JP2001154414A - Electrophotographic carrier - Google Patents

Electrophotographic carrier

Info

Publication number
JP2001154414A
JP2001154414A JP33765299A JP33765299A JP2001154414A JP 2001154414 A JP2001154414 A JP 2001154414A JP 33765299 A JP33765299 A JP 33765299A JP 33765299 A JP33765299 A JP 33765299A JP 2001154414 A JP2001154414 A JP 2001154414A
Authority
JP
Japan
Prior art keywords
carrier
particle size
resin
volume
size distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33765299A
Other languages
Japanese (ja)
Inventor
Masatomo Hayashi
政友 林
Naoyuki Takahashi
尚之 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kogyo Co Ltd
Original Assignee
Kanto Denka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kogyo Co Ltd filed Critical Kanto Denka Kogyo Co Ltd
Priority to JP33765299A priority Critical patent/JP2001154414A/en
Publication of JP2001154414A publication Critical patent/JP2001154414A/en
Pending legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrophotographic carrier free from carrier sticking. SOLUTION: The electrophotographic carrier has 55-210 Am2/kg saturation magnetization. When the saturation magnetization of the carrier is represented by σs (Am2/kg) and 1% particle diameter and 50% particle diameter of the volume-base particle size distribution of the carrier are represented by x1 (μm) and x50 (μm), respectively, σs, x1 and x50 satisfy the expressions (1/σs)×750<=x1 and x50×0.35<=x1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二成分系現像剤に
おける電子写真用キャリアに関する。
The present invention relates to an electrophotographic carrier in a two-component developer.

【0002】[0002]

【従来の技術】電子写真法は、光導電現象を利用し、感
光体面に静電潜像を形成し、これを現像剤で現像化し、
転写用紙等に定着せしめるものである。従来より、静電
潜像を可視化するためには、カスケード法や磁気ブラシ
法等で知られるように、キャリアとトナーを混合した二
成分系現像剤が使用されている。
2. Description of the Related Art In electrophotography, an electrostatic latent image is formed on the surface of a photoreceptor by utilizing a photoconductive phenomenon, and this is developed with a developer.
It is to be fixed on transfer paper or the like. Conventionally, in order to visualize an electrostatic latent image, a two-component developer in which a carrier and a toner are mixed has been used, as is known by a cascade method, a magnetic brush method, or the like.

【0003】二成分系現像剤のキャリアとしては、ガラ
スビーズ、鉄粉、フェライト粒子等が使用されてきた
が、帯電性や帯電極性を制御し、長期の使用にも安定し
た帯電状態が保持できるように、キャリア粒子表面は、
多くの場合樹脂で被覆されている。
Glass beads, iron powder, ferrite particles and the like have been used as a carrier for a two-component developer. However, the chargeability and charge polarity are controlled so that a stable charge state can be maintained for a long-term use. As shown, the carrier particle surface is
It is often coated with resin.

【0004】近年、画質向上のために、キャリアの平均
粒径は、小さくなる傾向にある。しかし、平均粒径が小
さくなると、相対的に微細なキャリア粒子が増加するた
め、キャリア付着も増加することとなり、画像劣化が生
じるというような問題が起こる。
In recent years, in order to improve image quality, the average particle size of carriers tends to be small. However, when the average particle diameter is small, the number of relatively fine carrier particles is increased, so that the carrier adhesion is also increased, which causes a problem that image deterioration occurs.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、上記
キャリアの問題点を解消し、キャリア付着がない電子写
真用キャリアを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the carrier and to provide an electrophotographic carrier free of carrier adhesion.

【0006】[0006]

【課題を解決するための手段】本発明は、下記の構成の
キャリアを採用することを特徴とする。
The present invention is characterized by employing a carrier having the following configuration.

【0007】飽和磁化が55〜210(Am2/kg)
である電子写真用キャリアであって、該キャリアの飽和
磁化をσs(Am2/kg)、体積基準粒度分布1%粒
径をx1(μm)、体積基準粒度分布50%粒径をx5
0(μm)としたとき、σs、x1、x50が下記式
(1)及び(2)を満足することを特徴とする電子写真
用キャリア。
The saturation magnetization is 55 to 210 (Am 2 / kg)
Wherein the saturation magnetization of the carrier is σs (Am 2 / kg), the volume-based particle size distribution 1% particle size is x1 (μm), and the volume-based particle size distribution 50% particle size is x5.
An electrophotographic carrier, wherein σs, x1, and x50 satisfy the following expressions (1) and (2) when 0 (μm) is set.

