JP2001151984A - Molding material for brake piston - Google Patents

Molding material for brake piston

Info

Publication number
JP2001151984A
JP2001151984A JP33249199A JP33249199A JP2001151984A JP 2001151984 A JP2001151984 A JP 2001151984A JP 33249199 A JP33249199 A JP 33249199A JP 33249199 A JP33249199 A JP 33249199A JP 2001151984 A JP2001151984 A JP 2001151984A
Authority
JP
Japan
Prior art keywords
weight
molding material
molecular weight
resin
average molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33249199A
Other languages
Japanese (ja)
Inventor
Shinichi Nakao
伸一 中尾
Yasutaka Kimura
康孝 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP33249199A priority Critical patent/JP2001151984A/en
Publication of JP2001151984A publication Critical patent/JP2001151984A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pistons, Piston Rings, And Cylinders (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a suitable material for brake pistons and the like in place of ceramics and metals that have hitherto been used, which material is not impaired in the resistance to wear and that to brake fluids as compaired with the conventional phenolic molding material and can give a molding material excellent in mechanical strength at room temperature and in high temperature atmosphere. SOLUTION: There is provided a phenolic resin molding material which comprises, as essential components, (a) a high-molecular weight phenolic novolak resin having a weight average molecular weight of 50,000 or more where polystyrene is used as a reference material, (b) a phenolic resol resin having a weight average molecular weight less than 50,000 where polystyrene is used as a reference material, (c) a curing agent of hexamethylenetetramine, and (d) an inorganic filler and/or an organic filler.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、衝撃強度、常温及
び高温雰囲気中の静的機械強度に優れ、耐ブレーキ液
性、耐摩耗性も良好であり、ディスクブレーキピストン
用樹脂成形材料を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a resin molding material for a disc brake piston which has excellent impact strength, static mechanical strength in normal temperature and high temperature atmospheres, good brake fluid resistance and good wear resistance. Things.

【0002】[0002]

【従来技術】従来よりディスクブレーキ用ブレーキピス
トンはその使用環境から耐熱性、耐摩耗性、耐ブレーキ
液性、及び高温雰囲気中の機械強度等が要求され、セラ
ミックや金属製が用いられてきた。しかし、セラミック
や金属製は重量が重い、加工に時間がかかる、コストが
高い等の問題が有る。一方フェノール樹脂は熱硬化性樹
脂の中では耐熱性、耐薬品性、機械的強度、等種々の点
において優れており、特に成形材料の用途では、金属部
品をガラス繊維で強化したフェノール樹脂成形材料に置
換することで大幅なコストダウンが計れることから、自
動車分野をはじめとする各種金属部品の代替材料として
の需要が高まってきている。しかし従来のブレーキピス
トン用成形材料は高度の耐熱性を付与するためガラス繊
維やシリカを配合している例が多いが、コストが高くな
る上耐摩耗性が著しく低下する欠点が有った。
2. Description of the Related Art Conventionally, brake pistons for disc brakes are required to have heat resistance, wear resistance, brake fluid resistance, mechanical strength in a high-temperature atmosphere, and the like from the usage environment, and ceramic and metal products have been used. However, ceramic and metal products have problems such as heavy weight, time-consuming processing, and high cost. On the other hand, phenolic resin is excellent among thermosetting resins in various points such as heat resistance, chemical resistance, mechanical strength, etc. Especially for molding materials, phenolic resin molding material in which metal parts are reinforced with glass fiber Since the cost can be significantly reduced by substituting the metal material, the demand as an alternative material for various metal parts such as the automobile field is increasing. However, in many cases, conventional molding materials for brake pistons contain glass fiber or silica in order to impart a high degree of heat resistance, but have disadvantages in that the cost is high and the wear resistance is significantly reduced.

