance, a cell cycle G2 phase checkpoint mechanism-disrupting substance selected by the method, and the cell cycle G2.
The present invention relates to an anticancer treatment-enhancing agent comprising a substance that disrupts the early checkpoint mechanism as an active ingredient.

【0002】[0002]

【従来の技術】温熱療法や、放射線または紫外線等の照
射、あるいは抗癌剤(例えば、ブレオマイシンやシスプ
ラチン等)の投与など、多くの抗癌処置は癌細胞に対す
るDNA損傷を作用機序としている。しかしながら、こ
れらの抗癌処置は、癌細胞も正常細胞も同様に傷害する
ため、癌患者はしばしば、激烈な副作用に見舞われる。
また、この副作用のために、十分な抗癌治療が行えない
場合が多い。
2. Description of the Related Art Many anticancer treatments, such as hyperthermia, irradiation with radiation or ultraviolet rays, or administration of anticancer drugs (for example, bleomycin or cisplatin), have DNA damage to cancer cells as a mechanism of action. However, cancer patients often suffer from severe side effects, as these anti-cancer treatments damage both cancer cells and normal cells as well.
In addition, due to this side effect, sufficient anticancer treatment cannot be often performed.

【0003】一方、大半の正常ヒト細胞では、DNA傷
害が起こった場合には、細胞周期G1期チェックポイン
トおよびG2期チェックポイントにおいて細胞周期を停
止し、傷害を受けたDNAを修復するが、正常細胞にお
ける修復機能はG1期チェックポイントによる停止期に
働くことが主であり、G2期チェックポイントの役割は
少ないと考えられている。
On the other hand, in most normal human cells, when DNA damage occurs, the cell cycle is stopped at the G1 phase checkpoint and the G2 phase checkpoint, and the damaged DNA is repaired. The repair function in cells mainly works during the arrest phase by the G1 checkpoint, and the role of the G2 checkpoint is considered to be small.

【0004】分子腫瘍学における最近の進歩によって、
G1細胞周期チェックポイントが大半のヒト癌細胞で損
なわれていることが明らかにされている。癌細胞の大部
分は、G1期チェックポイントに関係するp53、Rb、
p16INK4やp19ARFのような癌抑制遺伝子に突然変異や
欠失を有するか、またはMDM-2やサイクリンDのよ
うな癌遺伝子が過剰発現している(参考文献1、2)。
これらに加えて、増殖因子の過剰発現やこれら遺伝子、
それらのレセプターまたは下流シグナル伝達分子の機能
獲得突然変異によって引き起こされる過剰な増殖シグナ
ルが、G1期チェックポイントを機能不全にすることに
よって細胞の形質転換を生じさせていると考えられる。
例外的に、癌細胞のなかにはG1期チェックポイントで
はなくてG2期チェックポイントが破壊されているもの
もある(参考文献3)。このことは、正常な細胞周期に
おいては、G2期チェックポイントと比較してG1期チェ
ックポイントが相対的に重要であることを示している。
突然変異の過剰集積はおそらく細胞に致命的であるが、
上記のチェックポイントの破壊による突然変異率の上昇
により最終的に発癌に至る突然変異を細胞に集積させる
(参考文献4、5)。
[0004] With recent advances in molecular oncology,
The G1 cell cycle checkpoint has been shown to be impaired in most human cancer cells. The majority of cancer cells have p53, Rb,
A tumor suppressor gene such as p16 INK4 or p19 ARF has a mutation or deletion, or an oncogene such as MDM-2 or cyclin D is overexpressed (References 1 and 2).
In addition to these, overexpression of growth factors and these genes,
Excessive growth signals caused by gain-of-function mutations in those receptors or downstream signaling molecules are thought to be causing cell transformation by rendering the G1 checkpoint dysfunctional.
Exceptionally, some cancer cells have the G2 checkpoint destroyed instead of the G1 checkpoint (Reference 3). This indicates that in the normal cell cycle, the G1 checkpoint is relatively important compared to the G2 checkpoint.
The overaccumulation of mutations is probably fatal to cells,
Mutations that eventually lead to carcinogenesis due to an increase in the mutation rate due to the destruction of the above checkpoint are accumulated in the cells (References 4, 5).

【0005】興味深いことに、G1期チェックポイント
が損なわれている癌細胞においてもG2期チェックポイ
ントは保持されている。正常細胞はG1とG2の2つの独
立したDNA損傷チェックポイントを有しているので、
何らかの処理によってG2期チェックポイントが選択的
に破壊された場合、G1期チェックポイントが既に破壊
されている癌細胞は、無傷のG1期チェックポイントを
有する正常細胞よりもDNA損傷処理に対して一層敏感
になるものと期待される。例えば、カフェイン等による
非特異的なG2期チェックポイント破壊はp53欠失癌細
胞をDNA損傷に対して感受性にするのに有効であるこ
とが報告されている(参考文献6−7)。
[0005] Interestingly, the G2 phase checkpoint is retained in cancer cells in which the G1 phase checkpoint is impaired. Since normal cells have two independent DNA damage checkpoints, G1 and G2,
If the G2 phase checkpoint is selectively destroyed by any treatment, cancer cells whose G1 phase checkpoint has already been destroyed are more susceptible to DNA damage treatment than normal cells with an intact G1 phase checkpoint. It is expected to become. For example, it has been reported that non-specific G2 checkpoint disruption by caffeine or the like is effective in sensitizing p53-deficient cancer cells to DNA damage (references 6-7).

【0006】G2期チェックポイントに関する現在の仮
説によれば、DNA損傷はrad3+/ATMの活性化によっ
てプロテインキナーゼChk1およびHuCds1/Chk2を活
性化する(参考文献11−14)。次いで、Chk1およびHu
Cds1/Chk2はヒトではCdc25Cの216番セリンをリン酸
化し、そして14-3-3との結合を促進する(参考文献15−
17)。分裂酵母では、14-3-3とCdc25Cとの結合によっ
てCdc25Cは細胞質中に隔離され(参考文献18)、その
結果Cdc25CによるCdc2/サイクリンBの活性化が阻害
されるので、最終的にG2停止が誘導され、DNAの修
復が行われる(参考文献19−21)。
According to the current hypothesis regarding the G2 phase checkpoint, DNA damage activates protein kinases Chk1 and HuCds1 / Chk2 by activating rad3 + / ATM (refs. 11-14). Then Chk1 and Huk
Cds1 / Chk2 phosphorylates serine 216 of Cdc25C in humans and promotes binding to 14-3-3 (Ref. 15-).
17). In fission yeast, Cdc25C is sequestered in the cytoplasm by binding of 14-3-3 and Cdc25C (ref. 18), and as a result, the activation of Cdc2 / cyclin B by Cdc25C is inhibited. Is induced, and the DNA is repaired (references 19 to 21).

【0007】[0007]

【発明が解決しようとする課題】前記のとおり、G1期
チェックポイントが損なわれている癌細胞においては、
さらにG2期チェックポイントが選択的に破壊されれ
ば、抗癌剤等のDNA傷害処理に対して感受性となり、
効果的な癌治療が可能となるものと期待される。また、
そのような治療においては、G1およびG2の2つのチ
ェックポイント機構を持たない癌細胞を対象とすること
になるため、比較的少ない量の抗癌剤によっても癌細胞
を死滅させることが可能であり、正常細胞への副作用を
大幅に低減することが可能となる。
As described above, in cancer cells in which the G1 phase checkpoint is impaired,
Furthermore, if the G2 phase checkpoint is selectively destroyed, it becomes susceptible to DNA damage treatment such as an anticancer agent,
It is expected that effective cancer treatment will be possible. Also,
In such treatment, cancer cells that do not have the two checkpoint mechanisms G1 and G2 are targeted, so that cancer cells can be killed even with a relatively small amount of anticancer drug, It is possible to greatly reduce side effects on cells.