【0008】 (1/σs)×750 ≦ x1 … (1) x50×0.35 ≦ x1 … (2) 本発明者等は、上記目的を達成するため鋭意検討した結
果、飽和磁化が55〜210(Am2/kg)である電
子写真用キャリアであって、該キャリアにおけるσs、
x1、x50が上記式(1)及び(2)を満足すると、
キャリア付着が抑えられることを見出したのである。
(1 / σs) × 750 ≦ x1 (1) x50 × 0.35 ≦ x1 (2) The present inventors have conducted intensive studies to achieve the above object, and as a result, the saturation magnetization was 55 to 210. (Am 2 / kg), wherein σs,
When x1 and x50 satisfy the above equations (1) and (2),
It has been found that carrier adhesion can be suppressed.

【0009】即ち、キャリア付着の量は、σsが大きく
なると少なくなり、x1が小さくなると多くなる。その
ため、σsとx1は(1/σs)×750≦x1を満足
することが必要であり、特に(1/σs)×1000≦
x1を満足するのがより望ましい。また、キャリア付着
を抑えるためには、x1とx50とがx50×0.35
≦x1なる関係を満足することも必要である。
That is, the amount of carrier adhesion decreases as σs increases, and increases as x1 decreases. Therefore, σs and x1 need to satisfy (1 / σs) × 750 ≦ x1, and in particular, (1 / σs) × 1000 ≦
It is more desirable to satisfy x1. Further, in order to suppress carrier adhesion, x1 and x50 should be x50 × 0.35
It is also necessary to satisfy the relationship of ≦ x1.

【0010】[0010]

【発明の実施の形態】本発明に用いられるキャリアのコ
ア材としては、様々な種類のコア材を選択できるが、平
均粒径が30〜200(μm)の鉄粉、フェライト及び
マグネタイトより選ばれる少なくとも一種類のコア材が
好ましい。また、これらのコア材の製造方法は適宜選択
すれば良く、特に制約はない。また、市販されているも
のを用いることもできる。
BEST MODE FOR CARRYING OUT THE INVENTION As the core material of the carrier used in the present invention, various kinds of core materials can be selected, but are selected from iron powder, ferrite and magnetite having an average particle size of 30 to 200 (μm). At least one type of core material is preferred. The method for producing these core materials may be appropriately selected, and there is no particular limitation. Further, commercially available products can also be used.

【0011】本発明に用いられる被覆樹脂は、要求され
る帯電特性、抵抗特性によって、さまざまなものが選択
可能であり、これらは単独で用いても良く、また二種類
以上の樹脂を混合して用いても良い。更には、これらの
樹脂は市販されているものを用いても良く、また適宜合
成したものを用いても良い。具体的に使用される被覆樹
脂としては、例えば、シリコーン系樹脂(シリコーン樹
脂及びその誘導体)、フッ素系樹脂、スチレン系樹脂、
アクリル系樹脂、メタアクリル系樹脂、ポリエステル系
樹脂、ポリアミド系樹脂、エポキシ系樹脂、ポリエーテ
ル系樹脂、フェノール系樹脂等が挙げられ、また、共重
合体として使用することもでき、その使用に特に制限は
ない。
The coating resin used in the present invention can be selected from various types depending on the required charging characteristics and resistance characteristics. These may be used alone or as a mixture of two or more resins. May be used. Further, as these resins, commercially available resins may be used, or those appropriately synthesized may be used. Specific examples of the coating resin used include, for example, silicone resins (silicone resins and derivatives thereof), fluorine resins, styrene resins,
An acrylic resin, a methacrylic resin, a polyester resin, a polyamide resin, an epoxy resin, a polyether resin, a phenolic resin, and the like, and can also be used as a copolymer. No restrictions.

