JP2001150435A - Method of manufacturing fluorine-containing polymer molding material - Google Patents
Method of manufacturing fluorine-containing polymer molding materialInfo
- Publication number
- JP2001150435A JP2001150435A JP33986399A JP33986399A JP2001150435A JP 2001150435 A JP2001150435 A JP 2001150435A JP 33986399 A JP33986399 A JP 33986399A JP 33986399 A JP33986399 A JP 33986399A JP 2001150435 A JP2001150435 A JP 2001150435A
- Authority
- JP
- Japan
- Prior art keywords
- ppb
- fluorine
- molding material
- metal
- pellets
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、金属溶出量が低減
された含フッ素共重合体の成形体を得ることができる、
成形材料の製造方法に関する。TECHNICAL FIELD The present invention provides a molded article of a fluorinated copolymer having a reduced metal elution amount.
The present invention relates to a method for producing a molding material.
【0002】[0002]
【従来の技術】半導体製造装置の薬液貯槽部材、搬送配
管部材として、テトラフルオロエチレン(以下、TFE
という。)/パーフルオロ(アルキルビニルエーテル)
系共重合体(以下、PFAという。)、TFE/ヘキサ
フルオロプロピレン(以下、HFPという。)系共重合
体(以下、FEPという。)、ポリテトラフルオロエチ
レン(以下、PTFEという。)などが、その耐熱性、
耐薬品性が良好なために成形材料として使われている。
PFA、FEPの成形材料は溶融成形可能であり、射出
成形、押出成形、回転成形等、さまざまな成形方法で成
形できる。近年の半導体デバイスの高集積化、微細化は
さらに進む方向にあり、より微細なデバイスの実現、歩
留まりの向上の為に半導体製造プロセス中に混入する金
属不純物を抑制することが必要になってきている。その
ために半導体製造装置の薬液貯槽部材、搬送配管部材か
らの金属溶出量の低減が要求されている。2. Description of the Related Art Tetrafluoroethylene (hereinafter, referred to as TFE) is used as a chemical storage tank member and a transport piping member of a semiconductor manufacturing apparatus.
That. ) / Perfluoro (alkyl vinyl ether)
Copolymers (hereinafter, referred to as PFA), TFE / hexafluoropropylene (hereinafter, referred to as HFP), copolymers (hereinafter, referred to as FEP), polytetrafluoroethylene (hereinafter, referred to as PTFE), and the like. Its heat resistance,
It is used as a molding material due to its good chemical resistance.
The molding materials of PFA and FEP can be melt-molded, and can be molded by various molding methods such as injection molding, extrusion molding, and rotational molding. In recent years, high integration and miniaturization of semiconductor devices have been progressing further, and it has become necessary to suppress metal impurities mixed in a semiconductor manufacturing process in order to realize finer devices and improve yield. I have. Therefore, it is required to reduce the amount of metal elution from the chemical storage tank member and the transport piping member of the semiconductor manufacturing apparatus.
【0003】一方、溶出フッ素イオンを低減する要求が
あり、分子末端を安定化したPFAが半導体製造装置部
材として用いられているが、分子末端を安定化したPF
Aの薬液貯槽部材、搬送配管部材についても金属溶出量
の低減が要求されている。PFA、FEPの薬液貯槽部
材、搬送用配管部材の大部分は、PFA、FEPのペレ
ット状の成形材料を射出成形または押出成形して得られ
る。使用する原材料の金属含有量を減らすことや、原材
料および共重合体が設備の金属部表面にできるだけ接し
ないようにして製造された成形材料は、金属溶出量を大
幅に低減させることができたが、さらなる低減が要求さ
れている。On the other hand, there has been a demand for reducing the elution of fluoride ions, and PFA having stabilized molecular terminals has been used as a member for semiconductor manufacturing equipment.
The chemical solution storage tank member and the transport piping member of A are also required to reduce the amount of metal elution. Most of the PFA and FEP chemical storage tank members and the transport piping members are obtained by injection molding or extrusion molding of PFA and FEP pellet-like molding materials. Molding materials manufactured by reducing the metal content of the raw materials used and by keeping the raw materials and copolymers from contacting the metal surface of the equipment as much as possible could significantly reduce the amount of metal elution. , Further reduction is required.
【0004】[0004]
【発明が解決しようとする課題】本発明は、成形部材の
金属溶出量が低減する含フッ素共重合体の成形材料の製
造方法を提供することを目的とする。SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a molding material of a fluorine-containing copolymer in which the amount of metal elution from a molding member is reduced.
【0005】[0005]
【課題を解決するための手段】本発明者は上記課題を解
決するために、鋭意検討の結果、本発明を完成するに至
った。すなわち、本発明は、含フッ素共重合体成形材料
のペレットをフッ素化して含フッ素共重合体の分子末端
を安定化した後、ペレットを洗浄することによりペレッ
トからの溶出金属量を洗浄前の2割以上減らすことを特
徴とする含フッ素共重合体成形材料の製造方法を提供す
る。また、本発明は、上記含フッ素共重合体成形材料の
製造方法において、含フッ素共重合体がテトラフルオロ
エチレン/パーフルオロ(アルキルビニルエーテル)系
共重合体またはテトラフルオロエチレン/ヘキサフルオ
ロプロピレン系共重合体である含フッ素共重合体成形材
料の製造方法を提供する。さらに、本発明は、上記含フ
ッ素共重合体成形材料の製造方法において、洗浄が水洗
浄である含フッ素共重合体成形材料の製造方法を提供す
る。Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, have completed the present invention. That is, in the present invention, after fluorinating pellets of a fluorinated copolymer molding material to stabilize the molecular terminals of the fluorinated copolymer, the pellets are washed to reduce the amount of metal eluted from the pellets by 2% before washing. It is intended to provide a method for producing a fluorine-containing copolymer molding material, characterized in that it is reduced by more than a percentage. Further, the present invention provides the method for producing a fluorine-containing copolymer molding material, wherein the fluorine-containing copolymer is a tetrafluoroethylene / perfluoro (alkyl vinyl ether) -based copolymer or a tetrafluoroethylene / hexafluoropropylene-based copolymer. Provided is a method for producing a fluorinated copolymer molding material which is a united product. Further, the present invention provides the method for producing a fluorine-containing copolymer molding material according to the method for producing a fluorine-containing copolymer molding material, wherein the washing is water washing.
