JP2001148572A - Resin composite for interlayer resin insulating material for multilayer wiring board - Google Patents

Resin composite for interlayer resin insulating material for multilayer wiring board

Info

Publication number
JP2001148572A
JP2001148572A JP2000282726A JP2000282726A JP2001148572A JP 2001148572 A JP2001148572 A JP 2001148572A JP 2000282726 A JP2000282726 A JP 2000282726A JP 2000282726 A JP2000282726 A JP 2000282726A JP 2001148572 A JP2001148572 A JP 2001148572A
Authority
JP
Japan
Prior art keywords
resin
photosensitive
composite
thermosetting
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000282726A
Other languages
Japanese (ja)
Inventor
Touto O
東冬 王
Motoo Asai
元雄 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2000282726A priority Critical patent/JP2001148572A/en
Publication of JP2001148572A publication Critical patent/JP2001148572A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a new resin composite provided with photosensitive characteristics and heat resistance, which thermosetting resin and photosensitive resin, to which photosensitive groups are given are exhibited, and with the superior material of composite thermosetting resin, and to provide manufacture technology. SOLUTION: Resin composite is formed of thermosetting resin or photosensitive resin, in which a part of a functional group is substituted for a photosensitive group and thermoplastic resin. Thermosetting resin or photosensitive resin and thermoplastic resin form a spherical domain structure so as to form a resin composite. It is applied advantageously to the interlayer resin insulating material of a multiplayer wiring board. In resin composite having such structure, thermosetting resin or photosensitive resin and thermoplastic resin are dispersed individually in solvent and they are made in a noncompatible state and is manufactured through optical setting and thermosetting them.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、官能基の一部が感光性
基で置換された熱硬化性樹脂と熱可塑性樹脂、あるいは
感光性樹脂と熱可塑性樹脂とからなる新規な樹脂複合体
に関し、特に、多層配線板の層間樹脂絶縁材用の樹脂複
合体についての提案である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel resin composite comprising a thermosetting resin and a thermoplastic resin, or a photosensitive resin and a thermoplastic resin, in which a part of the functional groups is substituted by a photosensitive group. In particular, the present invention proposes a resin composite for an interlayer resin insulating material of a multilayer wiring board.

【0002】[0002]

【従来の技術】露光により硬化できる,いわゆる感光特
性を具えた樹脂は、工業的な用途が広く、例えば、写真
製版や、半導体,プリント配線板の緻密な描画などで使
われるフォトレジストなどに用いられている。特に、プ
リント配線板製造の分野において、この感光特性を具え
た樹脂は、高密度な導体パターンを形成するのに有用な
絶縁材として好適に用いられる。
2. Description of the Related Art Resins having so-called photosensitive properties, which can be cured by exposure, have a wide range of industrial uses. For example, they are used for photolithography, photoresists used in semiconductors and dense drawing of printed wiring boards, and the like. Have been. Particularly, in the field of printed wiring board manufacture, a resin having this photosensitive property is suitably used as an insulating material useful for forming a high-density conductive pattern.

【0003】しかしながら、上記感光特性を具えた樹脂
は、それ自体の靱性値が低いために実用化に問題があっ
た。このような問題について、従来、樹脂の靱性を改善
する技術としては、熱硬化性樹脂に熱可塑性樹脂を混合
して複合させる技術が提案されている。例えば、エポキ
シ樹脂とポリエーテルスルホン(以下、「PES」で示
す)との混合系(PES変成エポキシ樹脂)において、
エポキシ樹脂とPESとが形成する共連続構造により、
エポキシ樹脂の靱性を改善する技術がそれである(Keiz
o Yamanaka and Takasi Inoue, Polymer,1989,vol.30,p
662参照)。
However, a resin having the above-mentioned photosensitive characteristics has a problem in practical use because of its low toughness. Regarding such a problem, conventionally, as a technique for improving the toughness of a resin, a technique of mixing a thermosetting resin with a thermoplastic resin to form a composite has been proposed. For example, in a mixed system (PES-modified epoxy resin) of an epoxy resin and polyether sulfone (hereinafter, referred to as “PES”),
Due to the co-continuous structure formed by the epoxy resin and PES,
That is the technology that improves the toughness of epoxy resins (Keiz
o Yamanaka and Takasi Inoue, Polymer, 1989, vol.30, p
662).

【0004】たしかに、2種の樹脂を混合してなる上記
PES変成エポキシ樹脂では、エポキシ樹脂単独のもの
に比べて、樹脂の靱性が改善される。それは、このPE
S変性エポキシ樹脂が、PESマトリックス中にエポキ
シ球状ドメインが互いに連結しあって規則正しく分散し
ている状態の構造,いわゆる共連続構造を形成するから
である。この共連続構造は、ビスフェノールA型エポキ
シ樹脂などのエポキシ樹脂とPESとの混合系におい
て、エポキシ樹脂を高温で硬化すると、エポキシ樹脂と
PESとが完全に溶け合った状態(相溶状態)とはなら
ず、スピノーダル分解を起こして熱硬化性樹脂と熱可塑
性樹脂が分離状態で混合している状態(相分離状態)と
なるために形成される。
[0004] Certainly, the PES-modified epoxy resin obtained by mixing two kinds of resins has improved toughness of the resin as compared with the epoxy resin alone. It is this PE
This is because the S-modified epoxy resin forms a structure in which epoxy spherical domains are connected to each other in the PES matrix and are regularly dispersed, that is, a so-called bicontinuous structure. This co-continuous structure, when mixed with an epoxy resin such as bisphenol A type epoxy resin and PES, when the epoxy resin is cured at a high temperature, the epoxy resin and PES do not completely dissolve (compatible state). However, it is formed because spinodal decomposition occurs and the thermosetting resin and the thermoplastic resin are mixed in a separated state (phase separated state).

【0005】[0005]

【発明が解決しようとする課題】ところが、上記従来技
術は、熱硬化のみによって球状ドメイン構造もしくは共
連続構造を形成する、いわゆる熱硬化性樹脂と熱可塑性
樹脂との複合化技術に関するものであり、感光特性を具
えた樹脂の複合化技術ではない。それ故に、靱性の悪い
感光特性を具えた樹脂を使ってもなお、靱性に優れた樹
脂複合体を合成する方法についてまでは、未だ研究され
ていない。すなわち、感光特性を具えた樹脂と熱可塑性
樹脂との複合化は、未だ実用化されていないのが実情で
ある。
However, the above prior art relates to a so-called thermosetting resin / thermoplastic resin composite technique of forming a spherical domain structure or a co-continuous structure only by thermosetting. It is not a composite technology of resin with photosensitive characteristics. Therefore, even if a resin having poor toughness and photosensitive characteristics is used, a method for synthesizing a resin composite having excellent toughness has not yet been studied. That is, the fact is that the composite of a resin having photosensitive characteristics and a thermoplastic resin has not been put to practical use yet.

【0006】本発明の目的は、このような実情に鑑みて
なされたものであり、特に、部分アクリル化エポキシ樹
脂やアクリル系樹脂などの感光特性を具えた樹脂の物
性,例えば耐熱性や感光特性を具えると共に、PESな
どの熱可塑性樹脂本来の優れた物性(優れた靱性)をも
併せて具える新規な樹脂複合体およびその製造技術を確
立することにある。
The object of the present invention has been made in view of such circumstances, and in particular, the physical properties of resins having photosensitive characteristics such as partially acrylated epoxy resins and acrylic resins, for example, heat resistance and photosensitive characteristics. It is an object of the present invention to establish a novel resin composite having excellent physical properties (excellent toughness) inherent to thermoplastic resins such as PES, and a technique for producing the same.