【0003】[0003]

【発明が解決しようとする課題】本発明に従えば、従来
のフェノール成形材料に比べて耐摩耗性や耐ブレーキ液
性を損なう事無く、衝撃強度、常温及び高温雰囲気中の
静的機械強度、長期耐熱性に優れた成形品を得ることが
可能となり、従来より用いられてきたセラミックや金属
に代わり、ディスクブレーキ用ブレーキピストン等に好
適な材料が得られる。
According to the present invention, the impact strength, the static mechanical strength in normal temperature and high temperature atmosphere, A molded article having excellent long-term heat resistance can be obtained, and a material suitable for a brake piston for a disc brake or the like can be obtained in place of a conventionally used ceramic or metal.

【0004】[0004]

【課題を解決するための手段】本発明は、(a)ポリス
チレンを基準物質としたときの重量平均分子量が50,
000以上である高分子量型フェノールノボラック樹脂
(以下、高分子量ノボラック樹脂)、(b)ポリスチレ
ンを基準物質としたときの重量平均分子量が50,00
0未満のレゾール型フェノール樹脂(以下、レゾール樹
脂)、(c)硬化剤としてヘキサメチレンテトラミン、
及び(d)無機充填材及び又は有機充填材を必須成分と
して含有することを特徴とするブレーキピストン用フェ
ノール樹脂成形材料に関するものであり、成形材料全体
に対しフェノール樹脂を10〜50重量%、ヘキサメチ
レンテトラミン2〜10重量%、無機充填材及び又は有
機充填材、好ましくは硅灰石・ガラス繊維・クレー混合
物を45〜85重量%を含有し、且つフェノール樹脂全
体に対するレゾール樹脂の割合が20〜40重量%であ
る事を特徴とする。
According to the present invention, there are provided (a) a polystyrene as a reference substance having a weight average molecular weight of 50,
A high molecular weight phenol novolak resin having a molecular weight of at least 000 (hereinafter referred to as a high molecular weight novolak resin), and (b) a weight average molecular weight of 50,000 based on polystyrene as a reference substance.
Less than 0 resole type phenol resin (hereinafter, resole resin), (c) hexamethylenetetramine as a curing agent,
And (d) a phenolic resin molding material for a brake piston, comprising an inorganic filler and / or an organic filler as an essential component, wherein the phenolic resin is 10 to 50% by weight, It contains 2 to 10% by weight of methylenetetramine, 45 to 85% by weight of an inorganic filler and / or an organic filler, preferably a wollastonite / glass fiber / clay mixture, and a ratio of the resol resin to the total phenolic resin of 20 to 85%. It is characterized by being 40% by weight.

【0005】本発明に用いられる高分子量ノボラック樹
脂(a)は3官能フェノール類とホルムアルデヒドの重
縮合物であり、ポリスチレンを基準物質としたときの重
量平均分子量が50,000以上のものである。そし
て、成形材料を速硬化性にするためにはフェノール水酸
基に対してオルソ−オルソ位でのメチレン結合が全メチ
レン結合の60%以上であるものが好ましい。更に、成
形材料化の際の作業性から重量平均分子量50,000
〜200,000のものが好ましい。本発明において
は、高分子量ノボラック樹脂(a)の重量平均分子量が
50,000未満であると高温雰囲気中の強度向上効果
が十分に得られない。
The high molecular weight novolak resin (a) used in the present invention is a polycondensate of a trifunctional phenol and formaldehyde, and has a weight average molecular weight of 50,000 or more when polystyrene is used as a reference substance. In order to make the molding material quick-curing, it is preferable that the methylene bond at the ortho-ortho position relative to the phenolic hydroxyl group is 60% or more of all methylene bonds. Further, from the viewpoint of workability in forming a molding material, the weight average molecular weight is 50,000.
~ 200,000 are preferred. In the present invention, if the weight average molecular weight of the high molecular weight novolak resin (a) is less than 50,000, the effect of improving strength in a high-temperature atmosphere cannot be sufficiently obtained.

