JP2001156076A - Method for manufacturing silicon semiconductor substrate - Google Patents

Method for manufacturing silicon semiconductor substrate

Info

Publication number
JP2001156076A
JP2001156076A JP33861999A JP33861999A JP2001156076A JP 2001156076 A JP2001156076 A JP 2001156076A JP 33861999 A JP33861999 A JP 33861999A JP 33861999 A JP33861999 A JP 33861999A JP 2001156076 A JP2001156076 A JP 2001156076A
Authority
JP
Japan
Prior art keywords
crystal
heat treatment
atoms
silicon
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33861999A
Other languages
Japanese (ja)
Inventor
Atsushi Ikari
敦 碇
Yasumitsu Ota
泰光 太田
Wataru Ohashi
渡 大橋
Hiroyuki Deai
博之 出合
Hideki Yokota
秀樹 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Siltronic Japan Corp
Original Assignee
Nippon Steel Corp
NSC Electron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, NSC Electron Corp filed Critical Nippon Steel Corp
Priority to JP33861999A priority Critical patent/JP2001156076A/en
Publication of JP2001156076A publication Critical patent/JP2001156076A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a semiconductor substrate for preparation of a semiconductor device, which can effectively reduce or eliminate a device preparation problem of crystal defect, which could not be removed completely in the prior art with a good productivity, and which can provide a very good electrical characteristic to the device highly sensitive to the defect even at the time of measuring the characteristic. SOLUTION: In the method for manufacturing a semiconductor device, a silicon semiconductor substrate obtained from a silicon single crystal grown by a Czochralski method, or magnetic-field application Czochralski method using a silicon melt containing nitrogen atoms corresponding to not less than 1×1016 atoms/cm3 and not larger than 3×1019 atoms/cm3 is heat treated in an atmosphere containing 5 ppm or less of rate impurity gas, at a temperature in a range not lower than 1000 deg.C and not higher than 1300 deg.C for one or more hours. As a result, by the method, there can be provided a substrate which has a surface defective layer having in a substantially non-defect, excellent electrical characteristic, and a wafer which has a high device production yield.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シリコン半導体基
板の製造方法に関し、特に、基板内部あるいは基板表面
の欠陥を除去し、デバイス作製時においても新たな欠陥
の発生がないため、デバイスの歩留りを向上させること
ができるシリコン半導体基板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a silicon semiconductor substrate, and more particularly to a method for removing a defect inside a substrate or a surface of a substrate and generating no new defects during device fabrication. The present invention relates to a method for manufacturing a silicon semiconductor substrate that can be improved.

【0002】[0002]

【従来の技術】このようなデバイス作成に有害なCOP
を低減あるいは消滅させる技術の一つとして、結晶育成
時に窒素を添加した結晶を熱処理する技術が知られてい
る。特開平10−98047号公報には窒素を少なくと
も1x1014atoms/cm 3ドーピングすることに
より空孔欠陥のサイズを小さくし、熱処理により空孔欠
陥をより容易に消滅させる技術が開示されている。しか
しながら、通常工業的に用いられている酸素濃度(7〜
10x1017atoms/cm3、JEIDA換算)の
結晶に窒素を1x1014atoms/cm3以上ドーピ
ングすると、結晶中に多数の酸素析出物や積層欠陥の核
が形成され、熱処理後にそれらの欠陥が表面に現れて表
面の欠陥密度が却って増加してしまうという問題があ
る。このため、特開平10−98047号公報の実施例
では酸素の析出が起こらない4.5x1017atoms
/cm3の酸素濃度の結晶が用いられている。実際この
窒素添加による欠陥形成の効果は、特開平11−189
493号公報においてエピタキシャル層の基板の析出促
進のための手段して利用されている。
2. Description of the Related Art COPs harmful to the production of such devices
Crystal growth as one of the technologies to reduce or eliminate
There is a known technology for heat treatment of crystals to which nitrogen is sometimes added.
You. Japanese Patent Application Laid-Open No. 10-98047 discloses that
Also 1x1014atoms / cm ThreeDoping
Reduce the size of vacancy defects, and remove vacancies by heat treatment.
Techniques have been disclosed to make the pits more easily disappear. Only
Meanwhile, the oxygen concentration usually used industrially (7 to
10x1017atoms / cmThree, JEIDA conversion)
1x10 nitrogen in the crystal14atoms / cmThreeDopi
Nucleation of many oxygen precipitates and stacking faults in the crystal
Are formed, and after heat treatment, these defects appear on the surface and appear.
The problem is that the defect density of the surface
You. For this reason, an embodiment disclosed in JP-A-10-98047 is disclosed.
4.5x10 at which no oxygen precipitates17atoms
/ CmThreeA crystal having an oxygen concentration of In fact this
The effect of defect formation by adding nitrogen is described in Japanese Patent Application Laid-Open No. 11-189.
No. 493, entitled "Promotion of substrate deposition of epitaxial layer"
It is used as a means for progress.

【0003】また、我々は、特願平11−84915号
として、1×1016atoms/cm3以上1.5×1
19atoms/cm3以下の窒素を含有するシリコン
融液を用いてチョクラルスキー法又は磁場印加チョクラ
ルスキー法により育成したシリコン単結晶から得たシリ
コン半導体基板を、1000℃以上1300℃以下の温
度で1時間以上熱処理する方法を提案している。この方
法によれば基板の窒素による欠陥生成促進効果に拘わら
ず、基板表面の欠陥を消滅させることができるが、時と
してその析出物が通常の欠陥検出方法では検出できない
ような微小な欠陥となり、基板表面近傍に残留し電気特
性を悪化させる場合がある。
In addition, as Japanese Patent Application No. Hei 11-84915, we have proposed a method in which 1 × 10 16 atoms / cm 3 or more and 1.5 × 1
A silicon semiconductor substrate obtained from a silicon single crystal grown by a Czochralski method or a Czochralski method with the application of a magnetic field using a silicon melt containing nitrogen of 0 19 atoms / cm 3 or less is cooled to 1000 ° C. to 1300 ° C. A method of performing heat treatment at a temperature for 1 hour or more is proposed. According to this method, defects on the substrate surface can be eliminated irrespective of the effect of promoting the generation of defects by nitrogen of the substrate, but sometimes the precipitates become minute defects that cannot be detected by a normal defect detection method, It may remain near the substrate surface and degrade the electrical characteristics.