【0012】上記樹脂の被覆の方法についても、特に制
約は無く、適宜選択すれば良いが、通常は次のように行
われる。先ず、上記の樹脂をメチルエチルケトン、テト
ラヒドロフラン、トルエンなどの溶剤、もしくはこれら
の混合溶剤に希釈若しくは分散させて樹脂溶液を調製
し、該樹脂溶液にコア材を浸漬させるか、又は予めコア
材を流動化させた状態で上記樹脂溶液をスプレーするこ
とによって樹脂層を形成する。その後、コア材を流動化
させながら、50〜300℃で約30〜60分間の熱処
理をするのが望ましい。樹脂被覆量は、コア材に対して
0.05〜5重量%であることが望ましい。
The method of coating the resin is not particularly limited and may be appropriately selected, but is usually performed as follows. First, a resin solution is prepared by diluting or dispersing the above resin in a solvent such as methyl ethyl ketone, tetrahydrofuran, toluene, or a mixed solvent thereof, and the core material is immersed in the resin solution, or the core material is fluidized in advance. The resin layer is formed by spraying the above resin solution in this state. Thereafter, it is desirable to perform a heat treatment at 50 to 300 ° C. for about 30 to 60 minutes while fluidizing the core material. The resin coating amount is desirably 0.05 to 5% by weight based on the core material.

【0013】本発明での飽和磁化の測定は、東英工業
(株)製の振動型磁力計VSMP−1S型を用いる。サ
ンプルは測定用カプセル(0.0565cc)に充填
し、磁場1.1(MA/m)で測定する。また、本発明
での体積基準粒度分布の測定は、SYMPATEC社製
のレーザー回折式粒度分布測定装置を用いる。体積基準
粒度分布1%粒径、及び体積基準粒度分布50%粒径
は、得られた体積基準粒度分布を、粒径の小さい方から
積算して算出する。
The measurement of the saturation magnetization in the present invention uses a vibration type magnetometer VSMP-1S manufactured by Toei Industry Co., Ltd. The sample is filled in a measurement capsule (0.0565 cc), and measurement is performed with a magnetic field of 1.1 (MA / m). The measurement of the volume-based particle size distribution in the present invention uses a laser diffraction type particle size distribution measuring device manufactured by SYMPATEC. The volume-based particle size distribution 1% particle size and the volume-based particle size distribution 50% particle size are calculated by integrating the obtained volume-based particle size distribution from the smaller particle size.

【0014】本発明のキャリアは、トナーと混合して、
二成分現像剤として用いられる。トナーは、結着樹脂中
に着色剤等を分散させたもので、結着樹脂としては、ポ
リスチレン系樹脂、スチレン−アクリル系樹脂、ポリエ
ステル系樹脂、エポキシ系樹脂等が挙げられるが、トナ
ーの種類は特に制限されない。
The carrier of the present invention is mixed with a toner,
Used as a two-component developer. The toner is obtained by dispersing a colorant or the like in a binder resin. Examples of the binder resin include a polystyrene resin, a styrene-acrylic resin, a polyester resin, and an epoxy resin. Is not particularly limited.

【0015】[0015]

【実施例】以下、本発明を実施例により説明する。尚、
本発明は、以下の実施例に限られるものではない。 実施例1 ヘマタイトに、酸化マグネシウムをマグネシウム含有量
4.6重量%になるよう配合し、次に、バインダー(ポ
リビニルアルコール)1.5重量%及び分散剤0.5重
量%を添加し、スラリー濃度50重量%になるよう水を
加えた。これを、三井鉱山(株)製のアトライターで1
時間湿式粉砕混合し、スラリーを作成した。
The present invention will be described below with reference to examples. still,
The present invention is not limited to the following embodiments. Example 1 Magnesium oxide was added to hematite so that the magnesium content was 4.6% by weight, and then 1.5% by weight of a binder (polyvinyl alcohol) and 0.5% by weight of a dispersant were added, and the slurry concentration was increased. Water was added to 50% by weight. This is an attritor manufactured by Mitsui Mining Co., Ltd.
The mixture was wet-pulverized and mixed for an hour to prepare a slurry.

【0016】該スラリーをスプレードライヤーで造粒乾
燥し、次に電気炉で、窒素雰囲気下、1460℃で焼成
し、振動フルイで分級を行い、芯材キャリアコア材を得
た。
The slurry was granulated and dried by a spray drier, and then fired in an electric furnace at 1460 ° C. under a nitrogen atmosphere, and classified by a vibrating screen to obtain a core carrier core material.