【0006】本発明に用いるレゾール樹脂はメチロール
型、ジメチレンエーテル型どちらを用いても良いが、好
ましくは重量平均分子量50,000以下のものを用い
る。重量平均分子量が50,000以上だと樹脂の粘度
が上がり過ぎ、反応釜からの取り出しが困難となるし、
成形材料の溶融粘度や硬化速度が上昇し成形性が悪化す
るからである。
The resole resin used in the present invention may be either a methylol type or a dimethylene ether type, but preferably has a weight average molecular weight of 50,000 or less. When the weight average molecular weight is 50,000 or more, the viscosity of the resin becomes too high, and it is difficult to take out the resin from the reaction vessel.
This is because the melt viscosity and the curing speed of the molding material increase, and the moldability deteriorates.

【0007】本発明は、フェノール樹脂として、特に
(a)高分子量ノボラック樹脂を使用し、当該(a)高
分子量ノボラック樹脂と(b)レゾール樹脂、(c)ヘ
キサメチレンテトラミンとを併用することにより、特に
常温中及び高温雰囲気中の機械強度に優れるものであり
ます。レゾール樹脂が20重量%を下回ると高温雰囲気
中の静的機械強度が低下するし、成形性も悪化する。レ
ゾール樹脂が40重量%を上回ると、衝撃強度の向上効
果が小さくなる。
According to the present invention, a phenolic resin is used, in particular, by using (a) a high molecular weight novolak resin, and combining (a) the high molecular weight novolak resin with (b) a resole resin and (c) hexamethylenetetramine. Especially, it has excellent mechanical strength in normal temperature and high temperature atmosphere. If the content of the resole resin is less than 20% by weight, the static mechanical strength in a high-temperature atmosphere decreases, and the moldability also deteriorates. When the resole resin exceeds 40% by weight, the effect of improving the impact strength is reduced.