【0007】[0007]

【課題を解決するための手段】さて、エポキシ樹脂/P
ES混合系において、エポキシ樹脂とPESは、図1に
示すように、低温では相溶するが高温では2相に分離す
る,いわゆるLCST型(Low Critical Solution Temp
erature )の相図を示すことが知られている。しかし、
エポキシ樹脂のエポキシ基の一部をアクリル基で置換す
ると、エポキシ樹脂とPESは、低温でも相溶しにくく
なり相分離を起こしやすくなることが判った。一方、エ
ポキシ樹脂のエポキシ基の一部をアクリル基で置換した
場合、露光により硬化させることができるので、低温で
見られる相溶状態を維持したままでエポキシ樹脂の硬化
ができるようになり、相分離は抑制される。すなわち、
感光性基を有する熱硬化性樹脂を用いると、露光後は、
分子運動が凍結されるために相分離状態にならない。そ
れは、相分離するには分子の運動,拡散が必要だからで
ある。このように、感光性基の付与は、相分離を促進す
る面とこれを抑制する面との両面の効果を有するのであ
る。
The epoxy resin / P
In the ES mixed system, as shown in FIG. 1, the epoxy resin and PES are compatible at low temperature but separate into two phases at high temperature, so-called LCST type (Low Critical Solution Tempo).
erature) is known to show the phase diagram. But,
It has been found that when part of the epoxy group of the epoxy resin is replaced with an acrylic group, the epoxy resin and PES are hardly compatible with each other even at a low temperature, and the phase separation is easily caused. On the other hand, when part of the epoxy group of the epoxy resin is replaced with an acrylic group, it can be cured by exposure, so that the epoxy resin can be cured while maintaining the compatible state seen at low temperatures, Separation is suppressed. That is,
When using a thermosetting resin having a photosensitive group, after exposure,
Phase separation does not occur because molecular motion is frozen. This is because phase separation requires the movement and diffusion of molecules. As described above, the provision of the photosensitive group has both effects of promoting the phase separation and suppressing the phase separation.

【0008】発明者らは、このような事実に着目してさ
らに鋭意研究を行った結果、官能基が感光性基で置換さ
れた熱硬化性樹脂あるいは感光性樹脂と熱可塑性樹脂と
を適度に相分離させることにより、明確な共連続構造や
球状ドメイン構造を形成できることを見出し、本発明を
完成するに到った。
The present inventors have conducted further studies focusing on such facts, and as a result, have found that a thermosetting resin in which a functional group is substituted with a photosensitive group or a photosensitive resin and a thermoplastic resin are appropriately used. The inventors have found that a clear bicontinuous structure or a spherical domain structure can be formed by performing phase separation, and the present invention has been completed.

【0009】すなわち、本発明は、第1に、官能基の一
部が感光性基で置換されている熱硬化性樹脂と熱可塑性
樹脂とからなる樹脂複合体であって、上記の熱硬化性樹
脂と熱可塑性樹脂とが、球状ドメイン構造である分散状
態を形成してなる多層配線板の層間樹脂絶縁材用の樹脂
複合体であり、前記熱硬化性樹脂は、その官能基の5〜
70%が感光性基で置換されていることが望ましい。第2
に、感光性樹脂と熱可塑性樹脂とからなる樹脂複合体で
あって、感光性樹脂と熱可塑性樹脂とが、球状ドメイン
構造である分散状態を形成してなる多層配線板の層間樹
脂絶縁材用の樹脂複合体である。ここで、これらの樹脂
複合体は、球状ドメイン構造を構成する球状粒子の平均
粒径が、それぞれ0.1 μmを超え、5μm以下であるこ
とが望ましく、また、これらの樹脂複合体において、熱
硬化性樹脂あるいは感光性樹脂と熱可塑性樹脂の配合比
が、熱可塑性樹脂の含有量で15〜50wt%であることが望
ましい。そして、本発明の樹脂複合体の製造方法は、第
1に、熱可塑性樹脂と混合した熱硬化性樹脂を硬化する
ことにより熱硬化性樹脂と熱可塑性樹脂とを複合化する
方法において、官能基の一部が感光性基と置換されてい
る熱硬化性樹脂と熱可塑性樹脂とを非相溶状態で混合分
散させ、次いで、これを露光し、加熱することにより硬
化させ、熱硬化性樹脂と熱可塑性樹脂との球状ドメイン
構造を形成することを特徴とする方法である。第2に、
熱可塑性樹脂と混合した感光性樹脂を硬化することによ
り感光性樹脂と熱可塑性樹脂とを複合化する方法におい
て、感光性樹脂と熱可塑性樹脂とを非相溶状態で混合分
散させ、次いで、これを露光することにより硬化させ、
感光性樹脂と熱可塑性樹脂との球状ドメイン構造を形成
することを特徴とする方法である。ここで、前記熱硬化
性樹脂として、その官能基の5〜70%が感光性基で置換
されているものを用いることが望ましく、また、熱硬化
性樹脂あるいは感光性樹脂と熱可塑性樹脂の配合比を、
熱可塑性樹脂の含有量で15〜50wt%とすることが望まし
い。
That is, the present invention firstly provides a resin composite comprising a thermoplastic resin and a thermosetting resin in which a part of a functional group is substituted by a photosensitive group, The resin and the thermoplastic resin are a resin composite for an interlayer resin insulating material of a multilayer wiring board formed by forming a dispersed state having a spherical domain structure, and the thermosetting resin has five to five functional groups.
It is desirable that 70% be substituted with a photosensitive group. Second
A resin composite comprising a photosensitive resin and a thermoplastic resin, wherein the photosensitive resin and the thermoplastic resin form a dispersed state having a spherical domain structure for an interlayer resin insulating material of a multilayer wiring board. Is a resin composite. Here, in these resin composites, it is preferable that the average particle diameter of the spherical particles constituting the spherical domain structure is more than 0.1 μm and 5 μm or less, respectively. It is desirable that the mixing ratio of the resin or the photosensitive resin to the thermoplastic resin is 15 to 50 wt% in terms of the content of the thermoplastic resin. The method for producing a resin composite according to the present invention includes, first, a method of forming a composite of a thermosetting resin and a thermoplastic resin by curing a thermosetting resin mixed with the thermoplastic resin; A part of the thermosetting resin and the thermoplastic resin, which are substituted with a photosensitive group, are mixed and dispersed in an incompatible state, and then this is exposed and cured by heating to be cured. This is a method characterized by forming a spherical domain structure with a thermoplastic resin. Second,
In the method of compounding the photosensitive resin and the thermoplastic resin by curing the photosensitive resin mixed with the thermoplastic resin, the photosensitive resin and the thermoplastic resin are mixed and dispersed in an incompatible state, and then Cured by exposing
This is a method characterized by forming a spherical domain structure of a photosensitive resin and a thermoplastic resin. Here, as the thermosetting resin, it is desirable to use a resin in which 5 to 70% of the functional groups are substituted by a photosensitive group. The ratio
It is desirable that the content of the thermoplastic resin be 15 to 50% by weight.

【0010】[0010]