【0017】得られた芯材キャリア1000重量部に対
し、メチル系シリコーン樹脂(東レダウコーニング
(株)製のSR2410)75重量部をトルエンで希釈
して被覆樹脂溶液を調製し、この樹脂溶液を流動コーテ
ィング装置を用いて、上記芯材キャリアにスプレーコー
トした。その後、流動層にて、250℃で60分間の熱
処理を行い、本発明のキャリアを得た。得られたキャリ
アの飽和磁化は58(Am 2/kg)、体積基準粒度分
布1%粒径は20(μm)、体積基準粒度分布50%粒
径は53(μm)であった。
With respect to 1000 parts by weight of the obtained core carrier,
And methyl silicone resin (Toray Dow Corning
(SR2410 manufactured by Co., Ltd.) 75 parts by weight diluted with toluene
To prepare a coating resin solution.
Spray coating the above core carrier using a coating device.
I did it. After that, heat in a fluidized bed at 250 ° C for 60 minutes.
Processing was performed to obtain a carrier of the present invention. Carry obtained
A has a saturation magnetization of 58 (Am Two/ Kg), volume-based particle size
Fabric 1% particle size is 20 (μm), volume-based particle size distribution 50% particle
The diameter was 53 (μm).

【0018】このようにして得られた樹脂被覆キャリア
1000重量部に対して、市販のトナー55重量部を5
リットルのV型ブレンダーで30分間混合して二成分現
像剤を得た。この現像剤を用い、市販の複写機で連続実
写テストを行った。その結果、初期においても、20万
枚後においても、キャリア付着のない画像が得られた。 実施例2 ヘマタイトに、酸化マグネシウムをマグネシウム含有量
5.0重量%になるよう配合し、分級条件以外は実施例
1と同様な方法で芯材キャリアを得、実施例1と同様な
方法で、樹脂被覆キャリアを得た。得られたキャリアの
飽和磁化は57(Am2/kg)、体積基準粒度分布1
%粒径は55(μm)、体積基準粒度分布50%粒径は
125(μm)であった。実施例1と同様な方法で、二
成分現像剤を得、連続実写テストを行った。その結果、
初期においても、20万枚後においても、キャリア付着
のない画像が得られた。 実施例3 芯材キャリアに市販のマグネタイト(ヘガネス社製)を
使用した以外は、実施例1と同様な方法で、樹脂被覆キ
ャリアを得た。得られたキャリアの飽和磁化は90(A
2/kg)、体積基準粒度分布1%粒径は52(μ
m)、体積基準粒度分布50%粒径は115(μm)で
あった。実施例1と同様な方法で、二成分現像剤を得、
連続実写テストを行った。その結果、初期においても、
20万枚後においても、キャリア付着のない画像が得ら
れた。 実施例4 芯材キャリアに市販のマグネタイト(ヘガネス社製)を
使用した以外は、実施例1と同様な方法で、樹脂被覆キ
ャリアを得た。得られたキャリアの飽和磁化は89(A
2/kg)、体積基準粒度分布1%粒径は15(μ
m)、体積基準粒度分布50%粒径は35(μm)であ
った。実施例1と同様な方法で、二成分現像剤を得、連
続実写テストを行った。その結果、初期においても、2
0万枚後においても、キャリア付着のない画像が得られ
た。 実施例5 アトマイズ鉄粉を用いて、振動フルイで分級を行い、安
定化処理を行って、芯材キャリアを得、実施例1と同様
な方法で、樹脂被覆キャリアを得た。得られたキャリア
の飽和磁化は203(Am2/kg)、体積基準粒度分
布1%粒径は15(μm)、体積基準粒度分布50%粒
径は40(μm)であった。実施例1と同様な方法で、
二成分現像剤を得、連続実写テストを行った。その結
果、初期においても、20万枚後においても、キャリア
付着のない画像が得られた。 実施例6 スポンジ鉄粉を用いて、振動フルイで分級を行い、安定
化処理を行って、芯材キャリアを得、実施例1と同様な
方法で、樹脂被覆キャリアを得た。得られたキャリアの
飽和磁化は204(Am2/kg)、体積基準粒度分布
1%粒径は89(μm)、体積基準粒度分布50%粒径
は185(μm)であった。実施例1と同様な方法で、
二成分現像剤を得、連続実写テストを行った。その結
果、初期においても、20万枚後においても、キャリア
付着のない画像が得られた。 比較例1 ヘマタイトに、酸化マグネシウムをマグネシウム含有量
10.5重量%になるよう配合し、実施例1と分級条件
以外は同様な方法で芯材キャリアを得、実施例1と同様
な方法で、樹脂被覆キャリアを得た。得られたキャリア
の飽和磁化は52(Am2/kg)、体積基準粒度分布
1%粒径は22(μm)、体積基準粒度分布50%粒径
は50(μm)であった。実施例1と同様な方法で、二
成分現像剤を得、連続実写テストを行った。その結果、
初期からキャリア付着が発生した。 比較例2 ヘマタイトに、酸化マグネシウムをマグネシウム含有量
2.5重量%になるよう配合し、実施例1と分級条件以
外は同様な方法で芯材キャリアを得、実施例1と同様な
方法で、樹脂被覆キャリアを得た。得られたキャリアの
飽和磁化は75(Am2/kg)、体積基準粒度分布1
%粒径は9(μm)、体積基準粒度分布50%粒径は3
5(μm)であった。実施例1と同様な方法で、二成分
現像剤を得、連続実写テストを行った。その結果、初期
からキャリア付着が発生した。 比較例3 アトマイズ鉄粉を用いて、実施例5と分級条件以外は同
様な方法で芯材キャリアを得、実施例1と同様な方法
で、樹脂被覆キャリアを得た。得られたキャリアの飽和
磁化は204(Am2/kg)、体積基準粒度分布1%
粒径は14(μm)、体積基準粒度分布50%粒径は4
7(μm)であった。実施例1と同様な方法で、二成分
現像剤を得、連続実写テストを行った。その結果、初期
からキャリア付着が発生した。 比較例4 スポンジ鉄粉を用いて、実施例6と分級条件以外は同様
な方法で芯材キャリアを得、実施例1と同様な方法で、
樹脂被覆キャリアを得た。得られたキャリアの飽和磁化
は202(Am2/kg)、体積基準粒度分布1%粒径
は54(μm)、体積基準粒度分布50%粒径は160
(μm)であった。実施例1と同様な方法で、二成分現
像剤を得、連続実写テストを行った。その結果、初期か
らキャリア付着が発生した。
To 1000 parts by weight of the resin-coated carrier thus obtained, 55 parts by weight of a commercially available toner was added to 5 parts by weight.