【0008】本発明において、通常、硬化剤としてヘキ
サメチレンテトラミン(c)を、成形材料全体に対して
2〜10重量%使用する。2重量%未満では、硬化が不
十分となり、10重量%を越えて配合しても硬化性はこ
れ以上良くなることはなく、逆に分解ガス等が成形不良
の原因となる。本発明に用いる無機充填材(d)の配合
割合は、特に限定するものではないが、成形材料全体に
対して45〜85重量%であることが好ましい。45重
量%未満であると、フェノール樹脂の割合が多くて耐熱
性や寸法安定性が損なわれる、85重量%より多いと成
形時の流動性が十分でなく、かすれ等の成形不良を生じ
やすい。無機充填材としては、ガラス繊維、炭酸カルシ
ウム、タルク、水酸化アルミニウムなど何れを用いても
良く、特に限定されるものではないが、硅灰石、ガラス
繊維、クレーの併用が好ましい。ここで用いる硅灰石は
針状結晶であるためガラス繊維やシリカに比べ耐摩耗性
にすぐれており、多量に配合しても耐摩耗性を損ねる事
無く補強出来る。又、クレーは耐熱性・耐薬品性に優れ
ている。更に耐摩耗性に影響の無い範囲でガラス繊維を
配合する事により、高温雰囲気中の機械強度、耐摩耗
性、耐ブレーキ液性及び耐熱性に優れたフェノール樹脂
成形材料が得られるからである。硅灰石の配合量は成形
材料全体に対し35〜65重量%である事が好ましい。
35重量%未満では耐摩耗性、寸法精度が不十分となる
ことがあり、65重量%を越えると材料化時の作業性が
悪化する。硅灰石の粒径は10〜300μmが好まし
い。10μm未満では成形材料化時の作業性が悪くな
り、300μm以上では成形時に配向が生じ易く機械強
度に異方差が出るし、寸法精度も悪くなる。ガラス繊維
の配合量は成形材料全体に対し5〜35重量%である事
が好ましい。5重量%未満では補強効果が小さく、35
重量%を越えると繊維の配向により機械強度の異方差が
生じたり、耐摩耗性が低下する。更に繊維長としては
0.5〜5mmが好ましい。0.5mmを下回ると補強
効果が小さく、5mmを上回ると生産性が悪くなるから
である。クレーの配合量は成形材料全体に対し、5〜3
5重量%である事が好ましい。5重量%未満では耐熱性
付与効果が小さく、35重量%を越えると耐摩耗性が低
下するからである。また、ここで用いられるクレーは焼
成タイプ、未焼成タイプの何れかに限定するものでは無
い。
In the present invention, usually, hexamethylenetetramine (c) is used as a curing agent in an amount of 2 to 10% by weight based on the whole molding material. If the amount is less than 2% by weight, the curing will be insufficient, and even if the amount exceeds 10% by weight, the curability will not be improved any more, and conversely, the decomposition gas will cause molding failure. The mixing ratio of the inorganic filler (d) used in the present invention is not particularly limited, but is preferably 45 to 85% by weight based on the whole molding material. When the amount is less than 45% by weight, heat resistance and dimensional stability are impaired due to a large proportion of the phenolic resin. As the inorganic filler, any of glass fiber, calcium carbonate, talc, aluminum hydroxide and the like may be used, and it is not particularly limited. However, combination use of wollastonite, glass fiber, and clay is preferable. Since the wollastonite used here is a needle-like crystal, it has excellent wear resistance as compared with glass fiber or silica, and can be reinforced without impairing the wear resistance even in a large amount. Clay is also excellent in heat resistance and chemical resistance. Further, by blending glass fibers within a range that does not affect wear resistance, a phenolic resin molding material excellent in mechanical strength, wear resistance, brake fluid resistance and heat resistance in a high-temperature atmosphere can be obtained. The amount of wollastonite is preferably 35 to 65% by weight based on the whole molding material.
If it is less than 35% by weight, the wear resistance and dimensional accuracy may be insufficient, and if it exceeds 65% by weight, the workability at the time of materialization deteriorates. The particle size of wollastonite is preferably from 10 to 300 μm. If it is less than 10 μm, the workability at the time of forming a molding material is deteriorated, and if it is 300 μm or more, orientation tends to occur at the time of molding, resulting in an anisotropic difference in mechanical strength and dimensional accuracy. The amount of the glass fiber is preferably 5 to 35% by weight based on the whole molding material. If it is less than 5% by weight, the reinforcing effect is small, and
If the content is more than 10% by weight, an anisotropic difference in mechanical strength occurs due to the orientation of the fibers, or the abrasion resistance decreases. Further, the fiber length is preferably 0.5 to 5 mm. If the thickness is less than 0.5 mm, the reinforcing effect is small, and if it exceeds 5 mm, the productivity is deteriorated. The amount of the clay is 5 to 3 with respect to the entire molding material.
Preferably it is 5% by weight. If it is less than 5% by weight, the effect of imparting heat resistance is small, and if it exceeds 35% by weight, the wear resistance is reduced. Further, the clay used here is not limited to either the fired type or the unfired type.

【0009】尚、必要によりこれら無機系充填材の他に
有機系充填材を併用しても良い。有機充填材としては特
に限定しないが、アラミド繊維等が好ましく用いられ
る。
If necessary, an organic filler may be used in addition to the inorganic filler. The organic filler is not particularly limited, but aramid fiber or the like is preferably used.

【0010】本発明において、成形材料を得るにはその
他に硬化助剤、他の充填材、離型剤、顔料等と合わせて
均一に混合し、混練機で加熱混練後、冷却し粉砕するの
が一般的である。混練機は二軸ロール、コニーダ、二軸
押出機等を単独で、或いは組み合わせて使用しても良
い。更には、2軸押出機、単軸押出機等でペレット状に
造粒しても良いし、回転羽根を有したヘンシェルミキサ
ー等の高速回転ミキサーで造粒しても良い。
In the present invention, in order to obtain a molding material, the mixture is uniformly mixed with a curing aid, another filler, a releasing agent, a pigment, etc., heated and kneaded by a kneader, then cooled and pulverized. Is common. As the kneader, a twin-screw roll, a kneader, a twin-screw extruder or the like may be used alone or in combination. Furthermore, granulation into pellets may be performed using a twin-screw extruder, a single-screw extruder, or the like, or granulation may be performed using a high-speed rotary mixer such as a Henschel mixer having rotating blades.