【作用】本発明にかかる多層配線板の層間樹脂絶縁材用
の樹脂複合体の特徴は、その官能基の一部が感光性基で
置換された熱硬化性樹脂と熱可塑性樹脂とが、球状ドメ
イン構造を形成してなる点と、感光性樹脂と熱可塑性樹
脂とが球状ドメイン構造を形成してなる点とにある。こ
のような構造を形成することにより、熱硬化性樹脂が示
す耐熱性や耐薬品性、感光性樹脂が示す感光特性などを
保持したまま、熱可塑性樹脂の物性を付与でき、高靱
性、高強度、低誘電率および低熱膨張率の樹脂複合体を
得ることができる。したがって、このような球状ドメイ
ン構造を有する樹脂複合体を、多層配線板の層間樹脂絶
縁層、特に無電解めっき用接着剤の樹脂マトリックスに
応用した場合には、耐熱性、耐薬品性、感光特性を保持
したまま、靭性や強度が大幅に改善されるので、粗化処
理によって接着剤層に形成される凹凸形状を確実に保持
することができ、その結果として、より複雑な凹凸形状
の粗化面であっても、その上に形成される無電解めっき
膜との密着性を大幅に向上させることができる。このよ
うな樹脂複合体の構造による効果は、前記複合体におけ
る熱可塑性樹脂(例えば、PES)の含有量が固形分で
15〜50wt%である場合に特に顕著となる。この理由は、
熱可塑性樹脂の含有量が15wt%未満では、樹脂成分の網
目に絡み合う熱可塑性樹脂分子が少ないため強靱化の効
果が十分に発揮されず、一方、熱可塑性樹脂の含有量が
50wt%を超えると、架橋点の減少によって熱硬化性樹脂
と熱可塑性樹脂間との相互作用が小さくなるからであ
る。
The resin composite for an interlayer resin insulating material of a multilayer wiring board according to the present invention is characterized in that a thermosetting resin and a thermoplastic resin whose functional groups are partially substituted by a photosensitive group are spherical. There is a point where a domain structure is formed and a point where a photosensitive resin and a thermoplastic resin form a spherical domain structure. By forming such a structure, the physical properties of the thermoplastic resin can be imparted while maintaining the heat resistance and chemical resistance of the thermosetting resin, the photosensitive properties of the photosensitive resin, and the like, and high toughness and high strength can be obtained. Thus, a resin composite having a low dielectric constant and a low coefficient of thermal expansion can be obtained. Therefore, when the resin composite having such a spherical domain structure is applied to an interlayer resin insulating layer of a multilayer wiring board, particularly to a resin matrix of an adhesive for electroless plating, heat resistance, chemical resistance, and photosensitive properties are obtained. The toughness and strength are greatly improved while maintaining the roughness, so that the irregularities formed on the adhesive layer by the roughening treatment can be reliably retained, and as a result, the more complex irregularities are roughened. Even on the surface, the adhesion to the electroless plating film formed thereon can be greatly improved. The effect of the structure of the resin composite is that the content of the thermoplastic resin (for example, PES) in the composite is a solid content.
This is particularly noticeable when the content is 15 to 50 wt%. The reason for this is
If the content of the thermoplastic resin is less than 15% by weight, the effect of toughening is not sufficiently exhibited because the number of thermoplastic resin molecules entangled in the network of the resin component is insufficient, while the content of the thermoplastic resin is reduced.
If the amount exceeds 50% by weight, the interaction between the thermosetting resin and the thermoplastic resin decreases due to the decrease in the number of crosslinking points.

【0011】本発明において、球状ドメイン構造とは、
熱可塑性樹脂を主とする樹脂マトリックス中に、官能基
の一部が感光性基で置換された熱硬化性樹脂もしくは感
光性樹脂を主とする樹脂の球状ドメインが互いに独立
し、あるいは一部が連結して分散している状態の構造を
指し、また、共連続構造とは、熱可塑性樹脂を主とする
の樹脂マトリックス中に、官能基の一部が感光性基で置
換された熱硬化性樹脂もしくは感光性樹脂を主とする樹
脂からなる球状ドメインが互いに連結し合い、かつ規則
正しく分散している状態の構造を指す。
In the present invention, the globular domain structure is
In a resin matrix mainly composed of a thermoplastic resin, spherical domains of a thermosetting resin or a resin mainly composed of a photosensitive resin in which a part of functional groups are substituted with a photosensitive group are independent of each other, or a part thereof is Refers to the structure in a state of being linked and dispersed, and the bicontinuous structure is a thermosetting resin in which some of the functional groups are replaced with photosensitive groups in a resin matrix mainly composed of thermoplastic resin. It refers to a structure in which spherical domains composed of a resin or a resin mainly composed of a photosensitive resin are connected to each other and are regularly dispersed.

【0012】すなわち、上記各構造を形成する樹脂は、
それぞれが完全に分離しているのではなく、熱可塑性樹
脂の中に、官能基の一部が感光性基で置換された熱硬化
性樹脂もしくは感光性樹脂が含有されていて、その比率
は圧倒的に熱可塑性樹脂が高く、一方、官能基の一部が
感光性基で置換された熱硬化性樹脂もしくは感光性樹脂
の中に、熱可塑性樹脂が含有されていて、その比率は熱
硬化性樹脂もしくは感光性樹脂が高い。すなわち、それ
ぞれの樹脂が完全に相分離しているのではなく、少しは
相溶しているのである。なお、官能基の一部が感光性基
で置換された熱硬化性樹脂もしくは感光性樹脂を主とす
る樹脂マトリックス中に、熱可塑性樹脂を主とする樹脂
を分散させるようにしてもよい。
That is, the resin forming each of the above structures is:
Rather than being completely separated from each other, the thermoplastic resin contains a thermosetting resin or a photosensitive resin in which some of the functional groups are replaced with a photosensitive group, and the ratio is overwhelming. Thermoplastic resin is high in terms of thermosetting resin, while thermoplastic resin is contained in thermosetting resin or photosensitive resin in which a part of functional group is substituted by photosensitive group, and the ratio is thermosetting resin. High resin or photosensitive resin. That is, the respective resins are not completely phase-separated but are slightly compatible. Note that a resin mainly composed of a thermoplastic resin may be dispersed in a resin matrix mainly composed of a thermosetting resin or a photosensitive resin in which a part of the functional groups is substituted by a photosensitive group.

【0013】上述した球状ドメイン構造および共連続構
造は、熱可塑性樹脂をジメチルホルムアミド(DMF)
や塩化メチレン、ジメチルスルホキシド(DMSO)、
ノルマルメチルピロリドン(NMP)などの溶剤で溶解
し、その表面をSEMで観察することにより確認でき
る。
The above-mentioned spherical domain structure and co-continuous structure are obtained by converting a thermoplastic resin into dimethylformamide (DMF).
And methylene chloride, dimethyl sulfoxide (DMSO),
It can be confirmed by dissolving with a solvent such as normal methylpyrrolidone (NMP) and observing the surface by SEM.

【0014】本発明において、前記熱硬化性樹脂は、そ
の官能基の5〜70%が感光性基で置換されていることが
望ましい。この理由は、5%未満では、感光性が得られ
ず、70%を超えると熱可塑性樹脂との相溶が困難になる
からである。
In the present invention, the thermosetting resin preferably has 5-70% of the functional groups substituted by photosensitive groups. The reason for this is that if it is less than 5%, photosensitivity cannot be obtained, and if it exceeds 70%, compatibility with the thermoplastic resin becomes difficult.

【0015】本発明の樹脂複合体は、球状ドメイン構造
を構成する球状粒子の平均粒径が、それぞれ0.1 μmを
超え、5μm以下であることが望ましい。この理由は、
官能基の一部が感光性基と置換された熱硬化性樹脂ある
いは感光性樹脂と熱可塑性樹脂を均一に相溶させること
は難しく、それ故に、平均粒径を、0.1 μm未満に調整
することは困難であり、一方、5μmを超えると、靱性
の改善を図ることができず、しかも、感光特性や耐熱性
も低下するからである。なお、樹脂複合体の上記平均粒
径は、主にSEM観察による計測による。
In the resin composite of the present invention, the average particle diameter of the spherical particles constituting the spherical domain structure is preferably more than 0.1 μm and 5 μm or less. The reason for this is
It is difficult to uniformly dissolve a thermosetting resin in which a part of the functional groups is replaced with a photosensitive group or a photosensitive resin and a thermoplastic resin. Therefore, it is necessary to adjust the average particle size to less than 0.1 μm. On the other hand, if it exceeds 5 μm, the toughness cannot be improved, and the photosensitive characteristics and heat resistance also decrease. The average particle size of the resin composite is mainly measured by SEM observation.