【0008】この出願は、以上のとおりの事情に鑑みて
なされたものであって、細胞周期のG2チェックポイン
ト機構を選択的に破壊することのできる新規な物質をス
クリーニングする方法と、この方法により選択された細
胞周期G2期チェックポイント機構破壊物質を提供する
ことを課題としている。
[0008] This application was made in view of the above circumstances, and a method for screening a novel substance capable of selectively destroying the G2 checkpoint mechanism of the cell cycle, It is an object of the present invention to provide a selected substance that disrupts the checkpoint mechanism of the cell cycle G2 phase.

【0009】また、この出願は、この細胞周期G2期チ
ェックポイント機構破壊物質を有効成分とする抗癌処置
増強剤を提供することを課題としてもいる。
Another object of the present invention is to provide an anticancer treatment enhancer comprising the cell cycle G2 phase checkpoint mechanism disrupting substance as an active ingredient.

【0010】[0010]

【課題を解決するための手段】この出願は、前記の課題
を解決するものとして、以下の(1)〜(13)の発明を提供
する。 (1) 配列番号1のアミノ酸配列を有するオリゴペプチ
ド、G2期停止に関与するリン酸化酵素、および標識化
リン供与体からなるリン酸化反応系に候補物質を添加
し、オリゴヌクレオチドのリン酸化を阻害する物質を選
択することを特徴とする抗癌療法の細胞周期G2期チェ
ックポイント機構破壊物質のスクリーニング方法。 (2) リン酸化酵素が、hChk1、HuCds1/Chk2、または
これら酵素と他の蛋白質との融合蛋白質、もしくはDN
A傷害細胞の抽出液である前記発明(1)のスクリーニン
グ方法。 (3) 配列番号1における第2位および第3位XaaがGl
y、Leu、SerまたはArgであり、第6〜8位XaaがGly、Le
u、Ser、Met、ProまたはGluである前記発明(1)のスクリ
ーニング方法。 (4) 配列番号1における第2位XaaがGly、Leu、Serま
たはArg、第3位XaaがGly、LeuまたはSer、第6位Xaaが
Gly、Met、ProまたはGlu、第7位XaaがGly、LeuまたはP
ro、第8位XaaがGly、Met、SerまたはGluである前記発
明(3)のスクリーニング方法。 (5) 配列番号1における第2位XaaがArg、第3位Xaaが
Ser、第6位XaaがMet、第7位XaaがPro、第8位XaaがGl
uである前記発明(4)のスクリーニング方法。 (6) リン酸化酵素が、hChk1、HuCds1/Chk2、または
これら酵素と他の蛋白質との融合蛋白質である前記発明
(3)から(5)のいずれかのスクリーニング方法。 (7) 細胞周期G1期チェックポイント機構に欠損を有
する細胞にDNA傷害性処置を施し、この細胞の培地に
候補物質を添加して培養した後、G2/M期に相当する
DNA量の細胞集団が増加しない物質を選択することを
特徴とする細胞周期G2期チェックポイント機構破壊物
質のスクリーニング方法。 (8) DNA傷害性処置を施した細胞におけるG2/M
期に相当するDNA量の細胞集団を増加させず、かつ細
胞周期M期停止を生じさせる薬剤処置によってG2/M
期に相当するDNA量の細胞集団が増加する物質を選択
する前記発明(7)のスクリーニング方法。 (9) 前記発明(1)から(8)の方法によって選択された細
胞周期G2期チェックポイント機構破壊物質。 (10) 炭素、酸素および窒素からなる主鎖と、チロシン
側鎖、プロリン側鎖およびアスパラギン側鎖を有する化
合物である前記発明(9)の細胞周期G2期チェックポイ
ント機構破壊物質。 (11) 配列番号2のアミノ酸配列を有するオリゴペプチ
ドである前記発明(9)の細胞周期G2期チェックポイン
ト機構破壊物質。 (12) 配列番号2における第2位および第3位XaaがGl
y、Leu、SerまたはArgであり、第5〜8位XaaがSer、Gl
y、Met、ProまたはGluである前記発明(11)の細胞周期G
2期チェックポイント機構破壊物質。 (13) 前記発明(9)から(12)のいずれかの細胞周期G2
期チェックポイント機構破壊物質またはその誘導体を有
効成分とする抗癌処置増強剤。
This application provides the following inventions (1) to (13) to solve the above-mentioned problems. (1) A candidate substance is added to a phosphorylation reaction system comprising an oligopeptide having the amino acid sequence of SEQ ID NO: 1, a kinase involved in G2 arrest, and a labeled phosphorus donor to inhibit phosphorylation of the oligonucleotide. A method for screening a substance that disrupts the cell cycle G2 phase checkpoint mechanism in anticancer therapy, which comprises selecting a substance to be treated. (2) The kinase is hChk1, HuCds1 / Chk2, or a fusion protein of these enzymes with other proteins, or DN.
The screening method according to the invention (1), which is an extract of A-damaged cells. (3) 2nd and 3rd position Xaa in SEQ ID NO: 1 is Gl
y, Leu, Ser or Arg, and Xaa at positions 6 to 8 are Gly, Le
The screening method according to the above invention (1), which is u, Ser, Met, Pro or Glu. (4) Xaa at position 2 in SEQ ID NO: 1 is Gly, Leu, Ser or Arg, Xaa at position 3 is Gly, Leu or Ser, and Xaa at position 6 is
Gly, Met, Pro or Glu, 7th position Xaa is Gly, Leu or P
ro, the screening method according to the above invention (3), wherein Xaa at position 8 is Gly, Met, Ser or Glu. (5) The second position Xaa in SEQ ID NO: 1 is Arg, and the third position Xaa is
Ser, 6th position Xaa is Met, 7th position Xaa is Pro, 8th position Xaa is Gl
The screening method according to the invention (4), which is u. (6) the above-mentioned invention, wherein the phosphorylating enzyme is hChk1, HuCds1 / Chk2, or a fusion protein of these enzymes and another protein;
The screening method according to any one of (3) to (5). (7) A cell having a defect in the cell cycle G1 phase checkpoint mechanism is subjected to DNA damaging treatment, a candidate substance is added to the culture medium of the cell, and the cells are cultured. A method for screening a substance that disrupts the cell cycle G2 phase checkpoint mechanism, wherein the substance does not increase the number of cells. (8) G2 / M in cells treated with DNA damage
G2 / M by drug treatment that does not increase the cell population with DNA amounts corresponding to the
(7) The screening method according to the above-mentioned invention (7), wherein a substance which increases the cell population having a DNA amount corresponding to the phase is selected. (9) A substance that disrupts the cell cycle G2 phase checkpoint mechanism selected by the method according to any one of the inventions (1) to (8). (10) The substance that disrupts the cell cycle G2 phase checkpoint mechanism of the invention (9), which is a compound having a main chain composed of carbon, oxygen and nitrogen, and tyrosine side chains, proline side chains and asparagine side chains. (11) The substance disrupting the cell cycle G2 phase checkpoint mechanism according to the invention (9), which is an oligopeptide having the amino acid sequence of SEQ ID NO: 2. (12) 2nd and 3rd position Xaa in SEQ ID NO: 2 is Gl
y, Leu, Ser or Arg, wherein Xaa at positions 5 to 8 are Ser, Gl
the cell cycle G of the invention (11), which is y, Met, Pro or Glu;
Second-phase checkpoint mechanism destructive substance. (13) The cell cycle G2 according to any one of the inventions (9) to (12).
An anti-cancer treatment enhancer comprising a checkpoint mechanism disrupting substance or a derivative thereof as an active ingredient.

【0011】以下、これらの発明の実施形態について詳
しく説明する。
Hereinafter, embodiments of the present invention will be described in detail.

【0012】[0012]

【発明の実施の形態】この出願の発明(1)のスクリーニ
ング方法は、例えば以下のとおりに実施することができ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The screening method of the invention (1) of this application can be carried out, for example, as follows.