【0004】なお、シリコンの単結晶成長の際に窒素を
ドーピングする方法に関しては特開昭60−25119
0号公報等が知られている。また、フロートゾーン(F
Z)単結晶における窒素添加効果として、特開昭57−
17497号公報等には結晶強度の増加が、特開平8−
91993号公報には抵抗率の変化を抑える方法が開示
されている。
A method of doping nitrogen during single crystal growth of silicon is disclosed in Japanese Patent Application Laid-Open No. 60-25119.
No. 0 publication is known. In addition, the float zone (F
Z) The effect of adding nitrogen in a single crystal is disclosed in
For example, Japanese Patent No. 17497 discloses an increase in crystal strength.
No. 91993 discloses a method for suppressing a change in resistivity.

【0005】[0005]

【発明が解決しようとする課題】本発明は、半導体デバ
イス作成用のシリコン半導体基板において、前述したよ
うな従来の技術では完全には除去できないデバイス作成
上問題となる結晶欠陥を、生産性良く、効果的に低減あ
るいは消滅させ、欠陥に非常に敏感なデバイスの電気特
性測定においても非常に良好な特性を得ることができる
半導体基板の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention is to provide a silicon semiconductor substrate for producing a semiconductor device, with good productivity, a crystal defect which becomes a problem in device production which cannot be completely removed by the conventional technique as described above. It is an object of the present invention to provide a method for manufacturing a semiconductor substrate which can be effectively reduced or eliminated and which can obtain very good characteristics even in measurement of electrical characteristics of a device which is extremely sensitive to defects.

【0006】[0006]

【課題を解決するための手段】我々は、シリコン半導体
基板中に生成する欠陥について鋭意検討を加え、シリコ
ン半導体基板のデバイス作成領域で問題となる大きさの
欠陥をほば完全に消滅でき、かつ通常の欠陥検出方法で
は検出できないような微小な欠陥をも完全に消滅させる
ことにより、デバイスの電気特性を大きく改善できるこ
とを見いだし、発明を完成させたものである。
Means for Solving the Problems We have conducted intensive studies on defects generated in a silicon semiconductor substrate, and have been able to almost completely eliminate defects having a problematic size in a device fabrication region of a silicon semiconductor substrate, and The inventors have found that the electrical characteristics of the device can be greatly improved by completely eliminating even minute defects that cannot be detected by a normal defect detection method, and have completed the invention.

【0007】即ち、本発明は、1×1016atoms/
cm3以上3×1019atoms/cm3以下の窒素を含
有するシリコン融液を用いてチョクラルスキー法又は磁
場印加チョクラルスキー法により育成したシリコン単結
晶から得たシリコン半導体基板を、不純物含有量が5p
pm以下である希ガス雰囲気中で1000℃以上130
0℃以下の温度範囲で1時間以上熱処理することを特徴
とするシリコン半導体基板の製造方法である。特に、前
記希ガスがアルゴンガスであるシリコン半導体基板の製
造方法である。さらに、前記製造方法において、その熱
処理の際、雰囲気の純度の劣化を防ぐため、熱処理炉炉
口にパージボックスを設け、挿入時に希ガスでパージを
行い、炉口の雰囲気中の不純物濃度を5ppm以下にす
ることを特徴とするシリコン半導体基板の製造方法であ
る。
That is, the present invention provides 1 × 10 16 atoms /
A silicon semiconductor substrate obtained from a silicon single crystal grown by a Czochralski method or a Czochralski method applying a magnetic field using a silicon melt containing nitrogen of not less than 3 cm 3 and not more than 3 × 10 19 atoms / cm 3 contains impurities. The amount is 5p
1000 ° C. to 130 in a rare gas atmosphere of not more than pm
A method for manufacturing a silicon semiconductor substrate, comprising performing heat treatment for 1 hour or more in a temperature range of 0 ° C. or less. In particular, the present invention relates to a method for manufacturing a silicon semiconductor substrate in which the rare gas is an argon gas. Further, in the manufacturing method, in order to prevent the purity of the atmosphere from deteriorating during the heat treatment, a purge box is provided in the furnace port of the heat treatment furnace, and a purge is performed with a rare gas at the time of insertion to reduce the impurity concentration in the atmosphere of the furnace port to 5 ppm. A method for manufacturing a silicon semiconductor substrate characterized by the following.

【0008】[0008]

【発明実施の形態】以下に、本発明について詳細に説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.