The mixture was mixed for 30 minutes in a liter V-blender to obtain a two-component developer. Using this developer, a continuous actual photographing test was performed with a commercially available copying machine. As a result, an image without carrier adhesion was obtained both at the initial stage and after 200,000 copies. Example 2 Magnesium oxide was added to hematite so that the magnesium content became 5.0% by weight, and a core material carrier was obtained in the same manner as in Example 1 except for the classification conditions. A resin-coated carrier was obtained. The carrier has a saturation magnetization of 57 (Am 2 / kg) and a volume-based particle size distribution of 1
% Particle size was 55 (μm), and 50% particle size in volume-based particle size distribution was 125 (μm). A two-component developer was obtained in the same manner as in Example 1, and a continuous actual test was performed. as a result,
An image without carrier adhesion was obtained both at the initial stage and after 200,000 copies. Example 3 A resin-coated carrier was obtained in the same manner as in Example 1, except that a commercially available magnetite (manufactured by Höganäs) was used as the core material carrier. The saturation magnetization of the obtained carrier is 90 (A
m 2 / kg), the volume-based particle size distribution 1% particle size is 52 (μ
m), the 50% particle size by volume-based particle size distribution was 115 (μm). A two-component developer was obtained in the same manner as in Example 1,
A continuous live-action test was performed. As a result, even at the beginning,
Even after 200,000 copies, an image without carrier adhesion was obtained. Example 4 A resin-coated carrier was obtained in the same manner as in Example 1, except that commercially available magnetite (manufactured by Hoganes) was used as the core material carrier. The saturation magnetization of the obtained carrier is 89 (A
m 2 / kg), the volume-based particle size distribution 1% particle size is 15 (μ
m), and the 50% particle size by volume-based particle size distribution was 35 (μm). A two-component developer was obtained in the same manner as in Example 1, and a continuous actual test was performed. As a result, even at the beginning, 2
An image without carrier adhesion was obtained even after the printing of 100,000 sheets. Example 5 Using an atomized iron powder, classification was carried out with a vibrating sieve, a stabilization treatment was performed, and a core material carrier was obtained. In the same manner as in Example 1, a resin-coated carrier was obtained. The carrier obtained had a saturation magnetization of 203 (Am 2 / kg), a volume-based particle size distribution of 1% particle size was 15 (μm), and a volume-based particle size distribution of 50% particle size was 40 (μm). In the same manner as in Example 1,