【0013】基質(配列番号1のアミノ酸配列を有する
オリゴペプチド)、G2期停止に関与するリン酸化酵
素、標識化リン供与体からなるin vitroリン酸化反応系
に候補物質を添加し、基質のリン酸化を阻害する物質を
選択する。このようにして選択された物質は、リン酸化
酵素の活性を阻害することによって基質のリン酸化を阻
害する物質であるため、細胞周期G2期チェックポイン
ト機構破壊物質として特定することができる。
[0013] A candidate substance is added to an in vitro phosphorylation reaction system comprising a substrate (oligopeptide having the amino acid sequence of SEQ ID NO: 1), a phosphorylating enzyme involved in G2 arrest, and a labeled phosphorus donor. Select a substance that inhibits oxidation. The substance selected in this manner is a substance that inhibits phosphorylation of a substrate by inhibiting the activity of a kinase, and thus can be specified as a substance that disrupts the cell cycle G2 phase checkpoint mechanism.

【0014】標識化リン供与体としては、例えば、実施
例に示したような、放射性同位元素[32]Pで標識したγ
-ATP等を用いることができる。また、細胞のG2期
停止に関与するリン酸化酵素としては、ヒト由来のリン
酸化酵素hChk1またはHuCds1/Chk2の全長を用いるこ
とができる。また、これら酵素と他の蛋白質(例えばG
STやMBP等)との融合蛋白質を用いることができ
る。さらには、抗癌剤等のDNA傷害性処置によって刺
激した細胞の抽出液を用いることもできる(以上、発明
(2))。
As the labeled phosphorus donor, for example, γ labeled with the radioactive isotope [32] P as shown in the Examples
-ATP or the like can be used. Further, as the phosphorylase involved in the G2 arrest of the cell, the full length of the human-derived phosphorylase hChk1 or HuCds1 / Chk2 can be used. In addition, these enzymes and other proteins (eg, G
ST, MBP, etc.). Furthermore, an extract of cells stimulated by DNA damaging treatment such as an anticancer agent can also be used (see the above description of the invention).
(2)).

【0015】基質としてのオリゴペプチドは、具体的に
は、配列番号1における第2位および第3位XaaがGly、
Leu、SerまたはArgであり、第6〜8位XaaがGly、Leu、
Ser、Met、ProまたはGluであるオリゴペプチド(発明
(3))である。さらに具体的には、配列番号1における
第2位および第3位XaaがGly、Leu、SerまたはArgであ
り、第6〜8位XaaがGly、Leu、Ser、Met、ProまたはGl
uであるオリゴペプチド(発明(4))であり、最も具体的
には、配列番号1における第2位XaaがArg、第3位Xaa
がSer、第6位XaaがMet、第7位XaaがPro、第8位Xaaが
Gluであるオリゴペプチド(発明(5):配列番号3)であ
る。
[0015] Oligopeptides as substrates include, specifically, Xaa at positions 2 and 3 in SEQ ID NO: 1 being Gly;
Leu, Ser or Arg, wherein Xaa at positions 6-8 are Gly, Leu,
Oligopeptides that are Ser, Met, Pro or Glu
(3)). More specifically, Xaa at positions 2 and 3 in SEQ ID NO: 1 is Gly, Leu, Ser or Arg, and Xaa at positions 6 to 8 are Gly, Leu, Ser, Met, Pro or Gl.
u is an oligopeptide (invention (4)), and most specifically, the second position Xaa in SEQ ID NO: 1 is Arg and the third position Xaa
Is Ser, 6th position Xaa is Met, 7th position Xaa is Pro, and 8th position Xaa is
An oligopeptide that is Glu (Invention (5): SEQ ID NO: 3).

【0016】この出願の前記発明(7)のスクリーニング
方法は、例えば以下のとおりに実施することができる。
先ず、ヒト白血病細胞株Jurkat等の細胞周期G1期チェ
ックポイント機構に欠損を有する細胞にDNA傷害性処
置を施す。このDNA傷害性の処置としては、細胞の培
地にブレオマイシン等の抗癌剤を添加したり、あるいは
細胞に放射線を照射するなどの処置を例示することがで
きる。そして、この細胞の培養培地に候補物質を添加
し、10〜48時間程度培養した後、細胞のDNA量を測定
する。例えば、培養上澄を捨て、ヨウ化プロピジウムお
よびNP-40等の界面活性剤溶液に細胞を浮遊させ、フロ
ーサイトメーターを用いて細胞のDNA量を測定するこ
とができる。このDNA量が、コントロール細胞のG2
/M期と同等に増加している場合には、培地に添加した
候補薬剤がG2期チェックポイント機構を破壊していな
いと判定する。一方、コントロール細胞のG2/M期と
同等にDNA量を増加させない物質は、G2期チェック
ポイント機構破壊物質として特定される。
The screening method of the invention (7) of this application can be carried out, for example, as follows.
First, DNA damage treatment is performed on cells having a defect in the cell cycle G1 phase checkpoint mechanism, such as the human leukemia cell line Jurkat. Examples of the DNA damaging treatment include a treatment in which an anticancer agent such as bleomycin is added to a cell culture medium, or a treatment in which cells are irradiated with radiation. Then, a candidate substance is added to the culture medium of the cells, and after culturing for about 10 to 48 hours, the DNA amount of the cells is measured. For example, the culture supernatant can be discarded, the cells can be suspended in a surfactant solution such as propidium iodide and NP-40, and the DNA amount of the cells can be measured using a flow cytometer. This amount of DNA corresponds to G2 of the control cells.
If the increase is equal to the / M phase, it is determined that the candidate drug added to the medium has not destroyed the G2 phase checkpoint mechanism. On the other hand, a substance that does not increase the amount of DNA at the same level as the G2 / M phase of control cells is identified as a G2 phase checkpoint mechanism disrupting substance.

【0017】さらにこの出願の発明(8)のスクリーニン
グ方法では、前記発明(7)の方法において選択された物
質であって、かつ、細胞周期M期停止を生じさせる薬剤
処置によって細胞のDNA量が増加する物質を選択す
る。すなわち、コルヒチン等のM期停止を生じさせる薬
剤で細胞を処理して細胞周期をM期に停止させ、この細
胞の培養培地に前記発明(7)で選択した物質を添加す
る。このとき、G2/M期と同等にDNA量を増加させ
る物質はM期での停止には影響を及ぼさず、G2期チェ
ックポイント機構のみを選択的に破壊する物質として特
定される。
Further, in the screening method of the invention (8) of the present application, the amount of DNA of the cell selected by the method of the invention (7) is reduced by the treatment with a drug which causes cell cycle M phase arrest. Select substances that increase. That is, the cells are treated with an agent that causes M-phase arrest, such as colchicine, to stop the cell cycle at M-phase, and the substance selected in the above-mentioned invention (7) is added to the culture medium of the cells. At this time, a substance that increases the amount of DNA equivalent to that in the G2 / M phase does not affect the arrest in the M phase, and is specified as a substance that selectively destroys only the G2 / phase checkpoint mechanism.

【0018】この出願の発明(9)は、以上のとおりの発
明(1)〜(8)のスクリーニング方法によって選択された細
胞周期G2期チェックポイント機構破壊物質である。こ
のような物質としては、炭素、酸素および窒素からなる
主鎖と、チロシン側鎖およびプロリン側鎖を有する化合
物(発明(10))を例示することができる。例えば、図1
Bに構造を例示した化合物である。
The invention (9) of the present application is a cell cycle G2 phase checkpoint mechanism disrupting substance selected by the screening method of the inventions (1) to (8) as described above. Examples of such a substance include a compound having a main chain composed of carbon, oxygen and nitrogen, and a tyrosine side chain and a proline side chain (Invention (10)). For example, FIG.
B is a compound whose structure is exemplified.