【0009】通常、集積回路を作成するために用いられ
るシリコン基板としては、チョクラルスキー法または磁
場印加チョクラルスキー法により育成される。この際、
1×1016atoms/cm3以上3×1019atom
s/cm3以下の窒素を含有するシリコン融液を用いる
ことにより、1×1013atoms/cm3以上1×1
16atoms/cm3以下の窒素を含有した結晶を育
成し得る。融液への窒素の添加方法としては、特開昭6
0−251190号公報にあるように、窒化珪素を原料
とともに融解したり、高温になった原料シリコン多結晶
に窒素ガスを吹き付けることにより導入することができ
る。但し、ガスを用いる方法は定量性にかけるので、高
純度の窒化珪素を原料とともに融解することが好まし
い。窒素の偏析係数は7×10-4であり、1×1016
toms/cm3以上3×1019atoms/cm3以下
の窒素を含有するシリコン融液を用いれば、1×1013
atoms/cm3以上1×1016atoms/cm3
下の窒素を含有した結晶を育成し得る。この結晶中に窒
素を含有した結晶は、結晶成長中に発生する欠陥のほと
んどが酸素析出物となっているため、ウェハ表面の酸素
を外方拡散させるだけで欠陥をほぼ完全に消滅させるこ
とができる。また、引上条件によっては、酸素析出物の
5%以下の密度で変容した空孔欠陥が発生する場合があ
るが、この欠陥は不安定な形態を持っており、熱処理に
より表面近傍で容易に消滅する。我々は、この窒素の添
加により欠陥が変容することを利用して、この結晶をウ
エハに加工後非酸化性雰囲気で熱処理をすることによ
り、表面近傍で欠陥の少ないウエハを作成できることを
特願平11−84915号で提案した。この発明におい
ては、熱処理温度に関しては1000℃以上1300℃
以下、望ましくは1100℃以上1200℃以下が適当
であり、従来の結晶よりも低温の熱処理で表面の欠陥を
消滅させることができることを指摘している。また、熱
処理温度を決定する指針として、温度が低いと酸素の外
方拡散に多大の時間を要すること、温度が高すぎると結
晶中の熱平衡酸素固溶度が上がり酸素の外方拡散が起き
なくなること、また、1150℃以上では高温になれば
なるほど基板表面の面荒れの問題が生じやすくなるこ
と、さらに、処理炉を高温で稼働させる際には予期しな
い炉体の汚染が生じやすくなることを勘案して、115
0℃近傍で温度を決定することが望ましいことを指摘し
ている。
Normally, a silicon substrate used for producing an integrated circuit is grown by the Czochralski method or the Czochralski method applying a magnetic field. On this occasion,
1 × 10 16 atoms / cm 3 or more and 3 × 10 19 atoms
By using a silicon melt containing nitrogen of s / cm 3 or less, 1 × 10 13 atoms / cm 3 or more and 1 × 1
Crystals containing nitrogen of 0 16 atoms / cm 3 or less can be grown. As a method for adding nitrogen to the melt, Japanese Patent Application Laid-Open
As disclosed in Japanese Patent Application No. 0-251190, silicon nitride can be introduced by melting the raw material together with the raw material, or by blowing nitrogen gas to the raw material polycrystalline silicon which has become hot. However, since the method using gas depends on the quantitative property, it is preferable to melt high-purity silicon nitride together with the raw material. The segregation coefficient of nitrogen is 7 × 10 -4 and 1 × 10 16 a
If a silicon melt containing nitrogen of not less than toms / cm 3 and not more than 3 × 10 19 atoms / cm 3 is used, 1 × 10 13
It is possible to grow a crystal containing nitrogen of atoms / cm 3 or more and 1 × 10 16 atoms / cm 3 or less. Since most of the defects generated during crystal growth of crystals containing nitrogen are oxygen precipitates, defects can be almost completely eliminated only by outward diffusion of oxygen on the wafer surface. it can. Depending on the pulling conditions, vacancy defects transformed at a density of 5% or less of the oxygen precipitates may be generated. However, these defects have an unstable form and can be easily formed near the surface by heat treatment. Disappear. Utilizing the fact that defects are transformed by the addition of nitrogen, we filed this patent into a wafer with few defects near the surface by subjecting this crystal to a wafer and then performing a heat treatment in a non-oxidizing atmosphere. No. 11-84915. In the present invention, the heat treatment temperature is 1000 ° C. or more and 1300 ° C.
In the following, it is pointed out that the temperature is desirably 1100 ° C. or more and 1200 ° C. or less, and that surface defects can be eliminated by heat treatment at a lower temperature than conventional crystals. In addition, as a guideline for determining the heat treatment temperature, if the temperature is low, a large amount of time is required for out-diffusion of oxygen, and if the temperature is too high, the thermal equilibrium solid solubility in the crystal increases and the outward diffusion of oxygen does not occur. In addition, at 1150 ° C. or higher, the higher the temperature, the more likely the problem of surface roughness of the substrate surface occurs. Furthermore, when the processing furnace is operated at a high temperature, unexpected contamination of the furnace body is likely to occur. Considering 115
It is pointed out that it is desirable to determine the temperature around 0 ° C.

【0010】本発明においても、この熱処理条件に関す
る考察は基本的に何ら代わりがない。しかしながら、本
発明の目的である、より完全で電気特性にも優れる表面
無欠陥層を得るためには、上記の熱処理条件をさらに最
適にしなければならない。まず、雰囲気としては、非酸
化性雰囲気の中から特に希ガス雰囲気、望ましくはアル
ゴン雰囲気を用いなければならない。非酸化性雰囲気に
は、水素などの積極的に還元作用を持つ雰囲気、及び窒
素などの希ガスではない不活性ガス雰囲気がある。水素
などの積極的に還元作用を持つ雰囲気では、ウエハ最表
面のリン、ボロン等の電気抵抗を所定の値にするために
添加されている原子と反応して、それらの原子を昇華さ
せてしまう。このため、ウエハ表面近傍数μmの範囲で
電気抵抗が変化してしまう。また、水素などの還元性雰
囲気は爆発の危険性もあり取り扱いが容易でないという
欠点もある。一方、窒素は、シリコンと反応して窒化物
を形成し欠陥消滅に必要な酸素の外方拡散を妨げるた
め、表面の無欠陥層が中に残留欠陥が生じる。このこと
から、表面の無欠陥層をより完全に得るためにはシリコ
ンと反応せず、表面の酸素の外方拡散を妨げない希ガス
雰囲気を用いなければならない。希ガスとしては、比較
的価格の安い、ヘリウム、アルゴンが望ましいが、ヘリ
ウムは熱伝導に優れ保温性が悪いことから、アルゴンが
実用上扱いやすい。
In the present invention, there is basically no change in consideration of the heat treatment conditions. However, in order to obtain a more complete and defect-free surface-free layer which is the object of the present invention, the above heat treatment conditions must be further optimized. First, the atmosphere must be a non-oxidizing atmosphere, particularly a rare gas atmosphere, preferably an argon atmosphere. The non-oxidizing atmosphere includes an atmosphere having an active reducing action such as hydrogen and an inert gas atmosphere which is not a rare gas such as nitrogen. In an atmosphere having an active reducing action, such as hydrogen, it reacts with atoms added to make electric resistance of phosphorus, boron, etc. on the outermost surface of the wafer to a predetermined value, and sublimates those atoms. . Therefore, the electric resistance changes within a range of several μm near the wafer surface. In addition, a reducing atmosphere such as hydrogen has a disadvantage that it is not easy to handle because of the danger of explosion. On the other hand, nitrogen reacts with silicon to form a nitride and hinders outward diffusion of oxygen necessary for annihilation of defects, so that a residual defect occurs in the defect-free layer on the surface. From this, in order to obtain a defect-free layer on the surface more completely, it is necessary to use a rare gas atmosphere which does not react with silicon and does not prevent outward diffusion of oxygen on the surface. As a rare gas, helium and argon, which are relatively inexpensive, are desirable. However, argon is practically easy to handle because helium has excellent heat conduction and poor heat retention.

【0011】また、この希ガス中での熱処理による結晶
表面での酸素の外方拡散とそれによる欠陥の消滅を十全
にするためには、希ガス中の不純物濃度、特に酸素や水
分の濃度を5ppm以下に抑えなければならない。それ
より不純物濃度が多くなると、ウエハ最表面の酸素濃
度、特に熱処理初期の比較的低温でのウエハ最表面の酸
素濃度が十分に低下せず、欠陥消滅を阻害する。また、
ガス自体の不純物濃度をいくら下げても、実際にウエハ
に接するまでに不純物が混入しては効果がないのは当然
であり、そのため、特にウエハを炉内に入れるときに雰
囲気ガス中に不純物が入らないよう、炉口にパージボッ
クスを設けることが好ましい。
Further, in order to make the out-diffusion of oxygen on the crystal surface by the heat treatment in the rare gas and the elimination of defects due to the out-diffusion complete, the impurity concentration in the rare gas, particularly the concentration of oxygen or moisture, is increased. Must be kept below 5 ppm. If the impurity concentration is higher than that, the oxygen concentration on the outermost surface of the wafer, particularly the oxygen concentration on the outermost surface of the wafer at a relatively low temperature in the early stage of the heat treatment is not sufficiently reduced, and the defect disappearance is hindered. Also,
It goes without saying that no matter how much the impurity concentration of the gas itself is reduced, there is no effect if impurities are mixed before the wafer actually comes into contact with the wafer. It is preferable to provide a purge box at the furnace port so as not to enter.