【0006】[0006]
【発明の実施の形態】本発明に使用する原料の成形材料
は、含フッ素共重合体である。含フッ素共重合体として
は、含フッ素モノマ同士の共重合体、特にパーフルオロ
モノマの共重合体が好ましい。好ましい共重合体として
は、テトラフルオロエチレン/パーフルオロ(アルキル
ビニルエーテル)系共重合体であり、パーフルオロ(ア
ルキルビニルエーテル)のアルキル基としては、炭素数
が1から8までの直鎖または分岐構造を持つアルキル基
が例示される。また、エーテル結合の酸素がアルキル基
の中に存在してもよい。また、パーフルオロ(アルキル
ビニルエーテル)は、1種または2種以上用いてもよ
い。また、第三成分として、ヘキサフルオロプロピレン
等のパーフルオロモノマを共重合させてもよい。特に、
テトラフルオロエチレン/パーフルオロ(プロピルビニ
ルエーテル)系共重合体が好ましい。もう一つの好まし
い共重合体は、テトラフルオロエチレン/ヘキサフルオ
ロプロピレン系共重合体であり、第三成分として、パー
フルオロ(アルキルビニルエーテル)等のパーフルオロ
モノマを共重合させてもよい。BEST MODE FOR CARRYING OUT THE INVENTION The raw material used in the present invention is a fluorine-containing copolymer. As the fluorinated copolymer, a copolymer of fluorinated monomers, particularly a copolymer of perfluoromonomer is preferable. The preferred copolymer is a tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer, and the alkyl group of the perfluoro (alkyl vinyl ether) has a linear or branched structure having 1 to 8 carbon atoms. And an alkyl group having the same. Further, oxygen of an ether bond may be present in the alkyl group. Further, one or more kinds of perfluoro (alkyl vinyl ether) may be used. Further, a perfluoromonomer such as hexafluoropropylene may be copolymerized as the third component. In particular,
A tetrafluoroethylene / perfluoro (propyl vinyl ether) copolymer is preferred. Another preferred copolymer is a tetrafluoroethylene / hexafluoropropylene-based copolymer, and a perfluoromonomer such as perfluoro (alkyl vinyl ether) may be copolymerized as the third component.
【0007】PFAはTFE/パーフルオロ(アルキル
ビニルエーテル)の共重合モル比が99.5/0.5〜
97/3である共重合体であり、FEPはTFE/HF
Pの共重合モル比が95/5〜85/15である共重合
体である。また、原料の成形材料は、形状がペレットで
あって、射出成形、押出成形、その他の成形方法で得る
ことができる。この成形方法は、その少なくとも一部に
成形材料の溶融工程を含む。ペレットの形状は、特に制
限なく、例えば、円柱体、楕円柱体、球体、三角、四
角、五角、六角、八角などの多角形断面形状を有する多
角柱体、星形などの異形断面形状を有する柱体などが挙
げられ、平均長さは通常1〜10mmであればよい。PFA has a copolymer molar ratio of TFE / perfluoro (alkyl vinyl ether) of 99.5 / 0.5 to
97/3, wherein FEP is TFE / HF
It is a copolymer having a copolymerization molar ratio of P of 95/5 to 85/15. The raw material molding material is in the form of pellets, and can be obtained by injection molding, extrusion molding, or other molding methods. This molding method includes a step of melting a molding material at least in part. The shape of the pellet is not particularly limited, and has, for example, a cylindrical column, an elliptic column, a spherical column, a polygonal column having a polygonal cross-sectional shape such as a triangle, a square, a pentagon, a hexagon, and an octagon, and a modified cross-sectional shape such as a star. Columns and the like are mentioned, and the average length may be usually 1 to 10 mm.
【0008】本発明の原料の含フッ素共重合体成形材料
は、種々の方法により製造したものが使用できるが、金
属溶出量の少ない含フッ素共重合体成型材料が好まし
い。金属溶出量の少ない含フッ素共重合体成型材料は、
重合工程、造粒工程、乾燥工程、ペレット化工程等の重
合体製造工程や成形材料に加工する工程において、含フ
ッ素共重合体や成形材料が設備の金属部表面にできるだ
け接しないようにして成形材料を製造し、また、加え
て、含フッ素共重合体の原材料が貯槽、移送する配管等
の設備の金属部表面にできるだけ接しないようにするこ
とにより製造できる。また、金属溶出量の少ない含フッ
素共重合体成型材料は、金属成分の含有量が少ない含フ
ッ素モノマ、コモノマ、重合媒体、連鎖移動剤、含フッ
素共重合体造粒に用いる媒体等の原材料を使用すること
により製造することが好ましい。As the raw material of the present invention, a fluorine-containing copolymer molding material produced by various methods can be used, but a fluorine-containing copolymer molding material having a small amount of metal elution is preferable. The fluorinated copolymer molding material with low metal elution amount is
In the polymer production process such as polymerization process, granulation process, drying process, pelletizing process, etc., and in the process of processing into a molding material, molding such that the fluorocopolymer and molding material do not contact the metal part surface of equipment as much as possible. It can be produced by producing a material and, in addition, making the raw material of the fluorine-containing copolymer as little as possible in contact with the surface of the metal part of equipment such as a storage tank and a pipe for transfer. Further, the fluorinated copolymer molding material having a small amount of metal elution is a raw material such as a fluorinated monomer, a comonomer, a polymerization medium, a chain transfer agent, and a medium used for fluorinated copolymer granulation having a small content of a metal component. It is preferable to manufacture by using.
【0009】ペレット化工程は少なくともこの溶融含フ
ッ素共重合体が接する部分の材料としてハステロイ等の
耐蝕性の金属材質を使用することが好ましい。本発明の
原料の含フッ素共重合体成形材料の金属溶出量は、N
a、Mg、Cu、Cr、Ni、K、CaおよびFeの合
計が20ppb以下が好ましく、10ppb以下が特に
好ましい。本発明におけるフッ素化は、含フッ素共重合
体分子の不安定末端基をフッ素化して分子末端を安定化
するために行われる。不安定末端基は、炭素−炭素不飽
和二重結合、フッ化カルボニル基、カルビノール基、カ
ルボン酸基、アミド基などである。In the pelletizing step, it is preferable to use a corrosion-resistant metal material such as Hastelloy as a material of at least a portion in contact with the molten fluorine-containing copolymer. The metal elution amount of the raw material fluorine-containing copolymer molding material of the present invention is N
The total of a, Mg, Cu, Cr, Ni, K, Ca and Fe is preferably 20 ppb or less, particularly preferably 10 ppb or less. The fluorination in the present invention is performed for fluorinating the unstable terminal group of the fluorine-containing copolymer molecule to stabilize the molecular terminal. Unstable terminal groups include carbon-carbon unsaturated double bonds, carbonyl fluoride groups, carbinol groups, carboxylic acid groups, amide groups, and the like.