【0019】さらに、細胞周期G2期チェックポイント
機構破壊物質としては、配列番号2のアミノ酸配列を有
するオリゴペプチド(発明(11))を例示することもでき
る。このようなオリゴペプチドは、例えば、配列番号2
における第2位および第3位XaaがGly、Leu、Serまたは
Argであり、第5〜8位XaaがSer、Gly、Met、Proまたは
Gluであるオリゴペプチド(発明(12))であり、具体的
には図1Aに構造を示した合成ペプチドである。このよ
うなオリゴペプチドは、公知の固相ペプチド合成法等に
より調製することができる。
Furthermore, an oligopeptide having the amino acid sequence of SEQ ID NO: 2 (Invention (11)) can also be exemplified as the substance that disrupts the checkpoint mechanism in the G2 phase of the cell cycle. Such an oligopeptide is, for example, SEQ ID NO: 2
2nd and 3rd position Xaa in Gly, Leu, Ser or
Arg, 5th to 8th position Xaa is Ser, Gly, Met, Pro or
An oligopeptide that is Glu (Invention (12)), specifically, a synthetic peptide whose structure is shown in FIG. 1A. Such an oligopeptide can be prepared by a known solid phase peptide synthesis method or the like.

【0020】発明(13)は、前記発明(9)〜(12)の細胞周
期G2期チェックポイント機構破壊物質を有効成分とす
る抗癌処置の増強剤である。この薬剤を癌組織に投与
し、癌細胞のG2期チェックポイントを破壊すると同時
に、抗癌剤投与等の抗癌処理を行うことによって癌細胞
を死滅させる癌治療方法に用いることができる。すなわ
ち、前記のG2期チェックポイント機構破壊物質は、G
2期停止に関与するリン酸化酵素hChk1およびHuCds1/
Chk2の活性を抑制するため、既にG1期チェックポイ
ント機能を喪失している癌細胞は、G2期に停止してD
NA修復を行うことができず、抗癌剤等の処置をより有
効に作用させることができる。この増強剤は、例えば、
その有効成分であるG2期チェックポイント機構破壊物
質を適当な溶液担体に溶解するか若しくは分散させ、ま
たは適当な粉末担体と混合するかこれに吸着させるなど
して製剤化することができる。
The invention (13) is an anticancer treatment enhancer comprising the cell cycle G2 phase checkpoint mechanism disrupting substance according to the invention (9) to (12) as an active ingredient. This drug can be administered to a cancer tissue to destroy the G2 phase checkpoint of the cancer cells, and at the same time, can be used in a cancer treatment method of killing the cancer cells by performing anticancer treatment such as administration of an anticancer agent. That is, the G2 phase checkpoint mechanism-disrupting substance is G
Phosphorylases hChk1 and HuCds1 / involved in the two-phase arrest
In order to suppress Chk2 activity, cancer cells that have already lost the G1 checkpoint function are arrested in G2
NA repair cannot be performed, and treatment with an anticancer agent or the like can be made to act more effectively. This enhancer, for example,
The active ingredient G2 phase checkpoint mechanism-disrupting substance can be formulated by dissolving or dispersing in a suitable solution carrier, or mixing or adsorbing with a suitable powder carrier.

【0021】以下、実施例を示してこの出願の前記発明
についてさらに詳細かつ具体的に説明するが、この出願
の発明は以下の例によって限定されるものではない。
Hereinafter, the invention of this application will be described in more detail and specifically with reference to examples, but the invention of this application is not limited by the following examples.

【0022】[0022]

【実施例】実施例1 オリゴペプチドYPN(配列番号4)、AAA(配列番
号5)および4aa(配列番号6)を公知の固相ペプチ
ド合成法により作製した。
EXAMPLES Example 1 Oligopeptides YPN (SEQ ID NO: 4), AAA (SEQ ID NO: 5) and 4aa (SEQ ID NO: 6) were prepared by a known solid-phase peptide synthesis method.

【0023】8×105個のJurkat細胞を、10%牛胎児血清
含有のRPMI1640培地で、37℃、5%CO 2で培養した。この
培地に、さらに10μg/mlのブレオマイシンと、20μg/ml
のオリゴペプチドYPN、AAAまたは4aaを加え、
0、6、12、24時間後にDNA量を定量した。DNAの
定量は、ヨウ化プロピジウムおよびNP-40含有の緩衝液
に細胞を浮遊し、フローサイトメーターにより行った。
8 × 10FiveIndividual Jurkat cells, 10% fetal bovine serum
RPMI 1640 medium at 37 ° C, 5% CO TwoAnd cultured. this
Add 10 μg / ml bleomycin and 20 μg / ml to the medium.
Of oligopeptide YPN, AAA or 4aa of
After 0, 6, 12, and 24 hours, the amount of DNA was quantified. DNA
Quantitation is in buffer containing propidium iodide and NP-40
The cells were suspended in the sample, and the measurement was performed using a flow cytometer.

【0024】結果は図2に示したとおりである。この図
2の左側はフローサイトメーターの測定結果であり、右
側はDNA量毎の細胞の割合を示すグラフである。この
図2の結果から明らかなように、オリゴペプチドYPN
を培地に添加した細胞がG2/M期におけるDNA量を
増加させていないことが判明した。
The results are as shown in FIG. The left side of FIG. 2 shows the measurement results of the flow cytometer, and the right side is a graph showing the ratio of cells for each DNA amount. As is clear from the results of FIG. 2, the oligopeptide YPN
Cells added to the medium did not increase the amount of DNA in the G2 / M phase.

【0025】さらに、プレオマイシンの代わりにコルヒ
チンを用いて同様に各細胞周期のDNA量を定量した。
結果は図3に示したとおりであり、ブレオマイシン処置
ではDNA量が増加しなかったオリゴペプチドYPN
も、他のオリゴペプチドと同様にコルヒチン処理ではD
NA量を増加させた。
Further, the amount of DNA in each cell cycle was similarly quantified using colchicine instead of pleomycin.
The results are as shown in FIG. 3, and the oligopeptide YPN, whose DNA amount did not increase by bleomycin treatment, was obtained.
Also, as with other oligopeptides, colchicine treatment gives D
The amount of NA was increased.

【0026】以上の結果から、オリゴペプチドYPN
は、細胞周期G2期チェックポイント機構を特異的に破
壊する物質であることが確認された。 実施例2 配列番号7のアミノ酸配列からなる合成ペプチドを基
質、組換えhChk1およびHuCds1/Chk2をリン酸化酵素
とし、放射性同位元素[32]Pでラベルしたγ-ATPを
用いてリン酸化反応系に、オリゴペプチドTAT−S21
6A(配列番号8)を加えて反応阻害を検出した。反応
は、30℃で15分間行い、その後15%SDS-PAGE法にて各ペ
プチドを分離し、オートラジオグラフィーにより反応阻
害の程度を検出した。
From the above results, the oligopeptide YPN
Was confirmed to be a substance that specifically disrupts the cell cycle G2 phase checkpoint mechanism. Example 2 A synthetic peptide consisting of the amino acid sequence of SEQ ID NO: 7 was used as a substrate, recombinant hChk1 and HuCds1 / Chk2 were used as a phosphorylating enzyme, and a phosphorylation reaction was performed using γ-ATP labeled with a radioactive isotope [32] P. , Oligopeptide TAT-S21
6A (SEQ ID NO: 8) was added to detect reaction inhibition. The reaction was carried out at 30 ° C. for 15 minutes, after which each peptide was separated by 15% SDS-PAGE, and the degree of reaction inhibition was detected by autoradiography.

【0027】結果は図4に示したとおりであり、TAT
−S216Aは、組換えhChk1およびHuCds1/Chk2によ
る合成ペプチド(配列番号7)のリン酸化反応を阻害し
た。以上の結果から、オリゴペプチドTAT−S216A
は細胞周期G2期チェックポイント機構を特異的に破壊
する物質であることが確認された。
The results are as shown in FIG.
-S216A inhibited the phosphorylation of the synthetic peptide (SEQ ID NO: 7) by recombinant hChk1 and HuCds1 / Chk2. From the above results, oligopeptide TAT-S216A
Has been confirmed to be a substance that specifically disrupts the cell cycle G2 phase checkpoint mechanism.