A two-component developer was obtained, and a continuous actual test was performed. As a result, an image without carrier adhesion was obtained both at the initial stage and after 200,000 copies. Example 6 Classification was performed with a vibrating sieve using iron sponge powder, and a stabilization treatment was performed to obtain a core material carrier. In the same manner as in Example 1, a resin-coated carrier was obtained. The carrier obtained had a saturation magnetization of 204 (Am 2 / kg), a volume-based particle size distribution of 1% particle size of 89 (μm) and a volume-based particle size distribution of 50% particle size of 185 (μm). In the same manner as in Example 1,
A two-component developer was obtained, and a continuous actual test was performed. As a result, an image without carrier adhesion was obtained both at the initial stage and after 200,000 copies. Comparative Example 1 Magnesium oxide was mixed with hematite so that the magnesium content was 10.5% by weight, and a core material carrier was obtained in the same manner as in Example 1 except for the classification conditions. A resin-coated carrier was obtained. The obtained carrier had a saturation magnetization of 52 (Am 2 / kg), a volume-based particle size distribution of 1% particle size was 22 (μm), and a volume-based particle size distribution of 50% particle size was 50 (μm). A two-component developer was obtained in the same manner as in Example 1, and a continuous actual test was performed. as a result,
Carrier adhesion occurred from the beginning. Comparative Example 2 Magnesium oxide was added to hematite so as to have a magnesium content of 2.5% by weight, and a core material carrier was obtained in the same manner as in Example 1 except for classification conditions. A resin-coated carrier was obtained. The obtained carrier has a saturation magnetization of 75 (Am 2 / kg) and a volume-based particle size distribution of 1
% Particle size is 9 (μm), volume-based particle size distribution 50% particle size is 3
5 (μm). A two-component developer was obtained in the same manner as in Example 1, and a continuous actual test was performed. As a result, carrier adhesion occurred from the beginning. Comparative Example 3 Using an atomized iron powder, a core material carrier was obtained in the same manner as in Example 5 except for classification conditions, and a resin-coated carrier was obtained in the same manner as in Example 1. The obtained carrier has a saturation magnetization of 204 (Am 2 / kg) and a volume-based particle size distribution of 1%.
The particle size is 14 (μm), the volume-based particle size distribution 50% particle size is 4
7 (μm). A two-component developer was obtained in the same manner as in Example 1, and a continuous actual test was performed. As a result, carrier adhesion occurred from the beginning. Comparative Example 4 Using a sponge iron powder, a core material carrier was obtained in the same manner as in Example 6, except for the classification conditions, and the same method as in Example 1 was used.
A resin-coated carrier was obtained. The obtained carrier has a saturation magnetization of 202 (Am 2 / kg), a volume-based particle size distribution of 1% particle size is 54 (μm), and a volume-based particle size distribution of 50% particle size is 160.
(Μm). A two-component developer was obtained in the same manner as in Example 1, and a continuous actual test was performed. As a result, carrier adhesion occurred from the beginning.