【0010】フッ素化は、含フッ素共重合体成形材料の
ペレットとフッ素化剤とを反応させることにより行うこ
とができる。フッ素化剤としては、フッ素ガスが好まし
い。フッ素ガスは、不活性ガスと混合して使用すること
が好ましい。不活性ガスとしては、窒素ガス、ヘリウム
ガス、ネオンガス、クリプトンガスなどが挙げられる
が、窒素ガスが好ましい。不活性ガスとフッ素ガスとの
混合比は、体積比で1/1〜10/1の範囲が好まし
く、2/1〜6/1の範囲が特に好ましい。フッ素化剤
の使用割合は、含フッ素共重合体100質量部に対して
通常0.1〜10質量部であればよく、0.2〜1質量
部が好ましい。フッ素化の反応温度は、特に制限ない
が、150〜300℃が好ましく、180〜250℃が
特に好ましい。フッ素化の反応時間は、適宜選定すれば
よく、通常は1〜30時間にすればよい。フッ素化にお
いては、含フッ素共重合体成形材料が設備の金属部表面
にできるだけ接しないようにすることが好ましい。した
がって、設備の金属部表面はフッ素樹脂などで被覆した
ものが好ましい。The fluorination can be carried out by reacting pellets of the fluorinated copolymer molding material with a fluorinating agent. As the fluorinating agent, fluorine gas is preferable. The fluorine gas is preferably used in a mixture with an inert gas. Examples of the inert gas include a nitrogen gas, a helium gas, a neon gas, and a krypton gas, and a nitrogen gas is preferable. The mixing ratio of the inert gas and the fluorine gas is preferably in the range of 1/1 to 10/1 by volume, and particularly preferably in the range of 2/1 to 6/1. The ratio of the fluorinating agent to be used is usually 0.1 to 10 parts by mass, preferably 0.2 to 1 part by mass, per 100 parts by mass of the fluorinated copolymer. The reaction temperature of the fluorination is not particularly limited, but is preferably from 150 to 300 ° C, particularly preferably from 180 to 250 ° C. The reaction time of the fluorination may be appropriately selected, and is usually from 1 to 30 hours. In the fluorination, it is preferable that the fluorinated copolymer molding material does not contact the metal surface of the equipment as much as possible. Therefore, it is preferable that the surface of the metal part of the equipment is covered with a fluororesin or the like.
【0011】本発明において、洗浄は、含フッ素共重合
体成形材料のペレットと溶媒を接触させ、ペレット表面
に付着している金属を除去するために行われる。溶媒は
水が好ましく、超純水が最も好ましいが、金属含有量の
少ない溶媒、例えば塩素やフッ素を含んだ酸性水溶液、
アンモニアなどを含んだアルカリ性水溶液、メタノー
ル、エタノールなどの水溶性有機化合物を含んだ水溶
液、アルコール、ハイドロカーボン、ハイドロフルオロ
カーボン、ハイドロクロロカーボン、フルオロクロロカ
ーボン、ハイドロフルオロクロロカーボンなどの有機溶
媒などでもよい。溶媒の金属含有量は、Na、Mg、C
u、Cr、Ni、K、CaおよびFeの合計が10pp
b以下が好ましく、5ppb以下がより好ましく、2p
pb以下が特に好ましい。In the present invention, the washing is performed to bring the pellets of the fluorocopolymer molding material into contact with the solvent to remove the metal adhering to the surface of the pellets. The solvent is preferably water, and most preferably ultrapure water, but a solvent having a low metal content, for example, an acidic aqueous solution containing chlorine or fluorine,
An alkaline aqueous solution containing ammonia or the like, an aqueous solution containing a water-soluble organic compound such as methanol or ethanol, or an organic solvent such as alcohol, hydrocarbon, hydrofluorocarbon, hydrochlorocarbon, fluorochlorocarbon, or hydrofluorochlorocarbon may be used. The metal content of the solvent is Na, Mg, C
u, Cr, Ni, K, Ca and Fe total 10 pp
b or less, more preferably 5 ppb or less, and 2p
Particularly preferred is pb or less.
【0012】洗浄温度、洗浄時間は任意に選択可能であ
るが、以下に示す金属溶出量が洗浄後は洗浄前に比べて
少なくとも2割以上少なくなるように洗浄しなくてはな
らない。減少量が2割より少なければ、その成形材料を
用いて成形した成形品の溶出金属量の減少はみられな
い。含フッ素共重合体成形材料のペレットと溶媒との接
触方法は、種々の方法が適用できるが、例えば、溶媒中
にペレットを浸漬させる方法、ペレットの充填層に溶媒
を通過させる方法などが挙げられる。前者の接触方法の
場合、撹拌することが好ましい。後者の接触方法の場
合、溶媒は、ペレットの充填層を一度通過させたものを
循環させて使用してもよい。The washing temperature and washing time can be arbitrarily selected, but the washing must be carried out so that the metal elution amount shown below is at least 20% less after washing than before washing. If the decrease is less than 20%, no decrease in the amount of eluted metal in a molded article molded using the molding material is observed. Various methods can be applied to the method of contacting the pellets of the fluorinated copolymer molding material with the solvent, for example, a method of immersing the pellets in a solvent, a method of passing the solvent through a packed layer of the pellets, and the like. . In the case of the former contact method, stirring is preferred. In the latter contact method, the solvent may be used by circulating the solvent once passed through the packed bed of pellets.
【0013】洗浄の溶媒の使用量は、ペレット100質
量部に対して100〜10000質量部が好ましい。本
発明により得られる成形材料を用い、射出成形、押出し
成形などによって得られる含フッ素共重合体の成形品
は、洗浄工程のない成形材料を用いて成形した成形品に
比べ成形品での金属溶出量が少ない。本発明により得ら
れる成形材料は単独で、または種々の配合材を添加して
成形に供しうる。また、本発明により得られる成形材料
と種々の配合材やポリマを添加して、再度ペレット化し
成形材料とすることも可能である。The washing solvent is preferably used in an amount of 100 to 10000 parts by mass per 100 parts by mass of the pellets. Using the molding material obtained according to the present invention, the molded article of the fluorocopolymer obtained by injection molding, extrusion molding, etc., has a higher metal elution in the molded article than the molded article molded using the molding material without a washing step. The amount is small. The molding material obtained by the present invention can be used for molding alone or by adding various compounding materials. It is also possible to add the molding material obtained according to the present invention, various compounding materials and polymers, and pelletize again to obtain a molding material.