【0028】なお、TAT−S216Aは、この出願の発
明者らによる先願発明(特願平11-269398号)の一つで
ある。 実施例3 TAT配列(配列番号4−6、8および9のN端11ア
ミノ酸配列)に、表1に示した様々なアミノ酸配列を連
結してオリゴペプチドを合成し、培養細胞におけるG2
期チェックポイント機構の破壊効果(実施例1と同様の
方法)、hChk1およびHuCds1/Chk2による基質ペプチ
ド(配列番号7)のリン酸化反応阻害効果、および各オ
リゴペプチドのリン酸化の程度を試験した。
Incidentally, TAT-S216A is one of the prior inventions (Japanese Patent Application No. 11-269398) by the inventors of the present application. Example 3 Various amino acid sequences shown in Table 1 were linked to a TAT sequence (N-terminal 11 amino acid sequences of SEQ ID NOs: 4-6, 8, and 9) to synthesize oligopeptides, and G2 in cultured cells
Of the initial checkpoint mechanism (same method as in Example 1), the inhibitory effect of hChk1 and HuCds1 / Chk2 on the phosphorylation reaction of the substrate peptide (SEQ ID NO: 7), and the degree of phosphorylation of each oligopeptide.

【0029】結果は表1に示したとおりである。The results are as shown in Table 1.

【0030】[0030]

【表1】 [Table 1]

【0031】実施例3 ヒト胃癌細胞株CO−4をヌードマウス皮下に接種し、
その生着を確認した後、抗癌剤CDDP(1.5 mg/kg)また
は5-FU(20 mg/kg)を腹腔内に投与するとともに、オリ
ゴペプチドTAT−S216(配列番号9)20 mg/kgを0.5
μlを週3回または5回、腫瘍に局所注射し、腫瘍を切
除し、重量を測定した。
Example 3 Human gastric cancer cell line CO-4 was inoculated subcutaneously into nude mice.
After confirming the engraftment, the anticancer drug CDDP (1.5 mg / kg) or 5-FU (20 mg / kg) was intraperitoneally administered, and the oligopeptide TAT-S216 (SEQ ID NO: 9) 20 mg / kg was added at 0.5 mg / kg.
μl was injected locally into the tumor three or five times a week, the tumor was excised and weighed.

【0032】結果は図5に示したとおりであり、オリゴ
ペプチドTAT−S216(特願平11-269398号)を週3回
投与した場合には、腫瘍重量が有意に減少し、抗癌剤CD
DP(図5上段)および5-FU(図5下段)の効果が増強さ
れることが確認された。
The results are shown in FIG. 5. When the oligopeptide TAT-S216 (Japanese Patent Application No. 11-269398) was administered three times a week, the tumor weight was significantly reduced, and the anticancer agent CD
It was confirmed that the effects of DP (upper part in FIG. 5) and 5-FU (lower part in FIG. 5) were enhanced.

【0033】[0033]

【発明の効果】以上詳しく説明したとおり、この出願の
発明によって、DNA傷害処理による癌細胞のG2期チ
ェックポイント機構を特異的に破壊することのできる物
質と、この物質を確実にスクリーニングすることのでき
る方法が提供される。このG2期チェックポイント機構
破壊物質の処理によって癌細胞は抗癌剤等の抗癌処理に
対して感受性となるため、癌治療をより効果的に行うこ
とが可能となる。
As described above in detail, according to the invention of the present application, it is possible to screen a substance capable of specifically destroying the G2 phase checkpoint mechanism of cancer cells by DNA damage treatment and to reliably screen this substance. A possible method is provided. The treatment of the G2 phase checkpoint mechanism-disrupting substance makes the cancer cells sensitive to anticancer treatment such as an anticancer agent, so that cancer treatment can be performed more effectively.

【0034】[0034]

【配列表】 <110> 科学技術振興事業団(Japan Science and Technology Corporation) <120> 抗癌療法の増強剤とそのスクリーニング方法 <130> NP99464−YS <160> 9 <210> 1 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> Synthesized opeptide <400> 1 Tyr Xaa Xaa Pro Ser Xaa Xaa Xaa Asn 1 5 <210> 2 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> Synthesized peptide <400> 2 Tyr Xaa Xaa Pro Xaa Xaa Xaa Xaa Asn 1 5 <210> 3 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> Synthesized peptide <400> 3 Tyr Arg Ser Pro Ser Met Pro Glu Asn 1 5 <210> 4 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> Synthesized peptide <400> 4 Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Tyr Gly Gly Pro Gly 1 5 10 15 Gly Gly Gly Asn 20 <210> 5 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> Synthesized peptide <400> 5 Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Leu Ala Arg Ser Ala 1 5 10 15 Ser Met Pro Glu Ala Leu 20 <210> 6 <211> 18 <212> PRT <213> Artificial Sequence <220> <223> Synthesized peptide <400> 6 Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Gly Gly Ser Pro Ala 1 5 10 15 Met Pro <210> 7 <211> 11 <212> PRT <213> Artificial Sequence <220> <223> Synthesized peptide <400> 7 Leu Tyr Arg Ser Pro Ser Met Pro Glu Asn Leu 1 5 10 <210> 8 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> Synthesized peptide <400> 8 Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Leu Tyr Arg Ser Pro 1 5 10 15 Ala Met Pro Glu Ala Leu 20 <210> 9 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> Synthesized peptide <400> 9 Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Leu Tyr Arg Ser Pro 1 5 10 15 Ser Met Pro Glu Ala Leu 20[Sequence List] <110> Japan Science and Technology Corporation <120> Enhancer of anti-cancer therapy and screening method thereof <130> NP99464-YS <160> 9 <210> 1 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> Synthesized opeptide <400> 1 Tyr Xaa Xaa Pro Ser Xaa Xaa Xaa Asn 1 5 <210> 2 <211> 9 <212> PRT <213> Artificial Sequence < 220> <223> Synthesized peptide <400> 2 Tyr Xaa Xaa Pro Xaa Xaa Xaa Xaa Asn 1 5 <210> 3 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> Synthesized peptide <400> 3 Tyr Arg Ser Pro Ser Met Pro Glu Asn 1 5 <210> 4 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> Synthesized peptide <400> 4 Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Tyr Gly Gly Pro Gly 1 5 10 15 Gly Gly Gly Asn 20 <210> 5 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> Synthesized peptide <400> 5 Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Leu Ala Arg Ser Ala 1 5 10 15 Ser Met Pro Glu Ala Leu 20 <210> 6 <211> 1 8 <212> PRT <213> Artificial Sequence <220> <223> Synthesized peptide <400> 6 Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Gly Gly Ser Pro Ala 1 5 10 15 Met Pro <210> 7 <211 > 11 <212> PRT <213> Artificial Sequence <220> <223> Synthesized peptide <400> 7 Leu Tyr Arg Ser Pro Ser Met Pro Glu Asn Leu 1 5 10 <210> 8 <211> 22 <212> PRT < 213> Artificial Sequence <220> <223> Synthesized peptide <400> 8 Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Leu Tyr Arg Ser Pro 1 5 10 15 Ala Met Pro Glu Ala Leu 20 <210> 9 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> Synthesized peptide <400> 9 Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Leu Tyr Arg Ser Pro 1 5 10 15 Ser Met Pro Glu Ala Leu 20

【0035】[0035]

【参考文献】[References]