【0016】次に、本発明の樹脂複合体を製造する方法
について説明する。官能基の一部が感光性基で置換され
た熱硬化性樹脂と熱可塑性樹脂とを複合化する第1の方
法は、例えば、熱硬化性樹脂の熱硬化に関与する官能基
と感光性基との置換率を制御することにより、混合する
熱可塑性樹脂との相溶性を変え、非相溶の度合いを調整
し、これを露光したのち加熱することにより硬化する点
に特徴がある。感光性樹脂と熱可塑性樹脂とを複合化す
る第2の方法は、例えば、感光性樹脂の種類、分子量を
調整することにより、混合する熱可塑性樹脂との相溶性
を変え、非相溶の度合いを調整し、これを露光して硬化
する点にある。このようにして、混合する樹脂の非相溶
の度合いの大小によって、共連続構造もしくは球状ドメ
イン構造を形成することができる。以下にそれの具体的
な製造方法について説明する。
Next, a method for producing the resin composite of the present invention will be described. A first method for forming a composite of a thermoplastic resin and a thermosetting resin in which a part of a functional group is substituted with a photosensitive group includes, for example, a functional group involved in thermosetting of the thermosetting resin and a photosensitive group. Is controlled by controlling the substitution ratio with the thermoplastic resin, thereby changing the compatibility with the thermoplastic resin to be mixed, adjusting the degree of incompatibility, and exposing it to heat and curing it. A second method of compounding the photosensitive resin and the thermoplastic resin is to change the compatibility with the thermoplastic resin to be mixed, for example, by adjusting the type and molecular weight of the photosensitive resin, and to adjust the degree of incompatibility. Is adjusted, and this is exposed and cured. In this way, a bicontinuous structure or a spherical domain structure can be formed depending on the degree of incompatibility of the resins to be mixed. Hereinafter, a specific manufacturing method thereof will be described.

【0017】第1の方法は、まず最初に、官能基の一部
が感光性基で置換された熱硬化性樹脂と熱可塑性樹脂と
を、必要に応じて溶媒中に混合分散させて非相溶状態と
する。官能基の一部が感光性基で置換された熱硬化性樹
脂と熱可塑性樹脂とは、相溶しにくく、非相溶状態で分
散状態となる。次に、溶媒を用いた場合には乾燥により
溶媒を除去した後、これを露光することにより、熱硬化
性樹脂中の感光性基を硬化させ、その後、熱硬化性樹脂
中に残留する熱硬化型の官能基を加熱反応させることに
より、完全に硬化させ、熱硬化性樹脂と熱可塑性樹脂と
の球状ドメイン構造を形成する。ここで、熱硬化を行う
時点では、すでに感光性基の反応で分子鎖の運動が凍結
されているので、熱硬化による相分離は、殆ど起こらな
い。したがって、官能基の一部が感光性基で置換された
熱硬化性樹脂と熱可塑性樹脂とは、最初の分散状態にお
いて、非相溶の度合いが大きければ球状ドメイン構造と
なり、非相溶の度合いが小さいと共連続構造となる。こ
の非相溶の度合いは、熱可塑性樹脂および熱硬化性樹脂
の種類や分子量などによって異なるが、樹脂の種類や分
子量が同じであれば、熱硬化性樹脂の官能基を感光性基
で置換することにより、その置換率で制御することがで
きる。なお、熱硬化性樹脂中に残留する熱硬化型の官能
基を硬化反応させることにより、耐酸化剤特性が向上す
るので、官能基の一部が感光性基で置換された熱硬化性
樹脂と熱可塑性樹脂との球状ドメイン構造の樹脂複合体
は、無電解めっき用接着剤の樹脂マトリックスに応用す
る場合に好適である。
In the first method, first, a thermosetting resin in which a part of functional groups is substituted by a photosensitive group and a thermoplastic resin are mixed and dispersed in a solvent, if necessary, to obtain a non-phased resin. Make into a molten state. The thermosetting resin in which a part of the functional group is substituted by the photosensitive group is hardly compatible with the thermoplastic resin, and becomes a dispersed state in an incompatible state. Next, when a solvent is used, the solvent is removed by drying, and then the photosensitive group in the thermosetting resin is cured by exposing it to light. Thereafter, the thermosetting resin remaining in the thermosetting resin is cured. By heating and reacting the functional groups of the mold, they are completely cured and form a spherical domain structure of a thermosetting resin and a thermoplastic resin. Here, at the time of performing the thermal curing, the motion of the molecular chain is already frozen by the reaction of the photosensitive group, so that phase separation due to the thermal curing hardly occurs. Therefore, the thermosetting resin and the thermoplastic resin, in which a part of the functional groups are substituted with the photosensitive group, have a spherical domain structure if the degree of incompatibility is large in the initial dispersion state, and the degree of incompatibility When is small, a bicontinuous structure is formed. The degree of incompatibility varies depending on the type and molecular weight of the thermoplastic resin and the thermosetting resin, but if the type and molecular weight of the resin are the same, the functional group of the thermosetting resin is replaced with a photosensitive group. Thus, it can be controlled by the replacement rate. In addition, by performing a curing reaction of the thermosetting functional group remaining in the thermosetting resin, the antioxidant properties are improved, so that the thermosetting resin in which a part of the functional groups is substituted with a photosensitive group is used. A resin composite having a spherical domain structure with a thermoplastic resin is suitable for application to a resin matrix of an adhesive for electroless plating.

【0018】第2の方法は、まず最初に、感光性樹脂と
熱可塑性樹脂とを、必要に応じて溶媒中に混合分散させ
て非相溶状態とする。感光性樹脂と熱可塑性樹脂とは、
相溶しにくく、非相溶状態で個別分散状態となる。次
に、溶媒を用いた場合には乾燥により溶媒を除去した
後、これを露光することにより感光性樹脂を硬化させ、
感光性樹脂と熱可塑性樹脂との球状ドメイン構造を形成
する。感光性樹脂と熱可塑性樹脂とは、最初の分散状態
において、非相溶の度合いが大きければ球状ドメイン構
造となり、非相溶の度合いが小さいと共連続構造とな
る。この非相溶の度合いは、熱可塑性樹脂および感光性
樹脂の種類や分子量などにより制御することができる。
この方法は、露光により硬化を行うため、硬化時の相分
離が抑制でき、最初の分散状態がそのまま硬化物に反映
される。
In the second method, first, a photosensitive resin and a thermoplastic resin are mixed and dispersed in a solvent, if necessary, to make them incompatible. The photosensitive resin and the thermoplastic resin are
It is hardly compatible and becomes an individual dispersion state in an incompatible state. Next, in the case of using a solvent, after removing the solvent by drying, the photosensitive resin is cured by exposing it,
A spherical domain structure of a photosensitive resin and a thermoplastic resin is formed. In the initial dispersion state, the photosensitive resin and the thermoplastic resin have a spherical domain structure if the degree of incompatibility is large, and have a bicontinuous structure if the degree of incompatibility is small. The degree of this incompatibility can be controlled by the type and molecular weight of the thermoplastic resin and the photosensitive resin.
In this method, since curing is performed by exposure, phase separation during curing can be suppressed, and the initial dispersion state is directly reflected on the cured product.