【0012】以上のような希ガス望ましくはアルゴン雰
囲気の使用、および熱処理時にウエハに実際にガスが接
触するまで不純物が雰囲気に混入しないように十分に注
意することによって、熱処理中での酸素の外方拡散、特
に熱処理初期のウエハ表面での酸素濃度の低下を十分に
起こさせ、より完全な表面無欠陥層を得ることができ
る。特に、窒素添加結晶では、結晶成長中に発生した欠
陥自体は通常の結晶で発生する欠陥よりも消滅させやす
いが、その密度は非常に大きいため、この雰囲気制御に
よる酸素の外方拡散の効果が十分でないと、通常の欠陥
検出の手法では検出できないような小さな欠陥が表面の
無欠陥層内に残留し、窒素添加のメリットがなくなる。
The use of a rare gas, preferably an argon atmosphere as described above, and sufficient care to prevent impurities from entering the atmosphere during the heat treatment until the gas actually comes into contact with the wafer, eliminates oxygen during the heat treatment. In this case, the oxygen concentration on the wafer surface at the early stage of the heat treatment is sufficiently reduced, and a more complete surface defect-free layer can be obtained. In particular, in the case of nitrogen-added crystals, the defects themselves generated during crystal growth are more easily eliminated than the defects generated in ordinary crystals, but the density is extremely large, so that the effect of oxygen diffusion by the atmosphere control can be reduced. If it is not enough, small defects that cannot be detected by a normal defect detection method remain in the defect-free layer on the surface, and the merit of adding nitrogen is lost.

【0013】[0013]

【実施例】以下、実施例で本発明を具体的に説明する。The present invention will be specifically described below with reference to examples.

【0014】実施例1 チョクラルスキー法によりシリコン結晶を引き上げた。
約40kgの原料を溶解し、直径155mmの約30k
gのインゴットを作成した。結晶の比抵抗は、p型10
Ωcmであった。窒素の添加は、ノンドープのシリコン
結晶にCVD法により窒化膜を形成したウェハを、原料
の溶解時に同時に溶かすことにより、原料の融液中の窒
素濃度が5×1018atoms/cm3となるようにし
た。結晶育成後、結晶の酸素濃度を測定すると約8×1
17atoms/cm3(赤外吸収法によりJEIDA
の換算係数を用いて測定)であり、窒素濃度をSIMS
により測定すると約5×1015atoms/cm3であ
った。
Example 1 A silicon crystal was pulled up by the Czochralski method.
Dissolve about 40kg of raw material, about 30k of 155mm diameter
g of ingots were made. The specific resistance of the crystal is p-type 10
Ωcm. Nitrogen is added so that a wafer having a nitride film formed on a non-doped silicon crystal by a CVD method is melted at the same time as the raw material is melted, so that the nitrogen concentration in the melt of the raw material becomes 5 × 10 18 atoms / cm 3. I made it. After growing the crystal, the oxygen concentration of the crystal was measured to be about 8 × 1
0 17 atoms / cm 3 (JEIDA by infrared absorption method
Measured using the conversion coefficient of
Was about 5 × 10 15 atoms / cm 3 .

【0015】この結晶を直径150mm(6インチ)の
ウエハに加工後、以下の熱処理を行った。即ち、800
℃でシリコン基板を炉内に挿入し、挿入後10℃/分で
昇温し、1150℃で4時間保持した後、−10℃/分
で降温し、800℃で基板を取り出した。熱処理に用い
たガスは、コールドエバポレーターにより供給されたア
ルゴンガスを、ユースポイントで純化装置により生成し
て用いた。ガス中の不純物濃度は1ppm以下であっ
た。このガスを上記熱処理を通して雰囲気として用い
た。また、基板の挿入時には、炉前に設けられたパージ
ボックスによりパージを行い、試料を待機させている炉
前の雰囲気が不純物1ppm以下のアルゴン雰囲気にな
ったことを確認した後、炉口を開け、基板を挿入した。
After processing the crystal into a wafer having a diameter of 150 mm (6 inches), the crystal was subjected to the following heat treatment. That is, 800
The silicon substrate was inserted into the furnace at a temperature of 10 ° C., the temperature was increased at a rate of 10 ° C./min after the insertion, the temperature was maintained at 1150 ° C. for 4 hours, the temperature was lowered at a rate of −10 ° C./min, and the substrate was taken out at a temperature of 800 ° C. As a gas used for the heat treatment, an argon gas supplied by a cold evaporator was generated at a use point by a purifier and used. The impurity concentration in the gas was 1 ppm or less. This gas was used as an atmosphere throughout the heat treatment. In addition, when inserting the substrate, purging was performed by a purge box provided in front of the furnace, and after confirming that the atmosphere in front of the furnace in which the sample was on standby was an argon atmosphere of 1 ppm or less of impurities, the furnace port was opened. The substrate was inserted.

【0016】このウエハの表面欠陥を調べるために、表
面欠陥検出装置である三井金属製の赤外トモグラフ(M
O−6)で測定を行った。その結果、ウエハ全面での欠
陥は約200個/ウエハであった。
In order to examine the surface defects of this wafer, an infrared tomograph (M
O-6). As a result, the number of defects on the entire surface of the wafer was about 200 / wafer.

【0017】このウエハの表面無欠陥層の電気特性につ
いては2つの方法で調べた。
The electrical characteristics of the surface defect-free layer of this wafer were examined by two methods.

【0018】第一の測定方法は、TZDB(time
zero dielectricbreak dow
n)の酸化膜耐圧である。熱処理後の基板表面に100
0℃の乾燥酸素雰囲気で25nmの酸化膜を形成し、酸
化膜耐圧を測定した。耐圧測定に用いた電極は20mm
2のポリシリコン電極であり、判定電流は100mAで
ある。良品の割合を示す11MV以上の耐圧を示したも
のは、全体の99%であった。
The first measuring method is TZDB (time
zero dielectricbreak dow
n) is the oxide film breakdown voltage. 100 on the substrate surface after heat treatment
An oxide film having a thickness of 25 nm was formed in a dry oxygen atmosphere at 0 ° C., and the breakdown voltage of the oxide film was measured. The electrode used for withstand voltage measurement is 20 mm
2 is a polysilicon electrode, and the determination current is 100 mA. Those showing a withstand voltage of 11 MV or more indicating the ratio of non-defective products were 99% of the whole.