【0011】[0011]

【実施例】以下、実施例及び比較例により本発明を説明
する。何れの例に於いても、表1に示す配合の均一混合
物を加熱した2軸ロールにより混練し、冷却後粉砕して
目的のフェノール樹脂成形材料を得た。尚、本発明に於
ける重量平均分子量の測定には、ポリスチレンを標準物
質とした紫外線吸収スペクトル検出器を用いたゲルパー
ミエーションクロマトグラフィー(GPC)法を用い
た。更に、得られた成形材料を用いてトランスファー成
形により各種試験片を作成し、評価結果を表1に示し
た。
The present invention will be described below with reference to examples and comparative examples. In each case, a homogeneous mixture having the composition shown in Table 1 was kneaded with a heated biaxial roll, cooled, and pulverized to obtain a desired phenolic resin molding material. In the measurement of the weight average molecular weight in the present invention, a gel permeation chromatography (GPC) method using an ultraviolet absorption spectrum detector using polystyrene as a standard substance was used. Further, various test pieces were prepared by transfer molding using the obtained molding materials, and the evaluation results are shown in Table 1.

【0012】実施例1 フェノール22.0Kgを熱交換器、加熱装置及び同径
の2段タービン型攪拌羽根を有した容量50Lの高圧反
応器内に入れ180℃まで加熱し、窒素ガスにて0.8
MPa迄加圧した後、ダイアフラム式高圧定量ポンプに
て予めイオン交換樹脂処理により蟻酸含有量をを50P
PMまで低減した40%ホルマリン13.3Kgを60
分間掛けて反応器下部より逐次添加し付加縮合反応をさ
せた。この間の反応温度が180〜200℃となるよう
に反応器のジャケット部の温度及び添加速度を調整し
た。添加終了後5分間その温度を保ち自己発熱が起こら
ないことを確認後、更に220〜230℃を保つように
加熱しながら、熱交換器経由で30分間掛けて常圧に戻
しながら脱水反応を行った。更にこの後1.3KPaま
で減圧し30分間未反応フェノールの除去を行い、冷却
バット上に取り出しポリスチレン換算で重量平均分子量
が52,000の高分子量ノボラック樹脂20.0Kg
を得た。又、フェノール(P)100Kg、87%パラ
ホルムアルデヒド(F)62Kg(F/Pモル比1.7
0)、酢酸亜鉛0.5Kgを環流コンデンサー攪拌機、
加熱装置、真空脱水装置、スタティックミキサー付きレ
ジン循環装置を備えた300リッター反応釜内に入れ、
環流反応を4時間行った。この時点のフェノール反応率
は94%であった。その後、脱水を行いながら115℃
迄加熱し、更に115℃、真空度100torrを1時
間維持して反応を進めた後、冷却バット上に取り出し、
ポリスチレン換算で重量平均分子量が22,000のジ
メチレンエーテル型レゾール樹脂(固形)117Kgを
得た この重量平均分子量52,000の高分子量ノボラック
樹脂、と重量平均分子量22,000のジメチレンエー
テル型レゾール樹脂、ヘキサメチレンテトラミン、充填
材、硬化助剤、滑剤、着色剤等を表1の割合にて配合
し、2軸ロールにて溶融混練し成形材料を得た。
Example 1 22.0 kg of phenol was placed in a 50 L high-pressure reactor having a heat exchanger, a heating device and a two-stage turbine type stirring blade having the same diameter, heated to 180 ° C., and heated to 180 ° C. with nitrogen gas. .8
After pressurizing to MPa, the formic acid content was previously reduced to 50P by ion exchange resin treatment with a diaphragm type high pressure metering pump.
13.3Kg of 40% formalin reduced to PM to 60
The mixture was added sequentially from the lower part of the reactor over a period of minutes to cause an addition condensation reaction. The temperature and the addition rate of the jacket of the reactor were adjusted so that the reaction temperature during this time was 180 to 200 ° C. After completion of the addition, the temperature was maintained for 5 minutes, and after confirming that self-heating did not occur, a dehydration reaction was performed while returning to normal pressure over 30 minutes via a heat exchanger while heating to further maintain the temperature at 220 to 230 ° C. Was. Thereafter, the pressure was reduced to 1.3 KPa, and the unreacted phenol was removed for 30 minutes. The unreacted phenol was removed and taken out on a cooling vat, and 20.0 kg of a high molecular weight novolak resin having a weight average molecular weight of 52,000 in terms of polystyrene was obtained.
I got Also, 100 kg of phenol (P) and 62 kg of 87% paraformaldehyde (F) (F / P molar ratio of 1.7)
0), 0.5 kg of zinc acetate was added to a reflux condenser stirrer,
Put into a 300 liter reactor equipped with a heating device, a vacuum dehydrator, and a resin circulation device with a static mixer,
The reflux reaction was performed for 4 hours. The phenol conversion at this point was 94%. Then, while dehydrating, 115 ° C
After heating to 115 ° C and maintaining the vacuum degree of 100 torr for 1 hour, the reaction was taken out and placed on a cooling vat.
117 kg of a dimethylene ether type resole resin (solid) having a weight average molecular weight of 22,000 in terms of polystyrene was obtained. This high molecular weight novolak resin having a weight average molecular weight of 52,000 and a dimethylene ether type resole having a weight average molecular weight of 22,000 were obtained. A resin, hexamethylenetetramine, a filler, a curing aid, a lubricant, a colorant, and the like were blended in the proportions shown in Table 1 and melt-kneaded with a biaxial roll to obtain a molding material.