【0014】[0014]
【実施例】以下、本発明を実施例及び比較例により具体
的に説明するが、本発明は、これらによって限定されな
い。含フッ素共重合体の分子量の指標であるメルトイン
デックス(以下、MIという。)は、温度372℃で、
直径2.1mm、長さ8mmのダイスを用い、5kg荷
重で押出したときの含フッ素共重合体の流出速度(g/
10分)である。ポリマー組成は、PFAの場合、34
0℃のプレス成形で、厚み30μmのフィルムを作成
し、このフィルムの赤外スペクトルを測定し、次のよう
に求めた。PFAの場合は、PFA中のパーフルオロ
(プロピルビニルエーテル)(以下、PPVEとい
う。)に基づく重合単位の含有量(質量%)は、993
cm−1における吸光度を、2350cm−1における
吸光度で割り、0.95を掛けた値として求めた。FE
Pの場合は、FEP中のヘキサフルオロプロピレンに基
づく重合単位の含有量(質量%)は、980cm−1に
おける吸光度を、2350cm−1における吸光度で割
り、3.2を掛けた値として求めた。EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto. The melt index (hereinafter referred to as MI), which is an index of the molecular weight of the fluorinated copolymer, is at a temperature of 372 ° C.
Using a die having a diameter of 2.1 mm and a length of 8 mm, the flow rate of the fluorocopolymer when extruded under a load of 5 kg (g / g)
10 minutes). The polymer composition is 34 for PFA
A film having a thickness of 30 μm was prepared by press molding at 0 ° C., and the infrared spectrum of the film was measured. In the case of PFA, the content (% by mass) of polymerized units based on perfluoro (propyl vinyl ether) (hereinafter referred to as PPVE) in PFA is 993.
The absorbance at cm -1, divided by the absorbance at 2350 cm -1, was determined as a value obtained by multiplying 0.95. FE
For P, the content of polymerized units based on hexafluoropropylene in FEP (wt%) is the absorbance at 980 cm -1, divided by the absorbance at 2350 cm -1, it was determined as a value obtained by multiplying 3.2.
【0015】実施例、比較例で用いた重合溶媒、造粒用
溶媒、洗浄用溶媒である水、連鎖移動剤であるメタノー
ルの金属含有量を以下に示す。超純水の金属含有量は、
Na、Mg、Cu、Cr、Ni、K、CaおよびFeの
合計が1.0ppbであった。高純度メタノールの金属
含有量は、Na、Mg、Cu、Cr、Ni、K、Caお
よびFeの合計が1.5ppbであった。高純度メタノ
ールは、関東化学製のELグレードを用いた。金属溶出
量は、PFA製の蓋付きの容器を超高純度硝酸中および
超純水中でそれぞれ80℃で1週間加熱処理した後、そ
の処理した容器に、成形材料5gを分取し、6.8%超
高純度硝酸3mlを加えて、蓋をしてホットプレートで
80℃2時間加熱後、溶出した金属元素を含む超高純度
硝酸を誘導結合プラズマ質量分析装置(ICP−MS)
で定量分析する方法で測定した。The metal contents of the polymerization solvent, the granulating solvent, the washing solvent water and the chain transfer agent methanol used in the examples and comparative examples are shown below. The metal content of ultrapure water is
The total of Na, Mg, Cu, Cr, Ni, K, Ca and Fe was 1.0 ppb. The metal content of high-purity methanol was 1.5 ppb in total of Na, Mg, Cu, Cr, Ni, K, Ca and Fe. As the high-purity methanol, an EL grade manufactured by Kanto Chemical was used. The amount of metal elution was determined by heating a container with a lid made of PFA in ultrapure nitric acid and ultrapure water at 80 ° C. for 1 week, and then dispensing 5 g of the molding material into the treated container. Add 3 ml of 0.8% ultra-high purity nitric acid, cover and heat on a hot plate at 80 ° C for 2 hours, and then extract ultra-high-purity nitric acid containing the eluted metal element by inductively coupled plasma mass spectrometry (ICP-MS)
It was measured by the method of quantitative analysis.
【0016】[例1(比較例)]原料および含フッ素共
重合体の接触する重合工程、造粒工程、洗浄工程、乾燥
工程の各設備や、配管部分をPFAでライニングし、被
覆した。400Lの重合槽に超純水188L、重合溶媒
であるパーフルオロヘキサン78L、高純度メタノール
9.5L、PPVE14.0kgを仕込み、槽内の温度
を50℃とした後にTFEを仕込んで重合槽内の圧力を
1.3MPaとした。TFEの金属成分含有量は、N
a、Mg、Cu、Cr、Ni、K、CaおよびFeの合
計が1.0ppbであった。パーフルオロヘキサンの金
属成分含有量は、Na、Mg、Cu、Cr、Ni、K、
CaおよびFeの合計が5.0ppbであった。PPV
Eの金属成分含有量は、Na、Mg、Cu、Cr、N
i、K、CaおよびFeの合計が4.0ppbであっ
た。Example 1 (Comparative Example) Each of the equipment for the polymerization step, the granulation step, the washing step, and the drying step where the raw material and the fluorine-containing copolymer come into contact, and the piping were lined and covered with PFA. 188 L of ultrapure water, 78 L of perfluorohexane as a polymerization solvent, 9.5 L of high-purity methanol, and 14.0 kg of PPVE were charged into a 400 L polymerization tank, TFE was charged after the temperature in the tank was raised to 50 ° C., and TFE was charged in the polymerization tank. The pressure was set to 1.3 MPa. The metal component content of TFE is N
The total of a, Mg, Cu, Cr, Ni, K, Ca and Fe was 1.0 ppb. The metal component content of perfluorohexane is Na, Mg, Cu, Cr, Ni, K,
The total of Ca and Fe was 5.0 ppb. PPV
The metal component content of E is Na, Mg, Cu, Cr, N
The total of i, K, Ca and Fe was 4.0 ppb.