【0019】さらに、この無欠陥層の深い場所での電気
特性を調べるために、上記アルゴン熱処理を行ったウエ
ハの表面を鏡面研磨で3μm削り取り、同様の測定を行
った。その結果、11MV以上の耐圧を示したものは、
全体の95%であった。
Further, in order to examine the electrical characteristics of the defect-free layer in a deep place, the surface of the wafer which had been subjected to the above-mentioned argon heat treatment was shaved by 3 μm by mirror polishing, and the same measurement was performed. As a result, those showing a withstand voltage of 11 MV or more are:
It was 95% of the whole.

【0020】第二の測定方法は、TDDB(time
dependent dielectric brea
k down)での酸化膜耐圧である。上記と同様に熱
処理後の基板表面に、1000℃の乾燥酸素雰囲気で1
3nmの酸化膜を形成し、電極面積10mm2、電流密
度5mA/cm2、判定電圧10MV/cmで測定を行
った。破壊電荷10C/cm2での累積故障率は、約3
%であった。さらに、表面から深い場所での特性を調べ
るために、上記アルゴン熱処理を行ったウエハの表面を
鏡面研磨で3μm削り取り、同様の測定を行った。破壊
電荷10C/cm 2での累積故障率は、約9%であっ
た。
The second measuring method is TDDB (time
dependent dielectric break
k down). Heat as above
The substrate surface after the treatment is placed in a dry oxygen atmosphere at 1000 ° C.
An oxide film of 3 nm is formed, and the electrode area is 10 mmTwo, Current tight
5mA / cmTwo, Measurement was performed at a judgment voltage of 10 MV / cm.
Was. Breakdown charge 10C / cmTwoCumulative failure rate is about 3
%Met. In addition, investigate characteristics at a deep position from the surface
In order to perform the above-mentioned argon heat treatment,
3 μm was scraped off by mirror polishing, and the same measurement was performed. Destruction
Charge 10C / cm TwoCumulative failure rate is about 9%.
Was.

【0021】実施例2 実施例1と同じ結晶から得たウエハを用いて、以下の熱
処理を行った。即ち、800℃でシリコン基板を炉内に
挿入し、挿入後10℃/分で昇温し、1150℃で4時
間保持した後、−10℃/分で降温し、800℃で基板
を取り出した。熱処理に用いたガスは、コールドエバポ
レーターにより供給されたアルゴンガスを、ユースポイ
ントで純化装置により生成して用いた。ガス中の不純物
濃度は1ppm以下であった。このガスを上記熱処理を
通して雰囲気として用いた。但し、実施例1と異なり炉
口のパージボックスによるパージは行わなかった。
Example 2 A wafer obtained from the same crystal as in Example 1 was subjected to the following heat treatment. That is, a silicon substrate was inserted into a furnace at 800 ° C., the temperature was raised at 10 ° C./min after insertion, the temperature was maintained at 1150 ° C. for 4 hours, the temperature was lowered at −10 ° C./min, and the substrate was taken out at 800 ° C. . As a gas used for the heat treatment, an argon gas supplied by a cold evaporator was generated at a use point by a purifier and used. The impurity concentration in the gas was 1 ppm or less. This gas was used as an atmosphere throughout the heat treatment. However, unlike Example 1, the purging by the purge box at the furnace port was not performed.

【0022】このウエハの表面無欠陥層の結晶評価、電
気特性について、実施例1と同様の評価を行った。結果
を表1に示す。実施例1より若干劣るものの良好な電気
特性を示している。
The same evaluation as in Example 1 was performed for the crystal evaluation and the electrical characteristics of the surface defect-free layer of this wafer. Table 1 shows the results. Although it is slightly inferior to Example 1, it shows good electrical characteristics.

【0023】実施例3 チョクラルスキー法によりシリコン結晶を引き上げた。
約40kgの原料を溶解し、直径155mmの約30k
gのインゴットを作成した。結晶の比抵抗は、p型10
Ωcmであった。窒素の添加は、ノンドープのシリコン
結晶にCVD法により窒化膜を形成したウェハを、原料
の溶解時に同時に溶かすことにより、原料の融液中の窒
素濃度が2×1016atoms/cm3となるようにし
た。結晶育成後、結晶の酸素濃度を測定すると約8×1
17atoms/cm3(赤外吸収法によりJEIDA
の換算係数を用いて測定)であった。窒素濃度は、SI
MSにより測定する事はできなかったが、実施例1の融
液中の窒素濃度と結晶中の窒素濃度の比から推定すると
約2×1013atoms/cm3と見積もられた。
Example 3 A silicon crystal was pulled up by the Czochralski method.
Dissolve about 40kg of raw material, about 30k of 155mm diameter
g of ingots were made. The specific resistance of the crystal is p-type 10
Ωcm. Nitrogen is added so that a wafer in which a nitride film is formed on a non-doped silicon crystal by a CVD method is melted at the same time as the raw material is melted, so that the nitrogen concentration in the melt of the raw material becomes 2 × 10 16 atoms / cm 3. I made it. After growing the crystal, the oxygen concentration of the crystal was measured to be about 8 × 1
0 17 atoms / cm 3 (JEIDA by infrared absorption method
(Measured using a conversion coefficient of Nitrogen concentration is SI
Although it could not be measured by MS, it was estimated to be about 2 × 10 13 atoms / cm 3 when estimated from the ratio of the nitrogen concentration in the melt to the nitrogen concentration in the crystal in Example 1.