【0013】実施例2 反応器内にフェノール20.0Kgを入れ、アルデヒド
類として88%パラホルムアルデヒド8.9Kgを使用
し、更にこのパラホルムアルデヒドは8.0Kgのフェ
ノールと事前に混合し、懸濁状態液となったものをプラ
ンジャー式高圧定量ポンプにて反応器下部より供給する
ことと減圧での未反応フェノール除去を行わない事、反
応温度が200〜220℃である事以外は、すべて実施
例1と同様の方法で反応を行いポリスチレン換算で重量
平均分子量が102,000のノボラック型フェノール
樹脂27.0Kgを得た。この重量平均分子量102,
000の高分子量ノボラック樹脂、と実施例1と同様の
方法で反応を行い得た重量平均分子量22,000のジ
メチレンエーテル型レゾール樹脂、ヘキサメチレンテト
ラミン、充填材、硬化助剤、滑剤、着色剤等を表1の割
合にて配合し、2軸ロールにて溶融混練し成形材料を得
た。
Example 2 20.0 kg of phenol was put in a reactor, 8.9 kg of 88% paraformaldehyde was used as aldehydes, and this paraformaldehyde was previously mixed with 8.0 kg of phenol to form a suspension. Except that the liquid was supplied from the lower part of the reactor with a plunger-type high-pressure metering pump, unreacted phenol was not removed under reduced pressure, and the reaction temperature was 200 to 220 ° C. The reaction was carried out in the same manner as in Example 1 to obtain 27.0 kg of a novolak-type phenol resin having a weight average molecular weight of 102,000 in terms of polystyrene. This weight average molecular weight 102,
2,000 high molecular weight novolak resin, a dimethylene ether type resole resin having a weight average molecular weight of 22,000 obtained by reacting with the same method as in Example 1, hexamethylenetetramine, a filler, a curing aid, a lubricant, and a colorant. And the like were blended in the ratio shown in Table 1, and were melt-kneaded with a biaxial roll to obtain a molding material.