1. Levine, A.J. p53, the cellular gatekeeper
for growth and division.Cell 88, 323-331(1997). 2. Larsen, C.J. Contribution of the dual cod
ing capacity of the p16INK4a/MTS1/CDKN2 locus to h
uman malignancies. Prog. Cell. Cycle. Res 3, 109-1
24(1997). 3. Kawabe, T., Muslin, A.J. & Korsmeyer, S.
J. Hox11 interacts withprotein phosphatases PP2A a
nd PP1 and disrupts a G2/M cell-cycle checkpoint.
Nature 385, 454-458(1997). 4. Hartwell, L.H. & Kastan, M.B. Cell cycle
control and cancer. Science 266, 1821-1828(199
4). 5. Paulovich, A.G., Toczyski, D.P. & Hartwel
l, L.H. When checkpoints fail. Cell 88, 315-321(1
997). 6. Rowley, R. Reduction of radiation-induced
G2 arrest by caffeine. Rad. Res 129, 224-227(199
2). 7. Yao, S.L. et al. Selective radiosensitiza
tion of p53-deficientcells by caffeine-mediated ac
tivation of p34cdc2 kinase. Nature Med2, 1140-1143
(1996). 8. DeFrank, J.S., Tang, W. & Powell, S.N. p5
3-null cells are moresensitive to ultraviolet ligh
t only in the presence of caffeine. Cancer Res 56,
5365-5368(1996). 9. Wang, S.W., Norbury, C., Harris, A.L., To
da, T. Caffeine can override the S-M checkpoint in
fission yeast. J. Cell Sci. 112, 927-937(1999). 10. Wang, Q., Fan, S, Eastman, A., Worland,
R.J., Sausville, E.A. &OiConnor, R.M. UCN-01: a po
tent abrogator of G2 checkpoint functionin cancer
cells with disrupted p53. J. Natl. Cancer. Inst 8
8, 956-965(1996). 11. Walworth, N., Davey, S., Beach, D. Fissio
n yeast chkl protein kinase links the Rad checkpoi
nt pathway to cdc2. Nature 363, 368-371(1993). 12. Walworth, N.C., Bernards, R. rad-dependen
t-response of the chkl-encoded protein kinase at t
he DNA damage checkpoint. Science 271,353-356(199
6). 13. Matsuoka, S., Huang, M., Ellcdgc, S.J. Li
nkage of ATM to cell cycle regulation by the Chk2
protein kinase. Science 282, 1893-1897(1998). 14. Zeng, Y. et al. Replication checkpoint re
quires phosphorylationof the phosphatase Cdc25 by
Cds1 or Chk1. Nature 395, 507-510(1998). 15. Furnari, B.,Rhind, N., Russell, P. Cdc25C
mitotic inducer tergeted by chk1 DNA damage check
point kinase. Science 277, 1495-1497(1997). 16. Sanchez, Y. et al. Conservation of the ch
k1 checkpoint pathwayin mammals: linkage of DNA da
mage to cdk regulation through cdc25. Science 277,
1497-1501(1997). 17. Peng, C.Y. et al. Mitotic and G2 checkpoi
nt control: regulationof 14-3-3 protein binding by
phosphorylation of cdc25C on serine-216. Science
277, 1501-1505(1997). 18. Lopez-Girona, A., Furnari, B., Mondesert,
O., Russel, P. Nuclear localization of Cdc25 is r
egulated by DNA damage and a 14-3-3 protein. Natur
e 397, 172-175(1999). 19. Nurse, P. Checkpoint pathways come of ag
e. Cell 91, 865-867(1997). 20. Weinert, T.A. DNA damage checkpoint meets
the cell cycle engine. Science 277, 1450-1451(19
97). 21. Russell, P. Checkpoints on the road to mi
tosis. TIBS 23, 399-402(1998).
1. Levine, AJ p53, the cellular gatekeeper
for growth and division. Cell 88, 323-331 (1997). 2. Larsen, CJ Contribution of the dual cod
ing capacity of the p16INK4a / MTS1 / CDKN2 locus to h
uman malignancies. Prog. Cell. Cycle. Res 3, 109-1
24 (1997). 3. Kawabe, T., Muslin, AJ & Korsmeyer, S.
J. Hox11 interacts with protein phosphatases PP2A a
nd PP1 and disrupts a G2 / M cell-cycle checkpoint.
Nature 385, 454-458 (1997). 4. Hartwell, LH & Kastan, MB Cell cycle
control and cancer. Science 266, 1821-1828 (199
Four). 5. Paulovich, AG, Toczyski, DP & Hartwel
l, LH When checkpoints fail. Cell 88, 315-321 (1
997). 6. Rowley, R. Reduction of radiation-induced
G2 arrest by caffeine. Rad. Res 129, 224-227 (199
2). 7. Yao, SL et al. Selective radiosensitiza
tion of p53-deficientcells by caffeine-mediated ac
tivation of p34 cdc2 kinase.Nature Med2, 1140-1143
(1996). 8. DeFrank, JS, Tang, W. & Powell, SN p5
3-null cells are moresensitive to ultraviolet ligh
t only in the presence of caffeine.Cancer Res 56,
5365-5368 (1996). 9. Wang, SW, Norbury, C., Harris, AL, To
da, T. Caffeine can override the SM checkpoint in
fission yeast. J. Cell Sci. 112, 927-937 (1999). Ten. Wang, Q., Fan, S, Eastman, A., Worland,
RJ, Sausville, EA & OiConnor, RM UCN-01: a po
tent abrogator of G2 checkpoint functionin cancer
cells with disrupted p53. J. Natl. Cancer. Inst 8
8, 956-965 (1996). 11. Walworth, N., Davey, S., Beach, D. Fissio
n yeast chkl protein kinase links the Rad checkpoi
nt pathway to cdc 2. Nature 363, 368-371 (1993). 12. Walworth, NC, Bernards, R. rad-dependen
t-response of the chkl-encoded protein kinase at t
he DNA damage checkpoint. Science 271,353-356 (199
6). 13. Matsuoka, S., Huang, M., Ellcdgc, SJ Li
nkage of ATM to cell cycle regulation by the Chk2
protein kinase. Science 282, 1893-1897 (1998). 14. Zeng, Y. et al. Replication checkpoint re
quires phosphorylationof the phosphatase Cdc25 by
Cds1 or Chk1. Nature 395, 507-510 (1998). 15. Furnari, B., Rhind, N., Russell, P. Cdc25C
mitotic inducer tergeted by chk1 DNA damage check
point kinase. Science 277, 1495-1497 (1997). 16. Sanchez, Y. et al. Conservation of the ch
k1 checkpoint pathway in mammals: linkage of DNA da
mage to cdk regulation through cdc25.Science 277,
1497-1501 (1997). 17. Peng, CY et al. Mitotic and G2 checkpoi
nt control: regulationof 14-3-3 protein binding by
phosphorylation of cdc25C on serine-216. Science
277, 1501-1505 (1997). 18. Lopez-Girona, A., Furnari, B., Mondesert,
O., Russel, P. Nuclear localization of Cdc25 is r
egulated by DNA damage and a 14-3-3 protein.Natur
e 397, 172-175 (1999). 19. Nurse, P. Checkpoint pathways come of ag
e. Cell 91, 865-867 (1997). 20. Weinert, TA DNA damage checkpoint meets
the cell cycle engine. Science 277, 1450-1451 (19
97). twenty one. Russell, P. Checkpoints on the road to mi
tosis. TIBS 23, 399-402 (1998).

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明のオリゴペプチド(A)と、化合物
(B)の構造である。
FIG. 1 shows the structures of the oligopeptide (A) of the present invention and the compound (B).

【図2】この発明のオリゴペプチドとブレオマイシンと
を培地に加えて培養したJurkat細胞のDNA量に関する
フローサイトメーターの測定結果(左)と、DNA量毎
の細胞の割合を示すグラフ(右)である。
FIG. 2 is a flow cytometer measurement result (left) relating to the DNA amount of Jurkat cells cultured by adding the oligopeptide of the present invention and bleomycin to a medium, and a graph (right) showing the ratio of cells for each DNA amount. is there.