【0019】上述したような本発明方法において使用で
きる溶剤としては、例えば、ジメチルホルムアミド(DM
F )や塩化メチレン、ジメチルスルホキシド(DMSO)、
ノルマルメチルピロリドン(NMP )などが好適である。
熱硬化性樹脂としては、フェノール樹脂メラミン、尿素
樹脂などのアミノ樹脂、エポキシ樹脂、エポキシ変成ポ
リイミド樹脂、不飽和ポリエステル樹脂、ポリイミド樹
脂、ウレタン樹脂、ジアリルフタレート樹脂などが好適
である。本発明では、これらの硬化に関与する官能基の
一部,望ましくは5〜70%をアクリル基などの官能基に
置換して使用するのである。熱可塑性樹脂としては、ポ
リエーテルスルホン、ポリスルホン、フェノキシ樹脂、
ポリエーテルイミド、ポリスチレン、ポリエチレン、ポ
リアリレート、ポリアミドイミド、ポリフェニレンスル
フィド、ポリエーテルエーテルケトン、ポリオキシベン
ゾエート、ポリ塩化ビニル、ポリ酢酸ビニル、ポリアセ
タール、ポリカーボネートなどが好適である。本発明で
は、これらの熱可塑性樹脂の配合量を15〜50%として、
上記熱硬化性樹脂あるいは感光性樹脂と複合化するので
ある。感光性樹脂としては、アクリル系樹脂や熱硬化性
樹脂の官能基を100 %アクリル化したものなどを好適に
使用することができる。硬化剤としては、熱硬化性樹脂
としてエポキシ樹脂を用いる場合には、イミダゾール系
硬化剤やジアミン、ポリアミン、ポリアミド、無水有機
酸、ビニルフェノールなどを使用することができる。一
方、エポキシ樹脂以外の熱硬化性樹脂を用いる場合に
は、周知の硬化剤を使用することができる。なお、第1
の方法では、熱硬化性樹脂とともに、硬化剤を付与して
もよく、また、第2の方法では、感光性樹脂とともに光
増感剤や光開始剤などを添加してもよい。
The solvent which can be used in the method of the present invention as described above includes, for example, dimethylformamide (DM
F), methylene chloride, dimethyl sulfoxide (DMSO),
Normal methylpyrrolidone (NMP) is preferred.
As the thermosetting resin, an amino resin such as a phenol resin melamine and a urea resin, an epoxy resin, an epoxy-modified polyimide resin, an unsaturated polyester resin, a polyimide resin, a urethane resin, and a diallyl phthalate resin are preferable. In the present invention, a part, preferably 5 to 70%, of these functional groups involved in curing is substituted with a functional group such as an acrylic group for use. As the thermoplastic resin, polyether sulfone, polysulfone, phenoxy resin,
Preferred are polyetherimide, polystyrene, polyethylene, polyarylate, polyamideimide, polyphenylene sulfide, polyetheretherketone, polyoxybenzoate, polyvinyl chloride, polyvinyl acetate, polyacetal, polycarbonate and the like. In the present invention, the blending amount of these thermoplastic resins is 15 to 50%,
It is compounded with the above-mentioned thermosetting resin or photosensitive resin. As the photosensitive resin, an acrylic resin or a thermosetting resin in which the functional group is acrylated to 100% can be suitably used. As the curing agent, when an epoxy resin is used as the thermosetting resin, an imidazole-based curing agent, a diamine, a polyamine, a polyamide, an organic acid anhydride, a vinyl phenol, or the like can be used. On the other hand, when a thermosetting resin other than the epoxy resin is used, a known curing agent can be used. The first
In the method (2), a curing agent may be provided together with the thermosetting resin. In the second method, a photosensitizer or a photoinitiator may be added together with the photosensitive resin.

【0020】以上説明したような本発明の樹脂複合体に
よれば、部分アクリル化エポキシ樹脂などの熱硬化性樹
脂特有の物性あるいはアクリル樹脂などの感光性樹脂特
有の物性を具えると共に、複合化させるPESなどの熱
可塑性樹脂本来の優れた物性(優れた靱性)をも併せて
具えることができる。すなわち、本発明にかかるPES
変性部分アクリル化エポキシ樹脂やPES変成アクリル
樹脂は、感光特性を低下させず、従来にはないエポキシ
樹脂やアクリル樹脂の強靱化、低誘電率化、低熱膨張率
化が可能になる。
According to the resin composite of the present invention as described above, physical properties specific to a thermosetting resin such as a partially acrylated epoxy resin or physical properties specific to a photosensitive resin such as an acrylic resin are provided. It can also have excellent physical properties (excellent toughness) inherent to a thermoplastic resin such as PES. That is, the PES according to the present invention
The modified partially acrylated epoxy resin or PES-modified acrylic resin does not lower the photosensitive properties, and enables toughness, a low dielectric constant, and a low thermal expansion coefficient of epoxy resins and acrylic resins which have not been conventionally available.

【0021】なお、本発明の樹脂複合体は、プリント配
線板用接着剤などの無電解めっき用接着剤として好適に
使用され、さらにプリント配線板等に用いられる基板材
料,レジスト材料およびプリプレグ材料、半導体パッケ
ージの封止材、繊維強化複合材料の母材、射出成形用材
料、圧縮成形用材料などさまざまな用途に利用されるこ
とが期待される。
The resin composite of the present invention is preferably used as an adhesive for electroless plating, such as an adhesive for printed wiring boards, and further used as a substrate material, a resist material, a prepreg material, It is expected to be used in various applications such as sealing materials for semiconductor packages, base materials for fiber-reinforced composite materials, injection molding materials, and compression molding materials.

【0022】[0022]

【実施例】(実施例1:球状ドメイン構造) (1) フェノールノボラック型エポキシ樹脂(油化シェル
製)の50%アクリル化物を80重量部、ポリエーテルスル
ホン(PES)20重量部、ジアリルテレフタレート15重
量部、2-メチル-1-[4-( メチルチオ) フェニル]-2-モリ
フォリノプロパノン-1(チバ・ガイギー製)4重量部お
よびイミダゾール系硬化剤(四国化成製、商品名:2E4M
Z-CN)4重量部を、DMF 中にて混合し、次いで、得られ
た混合物を80℃で1時間乾燥することにより、溶媒を除
去した後、3J/cm の条件下でUV硬化し、さらに、80
℃で6時間, 150℃で2時間の硬化条件にて硬化して球
状ドメイン構造の樹脂硬化物を得た。
EXAMPLES (Example 1: Spherical domain structure) (1) 80 parts by weight of 50% acrylated phenol novolak type epoxy resin (manufactured by Yuka Shell), 20 parts by weight of polyethersulfone (PES), 15 diallyl terephthalate Parts by weight, 4 parts by weight of 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropanone-1 (manufactured by Ciba-Geigy) and an imidazole-based curing agent (manufactured by Shikoku Chemicals, trade name: 2E4M)
4 parts by weight of Z-CN) in DMF, and then drying the resulting mixture at 80 ° C. for 1 hour to remove the solvent, followed by UV curing under the condition of 3 J / cm 2. And even 80
The resin was cured under the curing conditions of 6 hours at 150 ° C. and 2 hours at 150 ° C. to obtain a cured resin having a spherical domain structure.

【0023】このようにして得た樹脂硬化物について、
破面をポリッシングした後、塩化メチレンでエッチング
し、SEM観察を行った結果、球状樹脂粒子の平均粒径
が2μm前後である球状連続構造が観察された。なお、
PESの部分のみが塩化メチレンでエッチングされるこ
とから、球状の連続構造がエポキシリッチな領域であ
り、マトリックスがPESリッチな領域であると推定さ
れる。
With respect to the resin cured product thus obtained,
After the fractured surface was polished, it was etched with methylene chloride and observed by SEM. As a result, a spherical continuous structure having an average particle diameter of the spherical resin particles of about 2 μm was observed. In addition,
Since only the PES portion is etched with methylene chloride, it is estimated that the spherical continuous structure is an epoxy-rich region and the matrix is a PES-rich region.

【0024】得られた樹脂硬化物の引張強度と引張伸び
率は、それぞれ650kg/cm2 、5.8 %であり、エポキシ樹
脂とPES との中間的な値を示した。なお、同じ硬化剤,
硬化条件で作製したエポキシ樹脂のみからなる硬化物の
引張強度と引張伸び率は、それぞれ約500kg/cm2 , 5%
であった。
The cured resin obtained had tensile strength and tensile elongation of 650 kg / cm 2 and 5.8%, respectively, which were intermediate values between the epoxy resin and PES. The same curing agent,
Tensile strength and tensile elongation of a cured product made of only epoxy resin produced under curing conditions are about 500 kg / cm2 and 5%, respectively.
Met.