【0014】比較例1 ポリスチレン換算で重量平均分子量が14,000のノ
ボラック樹脂(住友デュレズ(株)製 PR−5073
1)と、実施例1と同様の方法で反応を行い得た重量平
均分子量22,000のジメチレンエーテル型レゾール
樹脂、ヘキサメチレンテトラミン、充填材、硬化助剤、
滑剤、着色剤等を表1の割合にて配合し、2軸ロールに
て溶融混練し成形材料を得た。
Comparative Example 1 A novolak resin having a weight average molecular weight of 14,000 in terms of polystyrene (PR-5073 manufactured by Sumitomo Durez Co., Ltd.)
1) and a dimethylene ether type resole resin having a weight average molecular weight of 22,000 obtained by reacting in the same manner as in Example 1, hexamethylenetetramine, a filler, a curing aid,
A lubricant, a colorant, and the like were blended in the proportions shown in Table 1 and melt-kneaded with a biaxial roll to obtain a molding material.

【0015】得られた成形材料について、移送成形(成
形条件:温度175℃,時間3分間)にて試験片を成形
し、シャルピー衝撃強度、25℃及び200℃における
曲げ強度、耐ブレーキ液性、耐熱性及び耐摩耗性を評価
した。得られた結果を表1に示す。 (注)試験方法 衝撃強度:JIS K7111による 曲げ強度(常温&200℃): JIS K7203による 耐ブレーキ液性: 200℃ブレーキ液中500時間処
理後の常温中曲げ強さ保持率、寸法・重量変化率を測定 耐熱性: 250℃雰囲気中500時間処理後の常温中
曲げ強さ保持率、寸法変化率を測定 耐摩耗性: 滑り摩耗試験による(相手材;S55C)
From the obtained molding material, a test piece was molded by transfer molding (molding conditions: temperature: 175 ° C., time: 3 minutes), and Charpy impact strength, bending strength at 25 ° C. and 200 ° C., brake fluid resistance, Heat resistance and abrasion resistance were evaluated. Table 1 shows the obtained results. (Note) Test method Impact strength: Bending strength according to JIS K7111 (normal temperature & 200 ° C): According to JIS K7203 Brake fluid resistance: Bending strength retention at room temperature after treatment in 200 ° C brake fluid for 500 hours, dimensional / weight change rate Heat resistance: Measured for bending strength retention and dimensional change at room temperature after treatment in a 250 ° C. atmosphere for 500 hours Abrasion resistance: By sliding wear test (partner material: S55C)