【0024】この結晶を直径150mm(6インチ)の
ウエハに加工後、以下の熱処理を行った。即ち、800
℃でシリコン基板を炉内に挿入し、挿入後10℃/分で
昇温し、1200℃で2時間保持した後、−10℃/分
で降温し、800℃で基板を取り出した。熱処理に用い
たガスは、コールドエバポレーターにより供給されたア
ルゴンガスを、ユースポイントで純化装置により生成し
て用いた。ガス中の不純物濃度は1ppm以下であっ
た。このガスを上記熱処理を通して雰囲気として用い
た。また、基板の挿入時には、炉前に設けられたパージ
ボックスによりパージを行い、試料を待機させている炉
前の雰囲気が不純物1ppm以下のアルゴン雰囲気にな
ったことを確認した後、炉口を開け、基板を挿入した。
After processing this crystal into a wafer having a diameter of 150 mm (6 inches), the crystal was subjected to the following heat treatment. That is, 800
The silicon substrate was inserted into the furnace at a temperature of 10 ° C., the temperature was raised at a rate of 10 ° C./min after the insertion, the temperature was maintained at 1200 ° C. for 2 hours, the temperature was lowered at a rate of −10 ° C./min, and the substrate was taken out at a temperature of 800 ° C. As a gas used for the heat treatment, an argon gas supplied by a cold evaporator was generated at a use point by a purifier and used. The impurity concentration in the gas was 1 ppm or less. This gas was used as an atmosphere throughout the heat treatment. In addition, when inserting the substrate, purging was performed by a purge box provided in front of the furnace, and after confirming that the atmosphere in front of the furnace in which the sample was on standby was an argon atmosphere of 1 ppm or less of impurities, the furnace port was opened. The substrate was inserted.

【0025】このウエハの結晶評価、電気特性評価につ
いて、実施例1と同様の評価を行った。結果を表1に示
す。実施例1と同様に良好な電気特性が得られたことが
わかる。
The same evaluation as in Example 1 was performed for the evaluation of the crystal and the evaluation of the electrical characteristics of the wafer. Table 1 shows the results. It can be seen that good electrical characteristics were obtained as in Example 1.

【0026】実施例4 チョクラルスキー法によりシリコン結晶を引き上げた。
約40kgの原料を溶解し、直径155mmの約30k
gのインゴットを作成した。結晶の比抵抗は、p型10
Ωcmであった。窒素の添加は、ノンドープのシリコン
結晶にCVD法により窒化膜を形成したウェハを、原料
の溶解時に同時に溶かすことにより、原料の融液中の窒
素濃度が3×1019atoms/cm3となるようにし
た。結晶育成中、後半でインゴットがポリ化したが、イ
ンゴットの上方から無転位の結晶を得た。結晶の酸素濃
度を測定すると約8×1017atoms/cm3(赤外
吸収法によりJEIDAの換算係数を用いて測定)であ
り、窒素濃度をSIMSにより測定すると約3×1016
atoms/cm3であった。
Example 4 A silicon crystal was pulled up by the Czochralski method.
Dissolve about 40kg of raw material, about 30k of 155mm diameter
g of ingots were made. The specific resistance of the crystal is p-type 10
Ωcm. Nitrogen is added so that a wafer having a nitride film formed on a non-doped silicon crystal by a CVD method is melted at the same time as the raw material is melted, so that the nitrogen concentration in the melt of the raw material becomes 3 × 10 19 atoms / cm 3. I made it. During crystal growth, the ingot was poly-crystallized in the latter half, but dislocation-free crystals were obtained from above the ingot. The oxygen concentration of the crystal was measured to be about 8 × 10 17 atoms / cm 3 (measured by the infrared absorption method using the conversion coefficient of JEIDA), and the nitrogen concentration was measured to be about 3 × 10 16 by SIMS.
atoms / cm 3 .

【0027】この結晶を直径150mm(6インチ)の
ウエハに加工後、以下の熱処理を行った。即ち、800
℃でシリコン基板を炉内に挿入し、挿入後10℃/分で
昇温し、1200℃で2時間保持した後、−10℃/分
で降温し、800℃で基板を取り出した。熱処理に用い
たガスは、コールドエバポレーターにより供給されたア
ルゴンガスを、ユースポイントで純化装置により生成し
て用いた。ガス中の不純物濃度は1ppm以下であっ
た。このガスを上記熱処理を通して雰囲気として用い
た。また、基板の挿入時には、炉前に設けられたパージ
ボックスによりパージを行い、試料を待機させている炉
前の雰囲気が不純物1ppm以下のアルゴン雰囲気にな
ったことを確認した後、炉口を開け、基板を挿入した。
After processing the crystal into a wafer having a diameter of 150 mm (6 inches), the following heat treatment was performed. That is, 800
The silicon substrate was inserted into the furnace at a temperature of 10 ° C., the temperature was raised at a rate of 10 ° C./min after the insertion, the temperature was maintained at 1200 ° C. for 2 hours, the temperature was lowered at a rate of −10 ° C./min, and the substrate was taken out at a temperature of 800 ° C. As a gas used for the heat treatment, an argon gas supplied by a cold evaporator was generated at a use point by a purifier and used. The impurity concentration in the gas was 1 ppm or less. This gas was used as an atmosphere throughout the heat treatment. In addition, when inserting the substrate, purging was performed by a purge box provided in front of the furnace, and after confirming that the atmosphere in front of the furnace in which the sample was on standby was an argon atmosphere of 1 ppm or less of impurities, the furnace port was opened. The substrate was inserted.

【0028】このウエハの結晶評価、電気特性評価につ
いて、実施例1と同様の評価を行った。結果を表1に示
す。実施例1と同様に良好な電気特性が得られたことが
わかる。
The same evaluation as in Example 1 was performed for the crystal evaluation and the electrical characteristic evaluation of the wafer. Table 1 shows the results. It can be seen that good electrical characteristics were obtained as in Example 1.

【0029】[0029]

【表1】 [Table 1]

【0030】比較例1 チョクラルスキー法によりシリコン結晶を引き上げた。
約40kgの原料を溶解し、直径155mmの約30k
gのインゴットを作成した。結晶の比抵抗は、p型10
Ωcmであった。窒素の添加は、ノンドープのシリコン
結晶にCVD法により窒化膜を形成したウェハを、原料
の溶解時に同時に溶かすことにより、原料の融液中の窒
素濃度が5×1015atoms/cm3となるようにし
た。結晶育成後、結晶の酸素濃度を測定すると約8×1
17atoms/cm3(赤外吸収法によりJEIDA
の換算係数を用いて測定)であった。窒素濃度はSIM
Sにより測定する事はできなかったが、実施例1の融液
中の窒素濃度と結晶中の窒素濃度の比から推定すると約
5×1012atoms/cm3と見積もられた。
Comparative Example 1 A silicon crystal was pulled up by the Czochralski method.
Dissolve about 40kg of raw material, about 30k of 155mm diameter
g of ingots were made. The specific resistance of the crystal is p-type 10
Ωcm. Nitrogen is added so that a wafer having a nitride film formed on a non-doped silicon crystal by a CVD method is melted at the same time as the raw material is melted, so that the nitrogen concentration in the melt of the raw material becomes 5 × 10 15 atoms / cm 3. I made it. After growing the crystal, the oxygen concentration of the crystal was measured to be about 8 × 1
0 17 atoms / cm 3 (JEIDA by infrared absorption method
(Measured using a conversion coefficient of Nitrogen concentration is SIM
Although it could not be measured by S, it was estimated to be about 5 × 10 12 atoms / cm 3 when estimated from the ratio of the nitrogen concentration in the melt to the nitrogen concentration in the crystal in Example 1.