【0017】重合開始剤としてジ(パーフルオロブチリ
ル)パーオキシドの0.05%パーフルオロヘキサン溶
液を添加して重合を開始させた。圧力が一定になるよう
にTFEを仕込んだ。重合開始剤溶液は、重合速度が重
合中ほぼ一定になるように連続的に仕込み、合計5.1
L仕込んだ。なお、ビス(パーフルオロブチリル)パー
オキシドの0.05%パーフルオロヘキサン溶液の金属
成分含有量は、Na、Mg、Cu、Cr、Ni、K、C
aおよびFeの合計が5.0ppbであった。重合を開
始させてから8時間後、後仕込みのTFEの合計が40
kgになった後に重合槽を室温まで冷却した後、未反応
ガスをパージし生成重合体を含むスラリを得た。このス
ラリを重合槽の底部から配管を通して造粒槽に、窒素で
重合槽を加圧して移送した。なお、超純水500Lをあ
らかじめ仕込んだ1000Lの造粒槽の内容物を攪拌し
ながら90℃に加温し、パーフルオロヘキサンを蒸発、
留去しながら重合体を造粒した。得られた造粒物を配管
により乾燥器に移送し、150℃で8時間乾燥させた。
乾燥後の造粒物の金属成分溶出量は、Na:1.0pp
b,Mg:0ppb,Cu:0ppb,Cr:0pp
b,Ni:0.1ppb,K:1.0ppb,Ca:
2.0ppb,Fe:0.1ppbであった。As a polymerization initiator, a 0.05% perfluorohexane solution of di (perfluorobutyryl) peroxide was added to initiate polymerization. TFE was charged so that the pressure was constant. The polymerization initiator solution was continuously charged so that the polymerization rate was substantially constant during the polymerization, and the total was 5.1.
L was charged. The metal component content of a 0.05% perfluorohexane solution of bis (perfluorobutyryl) peroxide is Na, Mg, Cu, Cr, Ni, K, C
The sum of a and Fe was 5.0 ppb. Eight hours after the start of the polymerization, the total amount of the TFE charged later was 40
After reaching kg, the polymerization tank was cooled to room temperature, and the unreacted gas was purged to obtain a slurry containing the produced polymer. This slurry was transferred from the bottom of the polymerization tank through a pipe to the granulation tank by pressurizing the polymerization tank with nitrogen. The contents of a 1000 L granulation tank previously charged with 500 L of ultrapure water were heated to 90 ° C. while stirring to evaporate perfluorohexane.
The polymer was granulated while distilling off. The obtained granules were transferred to a dryer through a pipe and dried at 150 ° C. for 8 hours.
The metal component elution amount of the dried granulated product is Na: 1.0 pp
b, Mg: 0 ppb, Cu: 0 ppb, Cr: 0 pp
b, Ni: 0.1 ppb, K: 1.0 ppb, Ca:
2.0 ppb and Fe: 0.1 ppb.
【0018】また、得られた含フッ素共重合体の末端基
は、赤外スペクトルによる分析の結果、カルビノール基
とフッ化カルボニル基が存在していた。乾燥後の造粒物
を配管にてクリーンルーム内の押出機へ移送しペレット
化を行った。押出機は口径65mm、L/D=25で、
スクリュー材質は耐蝕材料のハステロイである。押出条
件は、C1=340℃、C2=360℃、C3=380
℃、C4=380℃、C5=380℃、ダイ温度380
℃、スクリュー回転数40rpmである。得られたペレ
ットは、円柱体で、直径約1.5mm、長さ約2mmで
あった。ペレット化された重合体は、MIが12.1で
あり、重合体中のパーフルオロ(プロピルビニルエーテ
ル)に基づく重合単位の含有量は3.6質量%であっ
た。Further, the terminal group of the obtained fluorocopolymer was analyzed by an infrared spectrum, and as a result, a carbinol group and a carbonyl fluoride group were present. The dried granules were transferred to an extruder in a clean room via a pipe and pelletized. The extruder has a diameter of 65 mm, L / D = 25,
The screw material is Hastelloy, a corrosion-resistant material. Extrusion conditions were as follows: C1 = 340 ° C., C2 = 360 ° C., C3 = 380
° C, C4 = 380 ° C, C5 = 380 ° C, die temperature 380
° C and the screw rotation speed is 40 rpm. The obtained pellets were cylindrical and had a diameter of about 1.5 mm and a length of about 2 mm. The pelletized polymer had an MI of 12.1, and the content of polymerized units based on perfluoro (propyl vinyl ether) in the polymer was 3.6% by mass.
【0019】[例2(実施例)]例1で得られたペレット
化された重合体をPFAでライニングされた耐圧の30
L密閉容器に移し、容器内を脱気し、窒素/フッ素の混
合ガス(窒素/フッ素=4/1vol比)を大気圧まで
仕込み、容器内温を220℃に昇温し、6時間温度を保
持した。その後室温まで降温し、容器内のフッ素を窒素
で完全に置換した後、ペレットを取り出した。得られた
ペレットの金属成分溶出量は、Na:2.5ppb,M
g:0.1ppb,Cu:0.1ppb,Cr:0.5
ppb,Ni:0.1ppb,K:1.0ppb,C
a:3.5ppb,Fe:2.5ppbであり、金属溶
出量合計で10.3ppbであった。また、フッ素化処
理したペレットは、赤外スペクトル測定の結果、カルビ
ノール基、フッ化カルボニル基は存在せず、分子末端が
フッ素化され安定末端になったと考えられる。得られた
ペレット化された重合体30kgを、内面がPFAで被
覆された400Lの洗浄槽に移し、超純水を300kg
仕込み、室温で1時間攪拌した。その後ペレットを乾燥
器に移し150℃で8時間乾燥した。得られたペレット
の金属成分溶出量は、Na:1.0ppb,Mg:0p
pb,Cu:0ppb,Cr:0ppb,Ni:0pp
b,K:1.0ppb,Ca:1.0ppb,Fe:
0.2ppbであり、金属溶出量合計で3.2ppbで
あった。Example 2 (Example) The pelletized polymer obtained in Example 1 was lined with PFA to a pressure resistance of 30%.
L, the inside of the container is degassed, a mixed gas of nitrogen / fluorine (nitrogen / fluorine = 4/1 vol ratio) is charged to atmospheric pressure, the temperature in the container is raised to 220 ° C., and the temperature is raised for 6 hours. Held. Thereafter, the temperature was lowered to room temperature, and after completely replacing the fluorine in the container with nitrogen, the pellet was taken out. The metal component elution amount of the obtained pellet was Na: 2.5 ppb, M
g: 0.1 ppb, Cu: 0.1 ppb, Cr: 0.5
ppb, Ni: 0.1 ppb, K: 1.0 ppb, C
a: 3.5 ppb, Fe: 2.5 ppb, and the total metal elution amount was 10.3 ppb. Also, as a result of infrared spectrum measurement, the fluorinated pellet did not have a carbinol group or a carbonyl fluoride group, and it is considered that the molecular terminal was fluorinated and became a stable terminal. 30 kg of the resulting pelletized polymer was transferred to a 400 L washing tank whose inner surface was coated with PFA, and 300 kg of ultrapure water was transferred.