【0019】以上の実施例と比較例をまとめた結果を表
1に示す。また、図1の本発明の飽和磁化とx1の関係
を示す図に、実施例と比較例の結果を記入し、図2の本
発明のx50とx1の関係を示す図に、実施例と比較例
の結果を記入した。図1の太線で囲まれた部分と、図2
の太線の上部を合わせた範囲が、本発明の範囲である。
Table 1 summarizes the results of the above Examples and Comparative Examples. Further, the results of the example and the comparative example are entered in the diagram showing the relationship between the saturation magnetization and x1 of the present invention in FIG. 1, and the diagram showing the relationship between x50 and x1 of the present invention in FIG. The results of the example are entered. The part surrounded by the thick line in FIG.
The range in which the upper part of the bold line is combined is the range of the present invention.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【発明の効果】以上説明したように、本発明によればキ
ャリア付着が無い電子写真用キャリアを得ることができ
る。
As described above, according to the present invention, it is possible to obtain an electrophotographic carrier having no carrier adhesion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の飽和磁化とx1の関係を示した図であ
る。
FIG. 1 is a diagram showing the relationship between the saturation magnetization and x1 of the present invention.

【図2】本発明のx50とx1の関係を示した図であ
る。
FIG. 2 is a diagram showing a relationship between x50 and x1 of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 飽和磁化が55〜210(Am2/k
g)である電子写真用キャリアであって、該キャリアの
飽和磁化をσs(Am2/kg)、体積基準粒度分布1
%粒径をx1(μm)、体積基準粒度分布50%粒径を
x50(μm)としたとき、σs、x1、x50が下記
式(1)及び(2)を満足することを特徴とする電子写
真用キャリア。 (1/σs)×750 ≦ x1 … (1) x50×0.35 ≦ x1 … (2)
1. Saturation magnetization is 55 to 210 (Am 2 / k)
g), wherein the saturation magnetization of the carrier is s (Am 2 / kg), and the volume-based particle size distribution 1
% When the particle size is x1 (μm) and the 50% volume-based particle size distribution is x50 (μm), σs, x1, and x50 satisfy the following formulas (1) and (2). Photo carrier. (1 / σs) × 750 ≦ x1 (1) x50 × 0.35 ≦ x1 (2)
JP33765299A 1999-11-29 1999-11-29 Electrophotographic carrier Pending JP2001154414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33765299A JP2001154414A (en) 1999-11-29 1999-11-29 Electrophotographic carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33765299A JP2001154414A (en) 1999-11-29 1999-11-29 Electrophotographic carrier

Publications (1)

Publication Number Publication Date
JP2001154414A true JP2001154414A (en) 2001-06-08

Family

ID=18310682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33765299A Pending JP2001154414A (en) 1999-11-29 1999-11-29 Electrophotographic carrier

Country Status (1)

Country Link
JP (1) JP2001154414A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006524627A (en) * 2003-03-31 2006-11-02 関東電化工業株式会社 Mg-based ferrite, carrier for electrophotographic development containing the ferrite, and developer containing the carrier
JP2017100599A (en) * 2015-12-03 2017-06-08 株式会社Subaru On-vehicle device control method
JP7468170B2 (en) 2020-06-10 2024-04-16 株式会社リコー Carrier, developer, image forming apparatus, process cartridge, and image forming method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006524627A (en) * 2003-03-31 2006-11-02 関東電化工業株式会社 Mg-based ferrite, carrier for electrophotographic development containing the ferrite, and developer containing the carrier
JP2017100599A (en) * 2015-12-03 2017-06-08 株式会社Subaru On-vehicle device control method
JP7468170B2 (en) 2020-06-10 2024-04-16 株式会社リコー Carrier, developer, image forming apparatus, process cartridge, and image forming method

Similar Documents

Publication Publication Date Title
JP4091538B2 (en) Electrostatic latent image developing carrier, developer, developer container, image forming method, and process cartridge
JP2001066820A (en) Electrostatic latent image developing toner, its production, electrostatic latent image developing developer and image forming method
WO2017175646A1 (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier for electrophotographic developer, electrophotographic developer, and method for producing ferrite carrier core material for electrophotographic developer
JP2002296846A (en) Carrier for electrophotographic developer and developer using this carrier
US20150277256A1 (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier and electrophotographic developer using the ferrite carrier
JP4224181B2 (en) Electrophotographic carrier
JP2001154414A (en) Electrophotographic carrier
JP3397543B2 (en) Two-component developer, developing method and image forming method
JP2003034533A (en) Ferromagnetic material powder and carrier of developing agent for electronic photograph
JP3005120B2 (en) Electrophotographic carrier
JP4948191B2 (en) Two-component electrophotographic developer carrier and two-component electrophotographic developer
US5866289A (en) Developer for electrostatic development and electrostatic developing method using same
JP3284488B2 (en) Two-component developer, developing method and image forming method
KR0163996B1 (en) Two-component type developer developing method and image forming method
JPH07301958A (en) Electrophotographic carrier, two-component developer using that carrier and production of that carrier
WO2017175647A1 (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier for electrophotographic developer, electrophotographic developer, and method for producing ferrite carrier core material for electrophotographic developer
JP2887026B2 (en) Magnetic material dispersed resin carrier
JPH0651556A (en) Magnetic toner
JP3122768B2 (en) Developer for developing electrostatic images
JP2008107841A (en) Electrophotographic carrier
JPS6040019B2 (en) Developer for electrostatic images
JP2887027B2 (en) Carrier for electrophotography
JP2984471B2 (en) Electrophotographic carrier
JPH07271106A (en) Electrophotographic carrier, its production and two-component developer using that carrier
JPS61100775A (en) Applying method of toner

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080226