【0031】この結晶を直径150mm(6インチ)の
ウエハに加工後、以下の熱処理を行った。即ち、800
℃でシリコン基板を炉内に挿入し、挿入後10℃/分で
昇温し、1200℃で2時間保持した後、−10℃/分
で降温し、800℃で基板を取り出した。熱処理に用い
たガスは、コールドエバポレーターにより供給されたア
ルゴンガスを、ユースポイントで純化装置により生成し
て用いた。ガス中の不純物濃度は1ppm以下であっ
た。このガスを上記熱処理を通して雰囲気として用い
た。また、基板の挿入時には、炉前に設けられたパージ
ボックスによりパージを行い、試料を待機させている炉
前の雰囲気が不純物1ppm以下のアルゴン雰囲気にな
ったことを確認した後、炉口を開け、基板を挿入した。
After processing the crystal into a wafer having a diameter of 150 mm (6 inches), the following heat treatment was performed. That is, 800
The silicon substrate was inserted into the furnace at a temperature of 10 ° C., the temperature was raised at a rate of 10 ° C./min after the insertion, the temperature was maintained at 1200 ° C. for 2 hours, the temperature was lowered at a rate of −10 ° C./min, and the substrate was taken out at a temperature of 800 ° C. As a gas used for the heat treatment, an argon gas supplied by a cold evaporator was generated at a use point by a purifier and used. The impurity concentration in the gas was 1 ppm or less. This gas was used as an atmosphere throughout the heat treatment. In addition, when inserting the substrate, purging was performed by a purge box provided in front of the furnace, and after confirming that the atmosphere in front of the furnace in which the sample was on standby was an argon atmosphere of 1 ppm or less of impurities, the furnace port was opened. The substrate was inserted.

【0032】このウエハの結晶評価、電気特性評価につ
いて、実施例1と同様の評価を行った。結果を表2に示
す。実施例1と比較して、全ての特性が悪化しているの
がわかる。
The same evaluation as in Example 1 was performed for the evaluation of the crystal and the evaluation of the electrical characteristics of the wafer. Table 2 shows the results. It can be seen that all the characteristics are deteriorated as compared with Example 1.

【0033】比較例2 窒素を添加しないで、比較例1と同様の結晶を作り、ウ
エハ加工後、同様の熱処理を行った。このウエハの結晶
評価、電気特性評価を実施例1と同様に行った。結果を
表2に示す。実施例1と比較して、電気特性が悪化して
いるのがわかる。
Comparative Example 2 A crystal similar to that of Comparative Example 1 was formed without adding nitrogen, and the same heat treatment was performed after wafer processing. Crystal evaluation and electrical characteristic evaluation of this wafer were performed in the same manner as in Example 1. Table 2 shows the results. It can be seen that the electrical characteristics are worse than in Example 1.

【0034】比較例3 窒素を添加しないで育成した比較例2の結晶を用いて、
下記の熱処理を行った。即ち、800℃でシリコン基板
を炉内に挿入し、挿入後10℃/分で昇温し、1200
℃で2時間保持した後、−10℃/分で降温し、800
℃で基板を取り出した。熱処理に用いたガスは、Arボ
ンベから供給されたアルゴンガスを純化せずに用いた。
ガス中の不純物濃度は50ppmであった。このガスを
上記熱処理を通して雰囲気として用いた。
Comparative Example 3 Using the crystal of Comparative Example 2 grown without adding nitrogen,
The following heat treatment was performed. That is, the silicon substrate is inserted into the furnace at 800 ° C., and after the insertion, the temperature is increased at 10 ° C./min.
C. for 2 hours, and then the temperature was lowered at -10.degree.
The substrate was taken out at ℃. As a gas used for the heat treatment, an argon gas supplied from an Ar cylinder was used without being purified.
The impurity concentration in the gas was 50 ppm. This gas was used as an atmosphere throughout the heat treatment.

【0035】このウエハの結晶評価、電気特性評価を実
施例1と同様に行った。結果を表2に示す。実施例1と
比較して、電気特性が悪化しているのがわかる。
The wafer was evaluated for crystal and electric characteristics in the same manner as in Example 1. Table 2 shows the results. It can be seen that the electrical characteristics are worse than in Example 1.

【0036】比較例4 実施例1で用いた結晶から作成したウエハを、比較例3
と同様の熱処理を行った。
Comparative Example 4 A wafer prepared from the crystal used in Example 1 was used in Comparative Example 3
The same heat treatment as above was performed.

【0037】このウエハの結晶評価、電気特性評価を実
施例1と同様に行った。結果を表2に示す。実施例1と
比較して、電気特性が非常に悪化しているのがわかる。
ここで注目すべきは、熱処理雰囲気による影響が窒素を
添加しない結晶の場合ではそれほど大きくないのに対し
て(比較例2と比較例3の対比)、窒素を添加した結晶
では非常に大きいことである(実施例1と比較例4との
対比)。このことから、窒素添加結晶では、特に熱処理
雰囲気の高純度化・制御が重要であることがわかる。
The wafer was evaluated for crystal and electric characteristics in the same manner as in Example 1. Table 2 shows the results. It can be seen that the electrical characteristics are much worse than in Example 1.
It should be noted here that the influence of the heat treatment atmosphere is not so large in the case of the crystal to which nitrogen is not added (comparison between Comparative Example 2 and Comparative Example 3), but is very large in the case of the crystal to which nitrogen is added. (Comparison between Example 1 and Comparative Example 4). From this, it is understood that in the case of the nitrogen-added crystal, it is particularly important to purify and control the heat treatment atmosphere.