It stirred and stirred at room temperature for 1 hour. Thereafter, the pellet was transferred to a dryer and dried at 150 ° C. for 8 hours. The metal component elution amount of the obtained pellets was Na: 1.0 ppb, Mg: 0 p
pb, Cu: 0 ppb, Cr: 0 ppb, Ni: 0 pp
b, K: 1.0 ppb, Ca: 1.0 ppb, Fe:
It was 0.2 ppb, and the total amount of metal elution was 3.2 ppb.
【0020】[例3(応用例)]例1のペレット、および
例2で水洗浄したペレットを用いて、内径8mm、外径
10mmのチューブを成形した。成形条件は、押出機は
口径30mm、L/D=25で、スクリュー材質は耐蝕
材料のハステロイである。押出条件は、C1=320
℃、C2=320℃、C3=340℃、C4=340
℃、C5=340℃、ダイ温度340℃、スクリュー回
転数10rpmである。得られたチューブを各々1m切
り取り、中に6.8%超高純度硝酸を8割仕込み、両端
を超純度硝酸および超純水で洗浄したPTFEの栓で蓋
をし、80℃2時間加熱後、溶出した金属元素を含む超
高純度硝酸をICP−MSで定量した。溶出した金属元
素量を表1に示す。Example 3 (Application Example) A tube having an inner diameter of 8 mm and an outer diameter of 10 mm was formed using the pellet of Example 1 and the pellet washed with water in Example 2. The molding conditions were as follows: the extruder had a caliber of 30 mm, L / D = 25, and the screw material was Hastelloy, a corrosion-resistant material. Extrusion conditions are C1 = 320
° C, C2 = 320 ° C, C3 = 340 ° C, C4 = 340
° C, C5 = 340 ° C, die temperature 340 ° C, screw rotation speed 10 rpm. Each of the obtained tubes was cut by 1 m, 80% of 6.8% ultra-high purity nitric acid was charged therein, and both ends were covered with a PTFE stopper washed with ultra-purified nitric acid and ultra-pure water, and heated at 80 ° C. for 2 hours. Ultra-pure nitric acid containing the eluted metal element was quantified by ICP-MS. Table 1 shows the amounts of the eluted metal elements.
【0021】[0021]
【表1】 [Table 1]
【0022】[例4(比較例)]原料および含フッ素共重
合体の接触する重合工程、造粒工程、洗浄工程、乾燥工
程の各設備や、配管部分をPFAでライニングし、被覆
した。400Lの重合槽に重合溶媒であるパーフルオロ
ヘキサン160L、高純度メタノール0.5L、HFP
170kg仕込み、槽内の温度を50℃とした後に、T
FEを仕込んで重合槽内の圧力を1.3MPaとした。
TFEの金属成分含有量は、Na、Mg、Cu、Cr、
Ni、K、CaおよびFeの合計が1.0ppbであっ
た。パーフルオロヘキサンの金属成分含有量は、Na、
Mg、Cu、Cr、Ni、K、CaおよびFeの合計が
5.0ppbであった。HFPの金属成分含有量は、N
a、Mg、Cu、Cr、Ni、K、CaおよびFeの合
計が2.0ppbであった。重合開始剤としてジ(パー
フルオロブチリル)パーオキシドの0.5%パーフルオ
ロヘキサン溶液を添加して重合を開始させた。圧力が一
定になるようにTFEを仕込んだ。重合開始剤溶液は、
重合速度が重合中ほぼ一定になるように連続的に仕込
み,合計3.6L仕込んだ。なお、ビス(パーフルオロ
ブチリル)パーオキシドの0.5%パーフルオロヘキサ
ン溶液の金属成分含有量は、Na、Mg、Cu、Cr、
Ni、K、CaおよびFeの合計が5.0ppbであっ
た。Example 4 (Comparative Example) Each of the equipment for the polymerization step, the granulation step, the washing step, and the drying step, in which the raw material and the fluorine-containing copolymer come into contact, and the piping were lined with PFA and covered. 160L of polymerization solvent perfluorohexane, 0.5L of high purity methanol, HFP in a 400L polymerization tank
After charging 170 kg and setting the temperature in the tank to 50 ° C., T
FE was charged and the pressure in the polymerization tank was adjusted to 1.3 MPa.
The metal component content of TFE is Na, Mg, Cu, Cr,
The total of Ni, K, Ca and Fe was 1.0 ppb. The metal component content of perfluorohexane is Na,
The total of Mg, Cu, Cr, Ni, K, Ca and Fe was 5.0 ppb. The metal component content of HFP is N
The total of a, Mg, Cu, Cr, Ni, K, Ca and Fe was 2.0 ppb. A 0.5% perfluorohexane solution of di (perfluorobutyryl) peroxide was added as a polymerization initiator to initiate polymerization. TFE was charged so that the pressure was constant. The polymerization initiator solution is
The polymerization rate was continuously charged so that the polymerization rate was substantially constant during the polymerization, and a total of 3.6 L was charged. The metal component content of a 0.5% perfluorohexane solution of bis (perfluorobutyryl) peroxide was Na, Mg, Cu, Cr,
The total of Ni, K, Ca and Fe was 5.0 ppb.