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【発明の効果】以上の実施例及び比較例により得られた
結果から明らかなように、本発明のブレーキピストン用
成形材料は、従来のフェノール樹脂成形材料に比べ特に
衝撃強度、常温中及び高温雰囲気中の静的機械強度に優
れ、耐摩耗性や耐ブレーキ液性も良好である。
As is evident from the results obtained by the above Examples and Comparative Examples, the molding material for a brake piston of the present invention is particularly superior in impact strength, room temperature and high temperature atmosphere to conventional phenolic resin molding materials. It has excellent medium mechanical strength and good abrasion resistance and brake fluid resistance.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 フェノール樹脂成形材料において、
(a)ポリスチレンを基準物質としたときの重量平均分
子量が50,000以上である高分子量ノボラック型フ
ェノール樹脂、(b)ポリスチレンを基準物質としたと
きの重量平均分子量が50,000未満のレゾール型フ
ェノール樹脂、(c)硬化剤としてヘキサメチレンテト
ラミン、及び(d)無機充填材及び又は有機充填材を必
須成分として含有することを特徴とするブレーキピスト
ン用成形材料。
1. A phenolic resin molding material,
(A) a high molecular weight novolak type phenol resin having a weight average molecular weight of 50,000 or more when polystyrene is used as a reference substance, and (b) a resol type having a weight average molecular weight of less than 50,000 when polystyrene is used as a reference substance. A molding material for a brake piston, comprising a phenolic resin, (c) hexamethylenetetramine as a curing agent, and (d) an inorganic filler and / or an organic filler as essential components.
【請求項2】 成形材料全体に対してフェノール樹脂の
配合量が10〜50重量%であり、他に(c)硬化剤と
してヘキサメチレンテトラミンを2〜10重量%、及び
(d)無機充填材45〜85重量%を含有する請求項1
記載のブレーキピストン用成形材料。
2. The compounding amount of a phenol resin is 10 to 50% by weight based on the whole molding material, and (c) 2 to 10% by weight of hexamethylenetetramine as a curing agent; and (d) an inorganic filler. 2. The composition according to claim 1, which contains 45 to 85% by weight.
The molding material for a brake piston according to the above.
【請求項3】 フェノール樹脂全体に対し(b)ポリス
チレンを基準物質とした時の重量平均分子量が50,0
00未満のレゾール型フェノール樹脂20〜40重量%
を含有する、請求項1又は2記載のブレーキピストン用
成形材料。
3. The weight average molecular weight of (b) polystyrene as a reference substance is 50,0 based on the entire phenolic resin.
Resol type phenolic resin of less than 00 20 to 40% by weight
The molding material for a brake piston according to claim 1 or 2, comprising:
【請求項4】 成形材料全体に対して、無機充填材の各
成分の配合割合が硅灰石35〜65重量%、ガラス繊維
5〜35重量%、クレー5〜35重量%である請求項1
又は2記載のブレーキピストン用成形材料。
4. The compounding ratio of each component of the inorganic filler is 35 to 65% by weight of wollastonite, 5 to 35% by weight of glass fiber, and 5 to 35% by weight of clay based on the whole molding material.
Or a molding material for a brake piston according to 2.
JP33249199A 1999-11-24 1999-11-24 Molding material for brake piston Pending JP2001151984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33249199A JP2001151984A (en) 1999-11-24 1999-11-24 Molding material for brake piston

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33249199A JP2001151984A (en) 1999-11-24 1999-11-24 Molding material for brake piston

Publications (1)

Publication Number Publication Date
JP2001151984A true JP2001151984A (en) 2001-06-05

Family

ID=18255547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33249199A Pending JP2001151984A (en) 1999-11-24 1999-11-24 Molding material for brake piston

Country Status (1)

Country Link
JP (1) JP2001151984A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110643143A (en) * 2019-10-11 2020-01-03 武汉理工大学 Resin capable of slight ceramic reaction and preparation method of composite material thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110643143A (en) * 2019-10-11 2020-01-03 武汉理工大学 Resin capable of slight ceramic reaction and preparation method of composite material thereof

Similar Documents

Publication Publication Date Title
JPS63291945A (en) Low shrinkage phenol resin forming material
JP2001151984A (en) Molding material for brake piston
JP2001131387A (en) Molding material for brake piston
JP2001172471A (en) Molding material for brake piston
JP2001139768A (en) Molding material for brake piston
JP2005036127A (en) Phenol resin molding material and molded product thereof
JP2007246689A (en) Phenolic resin composition for friction material, and friction material
JP4129508B2 (en) Refractory binder
JPH11152319A (en) Heat-resistant phenolic resin and molding material containing the same used for sliding component
JP6652050B2 (en) Phenol resin composition and cured phenol resin
JPH06184405A (en) Phenol resin composition
JPH08157692A (en) Phenol resin composition and molding material
JP2006272412A (en) Phenol resin composition for shell mold and resin-coated sand for shell mold
JP3152883B2 (en) Phenolic resin composition
JP2005240026A (en) Resin composition for molding, and molding material containing the same
JPH11166101A (en) Manufacture of glass-fiber containing phenolic resin molding material
JP2001253932A (en) Phenol resin composition
JPH1046005A (en) Thermosetting resin composition
JPH06228256A (en) Phenolic resin composition and molding material
JP2015187229A (en) Phenolic resin molding material and molded product
JPH1171497A (en) Phenol resin composition
JP2000044642A (en) Phenol resin and phenol resin composition
JP2001031835A (en) Phenolic resin molding material
JP3032136B2 (en) Brake piston
JP2003035330A (en) Brake piston

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061010