【0025】(実施例2:多層配線板の層間絶縁材料へ
の適用) (1) ガラスエポキシ銅張積層板(東芝ケミカル製)上に
感光性ドライフィルム(デュポン製)をラミネートし、
所望の導体回路パターンが描画されたマスクフィルムを
通して紫外線露光させ画像を焼きつけた。次に、1,1,1-
トリクロロエタンで現像を行い、塩化第2銅エッチング
液を用いて非導体部の銅を除去したのち、塩化メチレン
でドライフィルムを剥離した。これにより、基板上に複
数の導体パターンからなる第1層導体回路を有する配線
板を作成した。 (2) エポキシ樹脂粒子(東レ製、平均粒径:3.9 μm)
200gを5lのアセトン中に分散させて得たエポキシ樹脂
粒子懸濁液を、ヘンシェルミキサー内で攪拌しながら、
この懸濁液中に、アセトン1lに対してエポキシ樹脂
(三井石油化学製)を30g の割合で溶解させたアセトン
溶液中にエポキシ樹脂粉末(東レ製、平均粒径:0.5 μ
m)300gを分散させて得た懸濁液を滴下することによ
り、上記エポキシ樹脂粒子表面にエポキシ樹脂粉末を付
着せしめた後、上記アセトンを除去し、その後、150 ℃
に加熱して擬似粒子を作成した。この擬似粒子は、平均
粒径が約4.3 μmであり、約75重量%がこの平均粒径を
中心として±2μmの範囲に存在していた。 (3) クレゾールノボラック型エポキシ樹脂(油化シェル
製)の30%アクリル化物を70重量部、ポリスルホン(P
SF)30重量部、ジアリルテレフタレート15重量部、2-
メチル-1-[4-( メチルチオ) フェニル]-2-モリフォリノ
プロパノン-1(チバ・ガイギー製)4重量部、イミダゾ
ール系硬化剤(四国化成製、商品名:2E4MZ-CN)4重量
部、および前記(2) で作成した擬似粒子50重量部を混合
した後、ブチルセロソルブを添加しながら、ホモディス
パー攪拌機で粘度250cpsに調整し、続いて、3本ロール
で混練して感光性樹脂組成物の溶液を調製した。 (4) この感光製樹脂組成物の溶液を、前記(1) で作成し
た配線板上に、ナイフコーターを用いて塗布し、水平状
態で20分間放置してから70℃で乾燥させて厚さ約50μm
の感光性樹脂絶縁層を形成した。 (5) 前記(4) の処理を施した配線板に、100 μmφの黒
円が印刷されたフォトマスクフィルムを密着させ、超高
圧水銀灯500mj/cm2 で露光した。これをクロロセン溶液
で超音波現像処理することにより、配線板上に100 μm
φのバイアホールとなる開口を形成した。さらに、前記
配線板を超高圧水銀灯により約3000mj/cm2で露光し、10
0 ℃で1時間、その後150 ℃で10時間の加熱処理を行う
ことによりフォトマスクフィルムに相当する寸法精度に
優れた開口を有する樹脂絶縁層を形成した。 (6) 前記(5) の処理を施した配線板を、クロム酸水溶液
(CrO3, 500g/l)に70℃で15分間浸漬して樹脂絶縁層の
表面を粗化し、次いで、中和溶液(シプレイ製)に浸漬
したのち水洗した。 (7) 樹脂絶縁層の表面を粗化した基板にパラジウム触媒
(シプレイ製)を付与して絶縁層の表面を活性化させ、
その後、表1に示す組成のアディティブ用無電解めっき
液に11時間浸漬して、めっき膜の厚さが25μmの無電解
銅めっきを施した。 (8) 前記(4) 〜(7) までの工程をさらに2回繰り返しす
ことにより、配線層が4層のビルドアップ多層配線板を
製造した。
Example 2 Application of Multilayer Wiring Board to Interlayer Insulating Material (1) A photosensitive dry film (DuPont) was laminated on a glass epoxy copper-clad laminate (Toshiba Chemical).
The image was printed by exposing to ultraviolet light through a mask film on which a desired conductive circuit pattern was drawn. Then, 1,1,1-
After developing with trichloroethane and removing the copper in the non-conductive portion using a cupric chloride etching solution, the dry film was peeled off with methylene chloride. As a result, a wiring board having a first-layer conductive circuit including a plurality of conductive patterns on the substrate was prepared. (2) Epoxy resin particles (Toray, average particle size: 3.9 μm)
A suspension of epoxy resin particles obtained by dispersing 200 g in 5 l of acetone was stirred in a Henschel mixer.
An epoxy resin powder (manufactured by Toray, average particle size: 0.5 μm) was dissolved in an acetone solution in which 30 g of an epoxy resin (manufactured by Mitsui Petrochemical) was dissolved in 1 liter of acetone in this suspension.
m) The suspension obtained by dispersing 300 g was dropped, so that the epoxy resin powder was attached to the surface of the epoxy resin particles, the acetone was removed, and then 150 ° C.
To produce pseudo particles. The pseudo particles had an average particle size of about 4.3 μm, and about 75% by weight was in a range of ± 2 μm around the average particle size. (3) 70% by weight of a 30% acrylate of cresol novolac type epoxy resin (manufactured by Yuka Shell), polysulfone (P
SF) 30 parts by weight, diallyl terephthalate 15 parts by weight, 2-
Methyl-1- [4- (methylthio) phenyl] -2-morpholinopropanone-1 (manufactured by Ciba-Geigy) 4 parts by weight, imidazole-based curing agent (manufactured by Shikoku Chemicals, trade name: 2E4MZ-CN) 4 parts by weight Part, and 50 parts by weight of the pseudo particles prepared in the above (2), and then, while adding butyl cellosolve, adjusting the viscosity to 250 cps with a homodisper stirrer, and then kneading with three rolls to form a photosensitive resin composition. Was prepared. (4) The solution of the photosensitive resin composition is applied to the wiring board prepared in the above (1) using a knife coater, left in a horizontal state for 20 minutes, and dried at 70 ° C. to obtain a thickness. About 50μm
Was formed. (5) A photomask film on which a black circle of 100 μmφ was printed was brought into close contact with the wiring board subjected to the treatment of (4), and was exposed with an ultrahigh pressure mercury lamp of 500 mj / cm2. This is subjected to ultrasonic development with a chlorocene solution to form a 100 μm
An opening to be a via hole of φ was formed. Further, the wiring board was exposed at about 3000 mj / cm2 by an ultra-high pressure mercury lamp,
By performing a heat treatment at 0 ° C. for 1 hour and then at 150 ° C. for 10 hours, a resin insulating layer having openings having excellent dimensional accuracy corresponding to a photomask film was formed. (6) The wiring board subjected to the treatment of (5) is immersed in a chromic acid aqueous solution (CrO3, 500 g / l) at 70 ° C. for 15 minutes to roughen the surface of the resin insulating layer. (Made by Shipley) and washed with water. (7) A palladium catalyst (manufactured by Shipley) is applied to the substrate having the surface of the resin insulating layer roughened to activate the surface of the insulating layer,
Then, it was immersed in an electroless plating solution for additive having the composition shown in Table 1 for 11 hours to perform electroless copper plating with a plating film thickness of 25 μm. (8) The above steps (4) to (7) were further repeated twice to produce a build-up multilayer wiring board having four wiring layers.

【0026】[0026]

【表1】 [Table 1]

【0027】(比較例1:多層配線板の層間絶縁材料へ
の適用) (1) 以下に示す樹脂組成以外は実施例2と同様にして、
エポキシ樹脂からなる擬似粒子含有の感光性樹脂組成物
の溶液を調製し、第1層導体回路を有する配線板上に、
厚さ約50μmの層間樹脂絶縁層とめっき膜の厚さが25μ
mの無電解銅めっき膜を交互に形成し、配線層が4層の
ビルドアップ多層配線板を製造した。 〔樹脂組成〕 クレゾールノボラック型エポキシ樹脂(油化シェル製)の 30%アクリル化物:60重量部 ビスフェノールA型エポキシ樹脂(油化シェル製) :40重量部 ジアリルテレフタレート :15重量部 2-メチル-1-[4-( メチルチオ) フェニル]-2-モリフォリノ プロパノン-1(チバ・ガイギー製):4重量部 イミダゾール系硬化剤(四国化成製、商品名:2P4MHZ):4重量部
(Comparative Example 1: Application to interlayer insulating material of multilayer wiring board) (1) Except for the resin composition shown below,
A solution of a photosensitive resin composition containing pseudo particles comprising an epoxy resin is prepared, and on a wiring board having a first layer conductive circuit,
Approximately 50μm interlayer resin insulation layer and plating film thickness of 25μ
m of electroless copper plating films were alternately formed to produce a build-up multilayer wiring board having four wiring layers. [Resin composition] 30% acrylate of cresol novolak type epoxy resin (manufactured by Yuka Shell): 60 parts by weight Bisphenol A type epoxy resin (manufactured by Yuka Shell): 40 parts by weight Diallyl terephthalate: 15 parts by weight 2-methyl-1 -[4- (methylthio) phenyl] -2-morpholino propanone-1 (manufactured by Ciba-Geigy): 4 parts by weight Imidazole-based curing agent (manufactured by Shikoku Chemicals, trade name: 2P4MHZ): 4 parts by weight