【図3】図2の測定におけるプレオマイシンの代わりに
コルヒチンを用いて同様に各細胞周期のDNA量を定量
したフローサイトメーターの測定結果である。
3 is a flow cytometer measurement result in which the amount of DNA in each cell cycle was similarly quantified using colchicine instead of pleomycin in the measurement of FIG.

【図4】TAT−S216AのChk1およびChk2/HcCds1
活性阻害の実験結果を示すブロッティング図である。基
質となる合成ペプチド(10μM)の4倍量のTAT−S2
16A(40μM)にてChk1およびChk2/HcCds1の活性が
阻害された。
FIG. 4. Chk1 and Chk2 / HcCds1 of TAT-S216A.
It is a blotting figure which shows the experiment result of activity inhibition. 4 times the amount of TAT-S2 compared to the synthetic peptide (10 μM) used as a substrate
At 16 A (40 μM), the activities of Chk1 and Chk2 / HcCds1 were inhibited.

【図5】ヒト胃癌細胞株CO−4を皮下接種したヌード
マウスに、抗癌剤CDDPまたは5-FUの腹腔内投与ととも
に、オリゴペプチドTAT−S216を週3回または5
回、腫瘍に局所注射した場合の腫瘍重量を示すグラフで
ある。
FIG. 5: Nude mice inoculated subcutaneously with human gastric cancer cell line CO-4 were intraperitoneally administered with anti-cancer drug CDDP or 5-FU, and oligopeptide TAT-S216 was administered three times a week or 5 times.
It is a graph which shows the tumor weight at the time of local injection to a tumor.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) A61P 43/00 121 C12N 9/12 4C084 C07K 7/00 C12P 21/02 C 4H045 C12N 9/12 C12Q 1/48 Z C12P 21/02 1/68 Z C12Q 1/48 G01N 33/15 Z 1/68 33/50 Z G01N 33/15 C12N 15/00 ZNAA 33/50 A61K 37/02 Fターム(参考) 2G045 AA26 AA34 AA40 BB20 CB02 DA13 DA36 DA78 FB01 FB07 4B024 AA01 AA11 BA10 DA02 GA30 HA20 4B050 CC03 DD11 LL01 LL03 LL05 4B063 QA05 QQ21 QQ41 QQ61 QQ79 QR07 QR42 QR48 QR57 QR77 QS39 QX02 QX07 4B064 AG01 CA01 CA19 CC01 CC24 DA05 DA14 4C084 AA02 AA17 BA01 BA17 CA59 ZB212 ZB262 4H045 AA10 AA20 AA30 BA15 EA28 EA50 FA33 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) A61P 43/00 121 C12N 9/12 4C084 C07K 7/00 C12P 21/02 C 4H045 C12N 9/12 C12Q 1 / 48 Z C12P 21/02 1/68 Z C12Q 1/48 G01N 33/15 Z 1/68 33/50 Z G01N 33/15 C12N 15/00 ZNAA 33/50 A61K 37/02 F term (reference) 2G045 AA26 AA34 AA40 BB20 CB02 DA13 DA36 DA78 FB01 FB07 4B024 AA01 AA11 BA10 DA02 GA30 HA20 4B050 CC03 DD11 LL01 LL03 LL05 4B063 QA05 QQ21 QQ41 QQ61 QQ79 QR07 QR42 QR48 QR57 QR77 QS39 QX02 QX074B01A01 CC01 A0201 ZB262 4H045 AA10 AA20 AA30 BA15 EA28 EA50 FA33