【0023】重合を開始させてから8時間後、後仕込み
のTFEの合計が36kgになった後に重合槽を室温ま
で冷却した後、未反応ガスをパージし生成重合体を含む
スラリを得た。このスラリを重合槽の底部から配管を通
して造粒槽に、窒素で重合槽を加圧して移送した。な
お、超純水500Lを予め仕込んだ1000Lの造粒槽
に内容物を撹拌しながら90℃に加温し、HFPおよび
パーフルオロヘキサンを蒸発、留去しながら重合体を造
粒した。得られた造粒物を配管により乾燥器に移送し、
150℃で8時間乾燥させた。乾燥後の造粒物の金属成
分溶出量は、Na:1.5ppb,Mg:0ppb,C
u:0ppb,Cr:0.1ppb,Ni:0ppb,
K:1.0ppb,Ca:1.0ppb,Fe:0.2
ppbであった。また、得られた含フッ素共重合体の末
端基は、赤外スペクトルによる分析の結果、カルビノー
ル基とフッ化カルボニル基が存在していた。乾燥後の造
粒物を配管にてクリーンルーム内の押出機へ移送しペレ
ット化を行った。押出機は口径65mm、L/D=25
で、スクリュー材質は耐蝕材料のハステロイである。押
出条件は、C1=340℃、C2=360℃、C3=3
80℃、C4=380℃、C5=380℃、ダイ温度3
80℃、スクリュー回転数40rpmである。得られた
ペレットは、円柱体で、直径約1.5mm、長さ約2m
mであった。ペレット化された重合体は、MIが7.5
であり、重合体中のHFPに基づく重合単位の含有量は
12.8質量%であった。Eight hours after the start of the polymerization, after the total amount of the TFE charged afterwards reached 36 kg, the polymerization tank was cooled to room temperature, and the unreacted gas was purged to obtain a slurry containing the produced polymer. This slurry was transferred from the bottom of the polymerization tank through a pipe to the granulation tank by pressurizing the polymerization tank with nitrogen. The contents were heated to 90 ° C. while stirring the contents in a 1000 L granulation tank previously charged with 500 L of ultrapure water, and the polymer was granulated while evaporating and distilling off HFP and perfluorohexane. Transfer the obtained granules to the dryer by piping,
Dry at 150 ° C. for 8 hours. The amount of the metal component eluted from the dried granulated product is Na: 1.5 ppb, Mg: 0 ppb, C
u: 0 ppb, Cr: 0.1 ppb, Ni: 0 ppb,
K: 1.0 ppb, Ca: 1.0 ppb, Fe: 0.2
ppb. In addition, as a result of analysis by an infrared spectrum, a terminal group of the obtained fluorinated copolymer had a carbinol group and a carbonyl fluoride group. The dried granules were transferred to an extruder in a clean room via a pipe and pelletized. Extruder diameter 65mm, L / D = 25
The material of the screw is Hastelloy, a corrosion-resistant material. Extrusion conditions were as follows: C1 = 340 ° C., C2 = 360 ° C., C3 = 3
80 ° C, C4 = 380 ° C, C5 = 380 ° C, Die temperature 3
80 ° C., screw rotation speed 40 rpm. The obtained pellets are cylindrical, about 1.5 mm in diameter and about 2 m in length.
m. The pelletized polymer had an MI of 7.5.
And the content of the polymerized units based on HFP in the polymer was 12.8% by mass.
【0024】[例5(実施例)]例4で得られたペレット
化された重合体をPFAでライニングされた耐圧の30
L密閉容器に移し、容器内を脱気し、窒素/フッ素の混
合ガス(窒素/フッ素=4/1vol比)を大気圧まで
仕込み、容器内温を220℃に昇温し、6時間温度を保
持した。その後室温まで降温し、容器内のフッ素を窒素
で完全に置換した後、ペレットを取り出した。得られた
ペレットの金属成分溶出量は、Na:2.8ppb,M
g:0.1ppb,Cu:0.3ppb,Cr:0.4
ppb,Ni:0.4ppb,K:1.0ppb,C
a:1.5ppb,Fe:4.5ppbであり、金属溶
出量合計で11.0ppbであった。また、フッ素化処
理したペレットは、赤外スペクトル測定の結果、カルビ
ノール基、フッ化カルボニル基は存在せず、分子末端が
フッ素化され安定末端になったと考えられる。得られた
ペレット化された重合体30kgを、内面がPFAで被
覆された400Lの洗浄槽に移し、超純水を300kg
仕込み、室温で1時間攪拌した。その後ペレットを乾燥
器に移し150℃で8時間乾燥した。得られたペレット
の金属成分溶出量は、Na:1.2ppb,Mg:0p
pb,Cu:0.1ppb,Cr:0.1ppb,N
i:0ppb,K:1.0ppb,Ca:0.5pp
b,Fe:0.2ppbであり、金属溶出量合計で3.
1ppbであった。Example 5 (Example) The pelletized polymer obtained in Example 4 was lined with PFA to a pressure resistance of 30%.
L, the inside of the container is degassed, a mixed gas of nitrogen / fluorine (nitrogen / fluorine = 4/1 vol ratio) is charged to atmospheric pressure, the temperature in the container is raised to 220 ° C., and the temperature is raised for 6 hours. Held. Thereafter, the temperature was lowered to room temperature, and after completely replacing the fluorine in the container with nitrogen, the pellet was taken out. The metal component elution amount of the obtained pellet was Na: 2.8 ppb, M
g: 0.1 ppb, Cu: 0.3 ppb, Cr: 0.4
ppb, Ni: 0.4 ppb, K: 1.0 ppb, C
a: 1.5 ppb, Fe: 4.5 ppb, and the total metal elution amount was 11.0 ppb. Also, as a result of infrared spectrum measurement, the fluorinated pellet did not have a carbinol group or a carbonyl fluoride group, and it is considered that the molecular terminal was fluorinated and became a stable terminal. 30 kg of the resulting pelletized polymer was transferred to a 400 L washing tank whose inner surface was coated with PFA, and 300 kg of ultrapure water was transferred.
It stirred and stirred at room temperature for 1 hour. Thereafter, the pellet was transferred to a dryer and dried at 150 ° C. for 8 hours. The metal component elution amount of the obtained pellets was Na: 1.2 ppb, Mg: 0 p
pb, Cu: 0.1 ppb, Cr: 0.1 ppb, N
i: 0 ppb, K: 1.0 ppb, Ca: 0.5 pp
b, Fe: 0.2 ppb;
It was 1 ppb.
【0025】[例6(応用例)]例4のペレット、および
例5において水洗浄したペレットを用いて、内径8m
m、外径10mmのチューブを成形した。成形条件は、
押出機は口径30mm、L/D=25で、スクリュー材
質は耐蝕材料のハステロイである。押出条件は、C1=
320℃、C2=320℃、C3=340℃、C4=3
40℃、C5=340℃、ダイ温度340℃、スクリュ
ー回転数10rpmである。得られたチューブを各々1
m切り取り、中に6.8%超高純度硝酸を8割仕込み、
両端を超純度硝酸および超純水で洗浄したPTFEの栓
で蓋をし、80℃2時間加熱後、溶出した金属元素を含
む超高純度硝酸をICP−MSで定量した。溶出した金
属元素量を表2に示す。Example 6 (Application) Using the pellets of Example 4 and the pellets washed with water in Example 5, the inner diameter was 8 m.
m, a tube having an outer diameter of 10 mm was formed. The molding conditions are
The extruder has a diameter of 30 mm, L / D = 25, and the screw material is Hastelloy, a corrosion-resistant material. Extrusion conditions are C1 =
320 ° C, C2 = 320 ° C, C3 = 340 ° C, C4 = 3
40 ° C., C5 = 340 ° C., die temperature 340 ° C., screw rotation speed 10 rpm. Each of the tubes obtained was 1
m, and 6.8% ultra-high purity nitric acid is charged 80%,
Both ends were covered with a stopper of PTFE washed with ultrapure nitric acid and ultrapure water, heated at 80 ° C. for 2 hours, and ultrapure nitric acid containing the eluted metal element was quantified by ICP-MS. Table 2 shows the amounts of the eluted metal elements.