【0028】実施例2および比較例1にて製造したビル
ドアップ多層配線板における無電解銅めっき膜のピール
強度、ならびに層間樹脂絶縁層の絶縁抵抗とガラス転移
点Tg を測定した。さらに、−65℃×30min 〜125 ℃×
30min のヒートサイクル試験を行った。その結果を表2
に示す。この表に示す結果から明らかなように、本発明
の樹脂複合体をビルドアップ多層配線板の樹脂絶縁層に
適用することにより、接着強度、絶縁性、耐熱性および
ヒートサイクル特性が従来のもの(熱硬化性樹脂のみを
樹脂絶縁層としたもの)に比べ向上することが判った。
The peel strength of the electroless copper plating film, the insulation resistance of the interlayer resin insulation layer, and the glass transition point Tg of the build-up multilayer wiring boards manufactured in Example 2 and Comparative Example 1 were measured. Furthermore, -65 ℃ × 30min ~ 125 ℃ ×
A 30 minute heat cycle test was performed. Table 2 shows the results.
Shown in As is clear from the results shown in this table, by applying the resin composite of the present invention to the resin insulating layer of the build-up multilayer wiring board, the adhesive strength, insulating property, heat resistance and heat cycle characteristics of the conventional one ( (Only the thermosetting resin is used as the resin insulating layer).

【0029】[0029]

【表2】 [Table 2]

【0030】(実施例3:感光性基で置換されたエポキ
シ以外の樹脂と熱可塑性樹脂)エポキシ変性ポリイミド
樹脂/PSF系において、エポキシ変性ポリイミド樹脂
(三井石油化学工業製、商品名:TA-1800 )のエポキシ
基の30%をアクリル化した感光性付与のオリゴマーとP
SF、イミダゾール系硬化剤(四国化成製、商品名:2E
4MZ-CN)、感光性モノマーであるトリメチルトリアクリ
レート(TMPTA)、光開始剤の I-907(チバガイギー
製)を用い、下記組成でDMFを用いて樹脂を混合し、
次いで、得られた混合物を80℃で30分間乾燥することに
より、溶媒を除去した後、3J/cm の条件下でUV硬化
し、さらに、 150℃で5時間の条件下で熱硬化し樹脂硬
化物を得た。 樹脂組成:TA-1800 /PSF /TMPTA /I-907 /イミダゾ
ール系硬化剤=70/30/10/5/5
(Example 3: Resin other than epoxy substituted with photosensitive group and thermoplastic resin) In an epoxy-modified polyimide resin / PSF system, an epoxy-modified polyimide resin (manufactured by Mitsui Petrochemical Industries, trade name: TA-1800) )) And a photosensitizing oligomer in which 30% of the epoxy groups are acrylated and P
SF, imidazole-based curing agent (Shikoku Chemicals, trade name: 2E
4MZ-CN), trimethyltriacrylate (TMPTA) as a photosensitive monomer, I-907 (manufactured by Ciba-Geigy) as a photoinitiator, and a resin mixed with DMF with the following composition,
Next, the obtained mixture was dried at 80 ° C. for 30 minutes to remove the solvent, then UV-cured under the condition of 3 J / cm 2 , and further heat-cured at 150 ° C. for 5 hours. A cured product was obtained. Resin composition: TA-1800 / PSF / TMPTA / I-907 / imidazole-based curing agent = 70/30/10/5/5

【0031】得られた樹脂硬化物の引張強度と引張伸び
率は、それぞれ750kg/cm2 、6.2 %であった。なお、同
じ硬化剤、硬化条件で作製した30%アクリル化されたエ
ポキシ樹脂のみからなる硬化物の引張強度と引張伸び率
は、それぞれ550kg/cm、4.3 %であった。
The cured resin obtained had a tensile strength and a tensile elongation of 750 kg / cm 2 and 6.2%, respectively. The tensile strength and tensile elongation of the cured product made of only the 30% acrylated epoxy resin prepared under the same curing agent and curing conditions were 550 kg / cm 2 and 4.3%, respectively.

【0032】(実施例4:感光性樹脂/PES系) (1) 感光性樹脂/PES系において、感光性樹脂として
クレゾールノボラック型エポキシ樹脂の100%アクリル化
物、感光性モノマーとしてジペンタエリスリトールヘキ
サアクリレート(共栄社油脂製)およびネオペンチルグ
リコール変成トリメチロールプロパンジアクリレート
(日本化薬製)、光開始剤としてベンゾフェノン(関東
化学製)、促進剤としてミヒラーケトン(関東化学製)
を用い、下記の組成、硬化条件にて樹脂硬化物を得た。 〔樹脂組成〕 クレゾールノボラック型エポキシ樹脂(油化シェル製)の 100%アクリル化物:70重量部 PES :30重量部 ジペンタエリスリトールヘキサアクリレート(共栄社油脂製):10重量部 ネオペンチルグリコール変成 トリメチロールプロパンジアクリレート(日本化薬製):5重量部 ベンゾフェノン :5重量部 ミヒラーケトン :0.5 重量部 〔硬化条件〕 乾燥:80℃、1時間 光硬化:3J/cm 熱硬化:150 ℃、 2時間
Example 4: Photosensitive resin / PES system (1) Photosensitive resin / PES system
100% acrylation of cresol novolak type epoxy resin
Dipentaerythritol hex
Sacrylate (manufactured by Kyoeisha Oil & Fat) and Neopentiling
Recall modified trimethylolpropane diacrylate
(Nippon Kayaku), benzophenone (Kanto)
Chemical), Michler's ketone (Kanto Chemical)
Was used to obtain a resin cured product under the following composition and curing conditions. [Resin composition] 100% acrylated cresol novolak type epoxy resin (manufactured by Yuka Shell): 70 parts by weight PES: 30 parts by weight Dipentaerythritol hexaacrylate (manufactured by Kyoeisha Oil & Fats): 10 parts by weight Neopentyl glycol modified trimethylolpropane Diacrylate (Nippon Kayaku): 5 parts by weight Benzophenone: 5 parts by weight Michler's ketone: 0.5 parts by weight [Curing conditions] Drying: 80 ° C, 1 hour Light curing: 3 J / cm2  Heat curing: 150 ° C, 2 hours

【0033】得られた樹脂硬化物の引張強度と引張伸び
率は、それぞれ750kg/cm2 、5.0 %であり、エポキシ樹
脂とPES との中間的な値を示した。なお、同じ硬化剤,
硬化条件で作製した感光性樹脂のみからなる硬化物の引
張強度と引張伸び率は、それぞれ約560kg/cm2 , 3.1 %
であった。
The tensile strength and tensile elongation of the obtained cured resin were 750 kg / cm 2 and 5.0%, respectively, and were intermediate values between the epoxy resin and PES. The same curing agent,
Tensile strength and tensile elongation of a cured product made of only photosensitive resin prepared under curing conditions are about 560 kg / cm2 and 3.1%, respectively.
Met.