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 配列番号1のアミノ酸配列を有するオリ
ゴペプチド、G2期停止に関与するリン酸化酵素、およ
び標識化リン供与体からなるリン酸化反応系に候補物質
を添加し、オリゴペプチドのリン酸化を阻害する物質を
選択することを特徴とする抗癌療法の細胞周期G2期チ
ェックポイント機構破壊物質のスクリーニング方法。
Claims: 1. A candidate substance is added to a phosphorylation reaction system comprising an oligopeptide having the amino acid sequence of SEQ ID NO: 1, a kinase involved in G2 arrest, and a labeled phosphorus donor, and phosphorylation of the oligopeptide A method for screening a substance that disrupts the checkpoint mechanism of the cell cycle G2 phase of anticancer therapy, which comprises selecting a substance that inhibits a cell cycle.
【請求項2】 リン酸化酵素が、hChk1、HuCds1/Chk
2、またはこれら酵素と他の蛋白質との融合蛋白質、も
しくはDNA傷害細胞の抽出液である請求項1のスクリ
ーニング方法。
2. The phosphorylating enzyme is hChk1, HuCds1 / Chk.
2. The screening method according to claim 1, which is a fusion protein of these enzymes and another protein, or an extract of DNA-damaged cells.
【請求項3】 配列番号1における第2位および第3位
XaaがGly、Leu、SerまたはArgであり、第6〜8位Xaaが
Gly、Leu、Ser、Met、ProまたはGluである請求項1のス
クリーニング方法。
3. Positions 2 and 3 in SEQ ID NO: 1.
Xaa is Gly, Leu, Ser or Arg, and Xaa at the 6th to 8th positions is
The screening method according to claim 1, wherein the screening method is Gly, Leu, Ser, Met, Pro or Glu.
【請求項4】 配列番号1における第2位XaaがGly、Le
u、SerまたはArg、第3位XaaがGly、LeuまたはSer、第
6位XaaがGly、Met、ProまたはGlu、第7位XaaがGly、L
euまたはPro、第8位XaaがGly、Met、SerまたはGluであ
る請求項3のスクリーニング方法。
4. Xaa at position 2 in SEQ ID NO: 1 is Gly, Le
u, Ser or Arg, position 3 Xaa is Gly, Leu or Ser, position 6 Xaa is Gly, Met, Pro or Glu, position 7 Xaa is Gly, L
4. The screening method according to claim 3, wherein eu or Pro, and Xaa at position 8 is Gly, Met, Ser or Glu.
【請求項5】 配列番号1における第2位XaaがArg、第
3位XaaがSer、第6位XaaがMet、第7位XaaがPro、第8
位XaaがGluである請求項4のスクリーニング方法。
5. The Xaa at position 2 in SEQ ID NO: 1 is Arg, the Xaa at position 3 is Ser, the Xaa at position 6 is Met, the Xaa at position 7 is Pro, and the amino acid at position 8 is Pro.
The screening method according to claim 4, wherein the position Xaa is Glu.
【請求項6】 リン酸化酵素が、hChk1、HuCds1/Chk
2、またはこれら酵素と他の蛋白質との融合蛋白質であ
る請求項3から5のいずれかのスクリーニング方法。
6. The phosphorylating enzyme is hChk1, HuCds1 / Chk.
6. The screening method according to any one of claims 3 to 5, which is a fusion protein of the enzyme and another protein.
【請求項7】 細胞周期G1期チェックポイント機構に
欠損を有する細胞にDNA傷害性処置を施し、この細胞
の培地に候補物質を添加して培養した後、G2/M期に
相当するDNA量の細胞集団が増加しない物質を選択す
ることを特徴とする細胞周期G2期チェックポイント機
構破壊物質のスクリーニング方法。
7. A cell having a defect in the G1 phase checkpoint mechanism of the cell cycle is subjected to DNA damaging treatment, a candidate substance is added to a culture medium of the cell, and the cells are cultured. A method for screening a substance that disrupts the cell cycle G2 phase checkpoint mechanism, comprising selecting a substance that does not increase the cell population.
【請求項8】 DNA傷害性処置を施した細胞における
G2/M期に相当するDNA量の細胞集団を増加させ
ず、かつ細胞周期M期停止を生じさせる薬剤処置によっ
てG2/M期に相当するDNA量の細胞集団が増加する
物質を選択する請求項7のスクリーニング方法。
8. A G2 / M phase by a drug treatment that does not increase the cell population of the DNA amount corresponding to the G2 / M phase in the cells that have been subjected to the DNA damaging treatment, and that causes cell cycle M phase arrest. The screening method according to claim 7, wherein a substance that increases the cell population of the DNA amount is selected.
【請求項9】 請求項1から8の方法によって選択され
た細胞周期G2期チェックポイント機構破壊物質。
9. A G2 phase checkpoint mechanism disrupting substance selected by the method of claim 1.
【請求項10】 炭素、酸素および窒素からなる主鎖
と、チロシン側鎖、プロリン側鎖およびアスパラギン側
鎖を有する化合物である請求項9の細胞周期G2期チェ
ックポイント機構破壊物質。
10. The G2 checkpoint mechanism disrupting substance according to claim 9, which is a compound having a main chain consisting of carbon, oxygen and nitrogen, and tyrosine side chains, proline side chains and asparagine side chains.
【請求項11】 配列番号2のアミノ酸配列を有するオ
リゴペプチドである請求項9の細胞周期G2期チェック
ポイント機構破壊物質。
11. The substance that disrupts the cell cycle G2 phase checkpoint mechanism according to claim 9, which is an oligopeptide having the amino acid sequence of SEQ ID NO: 2.
【請求項12】 配列番号2における第2位および第3
位XaaがGly、Leu、SerまたはArgであり、第5〜8位Xaa
がSer、Gly、Met、ProまたはGluである請求項11の細
胞周期G2期チェックポイント機構破壊物質。
12. Positions 2 and 3 in SEQ ID NO: 2
Position Xaa is Gly, Leu, Ser or Arg, and the 5th to 8th position Xaa
Is Ser, Gly, Met, Pro or Glu.
【請求項13】 請求項9から12のいずれかの細胞周
期G2期チェックポイント機構破壊物質またはその誘導
体を有効成分とする抗癌処置増強剤。
13. An anticancer treatment-enhancing agent comprising the cell cycle G2 phase checkpoint mechanism disrupting substance or its derivative according to any one of claims 9 to 12 as an active ingredient.
JP34032299A 1999-09-22 1999-11-30 Enhancer for anticancer therapy and method for screening the enhancer Pending JP2001157585A (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP34032299A JP2001157585A (en) 1999-11-30 1999-11-30 Enhancer for anticancer therapy and method for screening the enhancer
CA002385257A CA2385257A1 (en) 1999-09-22 2000-09-21 Compositions and methods for inhibiting g2 cell cycle arrest and sensitizing cells to dna damaging agents
AU75485/00A AU7548500A (en) 1999-09-22 2000-09-21 Compositions and methods for inhibiting g2 cell cycle arrest and sensitizing cells to dna damaging agents
JP2001525330A JP4610828B2 (en) 1999-09-22 2000-09-21 Compositions and methods for inhibition of G2 phase cell cycle arrest and cell sensitization to DNA damaging agents
DE60019318T DE60019318T2 (en) 1999-09-22 2000-09-21 COMPOSITIONS AND METHODS FOR INHIBITING CELLULAR G2 TRANSITION AND SENSITIZATION OF CELLS AGAINST DNA DAMAGING ACTIVE SUBSTANCES
DK00964563T DK1218494T3 (en) 1999-09-22 2000-09-21 Preparations and Methods for Inhibiting C2 Cell Cycle Stopping and Sensitization of Cells to DNA Damaging Agents
ES00964563T ES2239037T3 (en) 1999-09-22 2000-09-21 METHODS AND COMPOSITIONS TO INHIBIT THE DETECTION OF THE CELL CYCLE IN G2 AND SENSITIZE CELLS TO HARMFUL DNA AGENTS.
AT00964563T ATE292677T1 (en) 1999-09-22 2000-09-21 COMPOSITIONS AND METHODS FOR INHIBITING CELLULAR G2 TRANSITION AND SENSITIZING CELLS TO DNA-DAMAGEING AGENTS
PCT/IB2000/001438 WO2001021771A2 (en) 1999-09-22 2000-09-21 Compositions and methods for inhibiting g2 cell cycle arrest and sensitizing cells to dna damaging agents
PT00964563T PT1218494E (en) 1999-09-22 2000-09-21 COMPOSITIONS AND METHODS FOR INHIBITING THE STOP OF THE G2 CELL CYCLE AND TO SENSITIZE CELLS BEFORE AGENTS THAT DAMAGE DNA
US09/667,365 US6881575B1 (en) 1999-09-22 2000-09-21 Compositions and methods for inhibiting G2 cell cycle arrest and sensitizing cells to DNA damaging agents
EP00964563A EP1218494B1 (en) 1999-09-22 2000-09-21 Compositions and methods for inhibiting g2 cell cycle arrest and sensitizing cells to dna damaging agents
US10/967,008 US7851592B2 (en) 1999-09-22 2004-10-15 Compositions and methods for inhibiting G2 cell cycle arrest and sensitizing cells to DNA damaging agents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34032299A JP2001157585A (en) 1999-11-30 1999-11-30 Enhancer for anticancer therapy and method for screening the enhancer

Publications (1)

Publication Number Publication Date
JP2001157585A true JP2001157585A (en) 2001-06-12

Family

ID=18335845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34032299A Pending JP2001157585A (en) 1999-09-22 1999-11-30 Enhancer for anticancer therapy and method for screening the enhancer

Country Status (1)

Country Link
JP (1) JP2001157585A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007501608A (en) * 2003-08-08 2007-02-01 株式会社 キャンバス Sensitivity test to estimate the efficacy of anticancer treatment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007501608A (en) * 2003-08-08 2007-02-01 株式会社 キャンバス Sensitivity test to estimate the efficacy of anticancer treatment

Similar Documents

Publication Publication Date Title
Hodges et al. The many roles of BAF (mSWI/SNF) and PBAF complexes in cancer
Eagen et al. Supercharging BRD4 with NUT in carcinoma
Ming et al. Activation of p70/p85 S6 kinase by a pathway independent of p21fi ras
Ball et al. Cell-cycle arrest and inhibition of Cdk4 activity by small peptides based on the carboxy-terminal domain of p21WAF1
Lucchesi et al. Chromatin remodeling in dosage compensation
Laoukili et al. FoxM1: at the crossroads of ageing and cancer
Hermeking The 14-3-3 cancer connection
Goodrich The retinoblastoma tumor-suppressor gene, the exception that proves the rule
Swallow et al. Sak/Plk4 and mitotic fidelity
Billon et al. Precise deposition of histone H2A. Z in chromatin for genome expression and maintenance
Bryant et al. Tumor suppressor genes encoding proteins required for cell interactions and signal transduction in Drosophila
SK30298A3 (en) Cell-cycle checkpoint genes
Lee et al. Cloning and characterization of Chinese hamster p53 cDNA
Underhill Genetic and biochemical diversity in the Pax gene family
CZ298866B6 (en) Isolated polypeptide, isolated DNA sequence, pharmaceutical composition and use of the isolated polypeptide for preparing the pharmaceutical composition
Sheps et al. Preface: the concept and consequences of multidrug resistance
CA2272991A1 (en) Disruption of the mammalian rad51 protein and disruption of proteins that associate with mammalian rad51 for hindering cell proliferation
Agami et al. Convergence of mitogenic and DNA damage signaling in the G1 phase of the cell cycle
EP0871655B1 (en) Pcna binding substance
JP2001157585A (en) Enhancer for anticancer therapy and method for screening the enhancer
CN108187035A (en) Medical usages of the E3 ligases FBW7 in terms of anti-aging and relevant disease
Edgar et al. Synthetic lethality of retinoblastoma mutant cells in the Drosophila eye by mutation of a novel peptidyl prolyl isomerase gene
CN1165537A (en) Novel PKA-binding proteins and uses thereof
KR20210120715A (en) MCF-7 cell line having anticancer drug resistance and method for preparing same
JP2001086991A (en) Oligopeptide