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【発明の効果】以上のように、本発明を用いれば、窒素
添加結晶を高純度の希ガス雰囲気中でアニールすること
により、電気特性に非常に優れるウエハを得ることがで
きる。またこの発明により、窒素添加結晶をアニールし
た際の特徴である、表面での無欠陥性及びバルク内部で
の高ゲッタリング能を兼ね備えることができ、デバイス
を作成する上で非常に優れたウエハを作成することがで
きる。
As described above, according to the present invention, a wafer having excellent electrical characteristics can be obtained by annealing a nitrogen-added crystal in a high-purity rare gas atmosphere. Further, according to the present invention, it is possible to combine a defect-free surface and a high gettering ability inside a bulk, which are features when an nitrogen-doped crystal is annealed, and to provide a wafer excellent in device fabrication. Can be created.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/322 H01L 21/322 Y (72)発明者 太田 泰光 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 大橋 渡 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 出合 博之 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 横田 秀樹 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 4G077 BA04 CF10 EC10 FE02 FE11 FK11 HA12 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 21/322 H01L 21/322 Y (72) Inventor Yasumitsu Ota 20-1 Shintomi, Futtsu-shi, Chiba New Japan Inside the Technology Development Division, Steel Corporation (72) Inventor Wataru Ohashi 20-1 Shintomi, Futtsu-shi, Chiba Prefecture Inside the Technology Development Division, Nippon Steel Corporation (72) Hiroyuki Deai 20-1 Shintomi, Futtsu-shi, Chiba New Japan (72) Inventor Hideki Yokota 20-1 Shintomi, Futtsu-shi, Chiba F-term (reference) 4G077 BA04 CF10 EC10 FE02 FE11 FK11 HA12

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 1×1016atoms/cm3以上3×
1019atoms/cm3以下の窒素を含有するシリコ
ン融液を用いてチョクラルスキー法又は磁場印加チョク
ラルスキー法により育成したシリコン単結晶から得たシ
リコン半導体基板を、不純物含有量が5ppm以下であ
る希ガス雰囲気中で1000℃以上1300℃以下の温
度範囲で1時間以上熱処理することを特徴とするシリコ
ン半導体基板の製造方法。
1. 1 × 10 16 atoms / cm 3 or more and 3 ×
A silicon semiconductor substrate obtained from a silicon single crystal grown by a Czochralski method or a Czochralski method with the application of a magnetic field using a silicon melt containing nitrogen of 10 19 atoms / cm 3 or less has an impurity content of 5 ppm or less. A method for manufacturing a silicon semiconductor substrate, comprising performing heat treatment in a rare gas atmosphere at a temperature in the range of 1000 ° C. to 1300 ° C. for 1 hour or more.
【請求項2】 希ガスがアルゴンガスである請求項1記
載のシリコン半導体基板の製造方法。
2. The method according to claim 1, wherein the rare gas is an argon gas.
【請求項3】 請求項1又は2に記載の製造方法におい
て、その熱処理の際、雰囲気の純度の劣化を防ぐため、
熱処理炉炉口にパージボックスを設け、挿入時に希ガス
でパージを行い、炉口の雰囲気中の不純物濃度を5pp
m以下にすることを特徴とするシリコン半導体基板の製
造方法。
3. The manufacturing method according to claim 1, wherein the heat treatment is performed to prevent the purity of the atmosphere from deteriorating.
A purge box is provided in the furnace port of the heat treatment furnace, and a purge is performed with a rare gas at the time of insertion, and the impurity concentration in the atmosphere of the furnace port is 5 pp.
m or less, the method for manufacturing a silicon semiconductor substrate.
JP33861999A 1999-11-29 1999-11-29 Method for manufacturing silicon semiconductor substrate Pending JP2001156076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33861999A JP2001156076A (en) 1999-11-29 1999-11-29 Method for manufacturing silicon semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33861999A JP2001156076A (en) 1999-11-29 1999-11-29 Method for manufacturing silicon semiconductor substrate

Publications (1)

Publication Number Publication Date
JP2001156076A true JP2001156076A (en) 2001-06-08

Family

ID=18319892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33861999A Pending JP2001156076A (en) 1999-11-29 1999-11-29 Method for manufacturing silicon semiconductor substrate

Country Status (1)

Country Link
JP (1) JP2001156076A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013048218A (en) * 2011-07-22 2013-03-07 Semiconductor Energy Lab Co Ltd Method for manufacturing soi substrate
JP2013201303A (en) * 2012-03-26 2013-10-03 Globalwafers Japan Co Ltd Method for manufacturing silicon wafer
JP2013201314A (en) * 2012-03-26 2013-10-03 Globalwafers Japan Co Ltd Method for manufacturing silicon wafer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013048218A (en) * 2011-07-22 2013-03-07 Semiconductor Energy Lab Co Ltd Method for manufacturing soi substrate
JP2013201303A (en) * 2012-03-26 2013-10-03 Globalwafers Japan Co Ltd Method for manufacturing silicon wafer
JP2013201314A (en) * 2012-03-26 2013-10-03 Globalwafers Japan Co Ltd Method for manufacturing silicon wafer

Similar Documents

Publication Publication Date Title
US7670965B2 (en) Production method for silicon wafers and silicon wafer
JP5578172B2 (en) Annealed wafer manufacturing method and device manufacturing method
JP3800006B2 (en) Manufacturing method of silicon single crystal wafer and silicon single crystal wafer
JP4448547B2 (en) Method for producing non-oxygen-precipitating Czochralski silicon wafer
JP4224966B2 (en) Manufacturing method of silicon single crystal wafer, manufacturing method of epitaxial wafer, evaluation method of silicon single crystal wafer
US7537657B2 (en) Silicon wafer and process for producing it
JP4460671B2 (en) Silicon semiconductor substrate and manufacturing method thereof
TW508701B (en) Method for manufacturing single-crystal silicon wafer
JP4718668B2 (en) Epitaxial wafer manufacturing method
JP3870293B2 (en) Silicon semiconductor substrate and manufacturing method thereof
JP4084902B2 (en) Silicon semiconductor substrate and manufacturing method thereof
JPH05291097A (en) Silicon substrate and manufacture thereof
JP2001156076A (en) Method for manufacturing silicon semiconductor substrate
JPH04294540A (en) Manufacture of semiconductor device
JP2001199794A (en) Silicon single crystal ingot, method for producing the same and method for producing silicon wafer
JPH08208374A (en) Silicon single crystal and its production
JP4089137B2 (en) Method for producing silicon single crystal and method for producing epitaxial wafer
EP1215309B1 (en) Silicon wafer and method for manufacture thereof, and method for evaluation of silicon wafer
JPH11135511A (en) Silicon semiconductor substrate and manufacture thereof
KR100780843B1 (en) High quality substrate by high temperature process for device and manufacturing method thereof
JP3565068B2 (en) Heat treatment method for silicon wafer and silicon wafer
JP2001270796A (en) Silicon semiconductor substrate and method for producing the same
JP4112654B2 (en) Method for manufacturing silicon wafer
JP4223437B2 (en) Silicon semiconductor substrate
JP2001127067A (en) Silicon semiconductor substrate