【0026】[0026]
【表2】 [Table 2]
【0027】[0027]
【発明の効果】本発明の製造方法により得られた含フッ
素重合体の成形材料により成形された成形部材は金属溶
出量が低減されている。According to the present invention, a molded member molded from the fluoropolymer molding material obtained by the production method of the present invention has a reduced metal elution amount.
Claims (3)
ッ素化して含フッ素共重合体の分子末端を安定化した
後、ペレットを洗浄することによりペレットからの溶出
金属量を洗浄前の2割以上減らすことを特徴とする含フ
ッ素共重合体成形材料の製造方法。After fluorinating pellets of a fluorine-containing copolymer molding material to stabilize the molecular terminals of the fluorine-containing copolymer, the pellets are washed to reduce the amount of metal eluted from the pellets by 20% before washing. A method for producing a fluorine-containing copolymer molding material, characterized in that the above-mentioned reduction is achieved.
ン/パーフルオロ(アルキルビニルエーテル)系共重合
体またはテトラフルオロエチレン/ヘキサフルオロプロ
ピレン系共重合体である請求項1に記載の含フッ素共重
合体成形材料の製造方法。2. The fluorine-containing copolymer according to claim 1, wherein the fluorine-containing copolymer is a tetrafluoroethylene / perfluoro (alkyl vinyl ether) -based copolymer or a tetrafluoroethylene / hexafluoropropylene-based copolymer. Manufacturing method of molding material.
載の含フッ素共重合体成形材料の製造方法。3. The method for producing a fluorine-containing copolymer molding material according to claim 1, wherein the washing is water washing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33986399A JP2001150435A (en) | 1999-11-30 | 1999-11-30 | Method of manufacturing fluorine-containing polymer molding material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33986399A JP2001150435A (en) | 1999-11-30 | 1999-11-30 | Method of manufacturing fluorine-containing polymer molding material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001150435A true JP2001150435A (en) | 2001-06-05 |
Family
ID=18331550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33986399A Pending JP2001150435A (en) | 1999-11-30 | 1999-11-30 | Method of manufacturing fluorine-containing polymer molding material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001150435A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004012649A (en) * | 2002-06-05 | 2004-01-15 | Arai Pump Mfg Co Ltd | Roller |
WO2010052872A1 (en) * | 2008-11-05 | 2010-05-14 | 三井・デュポンポリケミカル株式会社 | Resin pellet cleaning method |
WO2022031585A1 (en) | 2020-08-03 | 2022-02-10 | The Chemours Company Fc, Llc | Resin pellet, method of its manufacturing, and molded product thereof |
EP4019820A4 (en) * | 2019-08-21 | 2024-01-03 | Daikin Industries, Ltd. | Tube, method for producing tube and method for storing tube |
-
1999
- 1999-11-30 JP JP33986399A patent/JP2001150435A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004012649A (en) * | 2002-06-05 | 2004-01-15 | Arai Pump Mfg Co Ltd | Roller |
WO2010052872A1 (en) * | 2008-11-05 | 2010-05-14 | 三井・デュポンポリケミカル株式会社 | Resin pellet cleaning method |
JP4676035B2 (en) * | 2008-11-05 | 2011-04-27 | 三井・デュポンポリケミカル株式会社 | Cleaning method of resin pellets |
KR101358365B1 (en) * | 2008-11-05 | 2014-02-04 | 듀폰-미츠이 폴리케미칼 가부시키가이샤 | Resin pellet cleaning method |
EP4019820A4 (en) * | 2019-08-21 | 2024-01-03 | Daikin Industries, Ltd. | Tube, method for producing tube and method for storing tube |
WO2022031585A1 (en) | 2020-08-03 | 2022-02-10 | The Chemours Company Fc, Llc | Resin pellet, method of its manufacturing, and molded product thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1053284B1 (en) | Mixtures of thermoplastic fluoropolymers | |
US5530078A (en) | Preparation of a modified polytetrafluoroethylene and use thereof | |
EP0222945B1 (en) | Melt-processible tetrafluoroethylene/perfluoroolefin copolymers and processes for preparing them | |
EP2058341B1 (en) | Process for producing melt-moldable tetrafluoroethylene copolymer | |
CN1193045C (en) | High-purity fluoropolymers | |
JP7348483B2 (en) | Molded product manufacturing method and molded product | |
EP2565209A2 (en) | Fluorine resin molded article and production of same | |
WO2007049517A1 (en) | Fluororesin with low fluorine-containing emulsifier residual and method for producing same | |
JP4001418B2 (en) | Fluorine-containing copolymer molding material | |
WO2014112592A1 (en) | Methods respectively for producing dried product, pellet and molded article of ethylene-tetrafluoroethylene copolymer | |
WO2019208492A1 (en) | Method for producing purified fluoropolymer | |
JPH0510204B2 (en) | ||
KR20010089893A (en) | Tetrafluoro ethylene/hexafluoro propylene copolymers with better ductility | |
JP2001150435A (en) | Method of manufacturing fluorine-containing polymer molding material | |
CN109762083B (en) | Method for stabilizing unstable end group of fluorine-containing polymer | |
JPH1087746A (en) | Granulated tetrafluoroethylene copolymer and its production | |
RU2722315C2 (en) | Fine powder of modified polytetrafluoroethylene and method of its production, and method of producing pipe or hose | |
US6939495B2 (en) | Thermoprocessable copolymers of TFE | |
US10975187B2 (en) | Modified polytetrafluoroethylene fine powder and its manufacturing method, and electric wire and tube using it | |
JP3750326B2 (en) | Insulated wires and hoses | |
CN110922608A (en) | Method for treating PFA (fluorinated ethylene fluoro-compound) end group for mold pressing | |
JP2000159948A (en) | Etfe molded product | |
ITMI20012745A1 (en) | THERMOPROCESSABLE TFE COPOLYMERS | |
JP2707597B2 (en) | Method for producing fluorine-containing polyolefin | |
JPH0578497A (en) | Production of ptfe polymer alloy |