【0034】なお、上記ピール強度、絶縁抵抗、ガラス
転移点Tg およびヒートサイクル試験の方法または評価
方法を説明する。 (1)ピール強度 JIS−C−6481 (2)絶縁抵抗 基板に層間絶縁層を形成し、粗化したのち触媒付与を行
い、次いで、めっきレジストを形成してレジストパター
ンを作成した。その後、無電解めっきを施し、パターン
間の絶縁抵抗を測定した。なお、パターン間絶縁性は、
L/S=75/75 μmのくしばパターンにて、80℃/85%/24
V,1000時間後の値を測定した。 (3)ガラス転移点Tg 動的粘弾性測定により測定した。 (4)ヒートサイクル試験 −65℃×30min 〜125 ℃×30min のヒートサイクル試験
を行い、クラックの発生と層間絶縁層の剥離の有無を調
べ、その耐久サイクル数で評価した。
The peel strength, insulation resistance, glass transition point Tg, and heat cycle test method or evaluation method will be described. (1) Peel strength JIS-C-6481 (2) Insulation resistance An interlayer insulating layer was formed on a substrate, and after roughening, a catalyst was applied, and then a plating resist was formed to form a resist pattern. Thereafter, electroless plating was performed, and the insulation resistance between the patterns was measured. The insulation between patterns is
80 ° C / 85% / 24 with comb pattern of L / S = 75/75 μm
V and the value after 1000 hours were measured. (3) Glass transition point Tg Measured by dynamic viscoelasticity measurement. (4) Heat cycle test A heat cycle test was performed at −65 ° C. × 30 min to 125 ° C. × 30 min, and the occurrence of cracks and the presence or absence of peeling of the interlayer insulating layer were examined.

【0035】[0035]

【発明の効果】以上説明したように本発明によれば、熱
硬化性樹脂特有の物性あるいは感光性樹脂特有の物性、
例えば耐熱性や感光特性を具えると共に、複合化させる
熱可塑性樹脂本来の優れた物性をも併せて具える新規な
樹脂複合体を提供することができ、層間樹脂絶縁材(無
電解めっき用接着剤)用に好適に用いることができる。
As described above, according to the present invention, physical properties specific to a thermosetting resin or physical properties specific to a photosensitive resin,
For example, it is possible to provide a novel resin composite having not only heat resistance and photosensitive properties but also the excellent physical properties inherent to a composite thermoplastic resin. Agent).

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱可塑性樹脂−熱硬化性樹脂の混合系の状態図
を示す図である。
FIG. 1 is a diagram showing a phase diagram of a mixed system of a thermoplastic resin and a thermosetting resin.

【図2】本発明にかかる樹脂複合体の球状ドメイン構造
を示す組織のSEM写真である。
FIG. 2 is an SEM photograph of a structure showing a spherical domain structure of a resin composite according to the present invention.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 官能基の一部が感光性基で置換された熱
硬化性樹脂と熱可塑性樹脂とからなる樹脂複合体であっ
て、上記の熱硬化性樹脂と熱可塑性樹脂とが、球状ドメ
イン構造である分散状態を形成してなる多層配線板の層
間樹脂絶縁材用の樹脂複合体。
1. A resin composite comprising a thermosetting resin in which a part of a functional group is substituted by a photosensitive group and a thermoplastic resin, wherein the thermosetting resin and the thermoplastic resin are spherical. A resin composite for an interlayer resin insulating material of a multilayer wiring board formed in a dispersed state having a domain structure.
【請求項2】 感光性樹脂と熱可塑性樹脂とからなる樹
脂複合体であって、感光性樹脂と熱可塑性樹脂とが、球
状ドメイン構造である分散状態を形成してなる多層配線
板の層間樹脂絶縁材用の樹脂複合体。
2. A resin composite comprising a photosensitive resin and a thermoplastic resin, wherein the photosensitive resin and the thermoplastic resin form a dispersed state having a spherical domain structure. Resin composite for insulating material.
【請求項3】 前記熱硬化性樹脂は、その官能基の5〜
70%が感光性基で置換されている請求項1に記載の多層
配線板の層間樹脂絶縁材用の樹脂複合体。
3. The thermosetting resin has five to five functional groups.
The resin composite according to claim 1, wherein 70% is substituted with a photosensitive group.
【請求項4】 前記樹脂複合体は、球状ドメイン構造を
構成する球状粒子の平均粒径が、0.1μmを超え、5μ
m以下であることを特徴とする請求項1〜3のいずれか
1つに記載の多層配線板の層間樹脂絶縁材用の樹脂複合
体。
4. The resin composite according to claim 1, wherein the spherical particles constituting the spherical domain structure have an average particle diameter of more than 0.1 μm and 5 μm.
The resin composite for an interlayer resin insulating material of a multilayer wiring board according to any one of claims 1 to 3, wherein m is not more than m.
【請求項5】 上記樹脂複合体における熱硬化性樹脂あ
るいは感光性樹脂と熱可塑性樹脂の配合比は、熱可塑性
樹脂の含有量で15〜50wt%である請求項1〜4のいずれ
か1つに記載の多層配線板の層間樹脂絶縁材用の樹脂複
合体。
5. The resin composite according to claim 1, wherein the mixing ratio of the thermosetting resin or the photosensitive resin to the thermoplastic resin is 15 to 50 wt% in terms of the content of the thermoplastic resin. The resin composite for an interlayer resin insulating material of the multilayer wiring board according to the above.
JP2000282726A 2000-09-18 2000-09-18 Resin composite for interlayer resin insulating material for multilayer wiring board Pending JP2001148572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000282726A JP2001148572A (en) 2000-09-18 2000-09-18 Resin composite for interlayer resin insulating material for multilayer wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000282726A JP2001148572A (en) 2000-09-18 2000-09-18 Resin composite for interlayer resin insulating material for multilayer wiring board

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP27119193A Division JP3142424B2 (en) 1993-10-05 1993-10-05 Resin composite for interlayer resin insulation of multilayer wiring boards

Publications (1)

Publication Number Publication Date
JP2001148572A true JP2001148572A (en) 2001-05-29

Family

ID=18767184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000282726A Pending JP2001148572A (en) 2000-09-18 2000-09-18 Resin composite for interlayer resin insulating material for multilayer wiring board

Country Status (1)

Country Link
JP (1) JP2001148572A (en)

Similar Documents

Publication Publication Date Title
EP0625537B1 (en) Adhesives for electroless plating and printed circuit boards
US6451932B1 (en) Resin composites and method for producing the same
JP3142424B2 (en) Resin composite for interlayer resin insulation of multilayer wiring boards
US6607825B1 (en) Metal film bonded body, bonding agent layer and bonding agent
JP3142425B2 (en) Resin composite having pseudo-homogeneous compatible structure
JP3398226B2 (en) Metal film adherend
JP4722954B2 (en) Adhesive for printed wiring board and method for producing adhesive layer for printed wiring board
JPH06268339A (en) Flex-rigid multilayer printed wiring board and production thereof
JP3290529B2 (en) Adhesive for electroless plating, adhesive layer for electroless plating and printed wiring board
JP4199151B2 (en) Adhesive and adhesive layer for printed wiring board
JP2001148572A (en) Resin composite for interlayer resin insulating material for multilayer wiring board
JP3718625B2 (en) Manufacturing method of resin composite
JP3595319B2 (en) Adhesives and adhesive layers for printed wiring boards
JP3172372B2 (en) Method for producing epoxy acrylate-PES resin composite
JP3790771B2 (en) Manufacturing method of resin composite
JP3411899B2 (en) Adhesive for electroless plating, adhesive layer for electroless plating and printed wiring board
JP2001114981A (en) Composite resin material having pseudo-homogeneously compatibilized structure
JP3160475B2 (en) Composite resin composition for producing resin composite having pseudo-homogeneous compatible structure
JP3790662B2 (en) Manufacturing method of resin composite
JPH0892332A (en) Composite resin composition and resin composite
JP3169308B2 (en) Developer for composite resin
JP2003224355A (en) Electroless plating adhesive, electroless plating adhesive layer, and printed wiring board
JPH0859719A (en) Resist composition and printed wiring board
JPH11323099A (en) Resin composition suitable for buildup substrate
JPH1060403A (en) Adhesive composition and production of multilayer printed-circuit board by using the same