JP2001147989A - Word recognizing device - Google Patents
Word recognizing deviceInfo
- Publication number
- JP2001147989A JP2001147989A JP33028899A JP33028899A JP2001147989A JP 2001147989 A JP2001147989 A JP 2001147989A JP 33028899 A JP33028899 A JP 33028899A JP 33028899 A JP33028899 A JP 33028899A JP 2001147989 A JP2001147989 A JP 2001147989A
- Authority
- JP
- Japan
- Prior art keywords
- word
- character
- feature
- dictionary
- feature amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Character Discrimination (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、手書き文字列を認
識する単語認識装置に関する。The present invention relates to a word recognition device for recognizing a handwritten character string.
【0002】[0002]
【従来の技術】文字認識装置の中には個別文字毎に文字
認識する文字認識装置のほか、認識率を向上させるた
め、文字列に注目した単語認識装置がある。2. Description of the Related Art Among character recognition devices, besides a character recognition device for recognizing a character for each individual character, there is a word recognition device which focuses on a character string in order to improve a recognition rate.
【0003】図8に従来例の単語認識装置1の構成図を
示す。FIG. 8 shows a configuration diagram of a conventional word recognition apparatus 1.
【0004】単語認識装置1は、画像入力部2、正規化
部3、特徴抽出部4、特徴照合部5、特徴合成部8、単
語辞書9、文字辞書7よりなる。The word recognition device 1 comprises an image input unit 2, a normalization unit 3, a feature extraction unit 4, a feature comparison unit 5, a feature synthesis unit 8, a word dictionary 9, and a character dictionary 7.
【0005】図9には、従来例の単語認識装置の動作の
説明図を示す。FIG. 9 is a diagram illustrating the operation of a conventional word recognition apparatus.
【0006】図9(a)に住所例を示す。FIG. 9A shows an example of an address.
【0007】住所、都道府県、市区群、町村および住所
の手書き記入用の枠は、活字で印刷されている。また、
都道府県などの位置決定の基準となる文字は、規定の座
標に印刷されている。住所欄に、「東京」「立川」「柴
崎」が手書きで記載されているものとする。Frames for handwritten entry of addresses, prefectures, municipalities, towns and villages, and addresses are printed in print. Also,
Characters that serve as references for determining the position of a prefecture are printed at prescribed coordinates. It is assumed that "Tokyo", "Tachikawa", and "Shibasaki" are written by hand in the address column.
【0008】図9(b)に動作例を示す。FIG. 9B shows an operation example.
【0009】まず、画像入力部2は入力された画像につ
いて、位置基準となる都道府県の文字が印刷されている
位置を検出し、その前の文字列「東京」を切り出す。そ
して、切り出された文字列を正規化部3で正規化する。
正規化された単語は、特徴抽出部4で特徴量を抽出し、
特徴照合部5に渡す。市区群、町村も同様に行う。First, the image input unit 2 detects the position where the characters of the prefecture serving as the position reference are printed in the input image, and cuts out the character string "Tokyo" preceding it. Then, the extracted character string is normalized by the normalization unit 3.
The feature amount of the normalized word is extracted by the feature extracting unit 4,
The information is passed to the feature matching unit 5. The same applies to municipalities and towns and villages.
【0010】特徴合成部8は単語辞書9に中にある都道
府県等の単語を1つずつ選択する。The feature synthesizing section 8 selects words in the word dictionary 9 such as prefectures one by one.
【0011】単語辞書には「北海」、「東京」、「沖
縄」等のすべての単語が、登録されている。この例で
は、「北海」の単語を選択したとすると、すべての文字
の特徴量が登録されている文字辞書7から、「北」と
「海」の特徴量を取りだし、「北海」の単一の特徴量を
合成する。その合成結果と入力画像の特徴量とが特徴照
合部5で照合され、両者間の特徴量の差を求める。そし
て同様の処理を単語辞書のすべての単語について行う。
照合処理が終了するとそれらの単語の中で特徴量の差分
の最も小さいものを認識結果出力部6から認識結果とし
て出力する。市区群、町村についても同様に行うこと
で、住所例の単語認識を終了する。All words such as "Hokukai", "Tokyo" and "Okinawa" are registered in the word dictionary. In this example, assuming that the word "North Sea" is selected, the feature amounts of "North" and "Sea" are extracted from the character dictionary 7 in which the feature amounts of all characters are registered. Are synthesized. The result of the synthesis is compared with the feature amount of the input image by the feature matching unit 5, and a difference in feature amount between the two is obtained. Then, the same processing is performed for all the words in the word dictionary.
When the matching processing is completed, the word having the smallest difference in the feature amount among the words is output from the recognition result output unit 6 as a recognition result. The word recognition of the address example is completed by performing the same for the city group and the town.
【0012】[0012]
【発明が解決しようとする課題】単語を個々の文字に分
離することなく一括して認識する方式では、1単語に対
して単語を構成する各文字の単一の特徴量から単一の単
語特徴量を合成して入力画像と照合する。このため手書
文字の横幅などの文字サイズ変動に対して単語の認識率
が低い。In a system in which words are collectively recognized without being separated into individual characters, a single word feature is calculated from a single feature amount of each character constituting the word for one word. The amounts are combined and matched against the input image. Therefore, the word recognition rate is low with respect to variations in character size such as the width of handwritten characters.
【0013】本発明は、単語認識装置において、文字の
横幅などの文字サイズの異なる単語の認識率を高めるこ
とを目的とする。An object of the present invention is to increase the recognition rate of words having different character sizes such as the width of a character in a word recognition device.
【0014】[0014]
【課題を解決するための手段】単語認識装置は、入力画
像の所定の単語領域から画像データを切出し、正規化し
て特徴量を抽出する入力単語特徴量抽出手段と、単語を
保持する単語辞書と、各文字の特性値の平均値、分散値
と文字イメージを保持する文字辞書と、単語辞書より単
語を取得し、取得した単語の各文字の特性値の平均値、
分散値から文字間の複数の特性値比率を算定する特性値
比率算定手段と、文字間の複数の特性値比率に基いて、
単語の各文字の文字イメージから所定サイズの複数の単
語イメージを合成する単語イメージ合成手段と、合成し
た複数の単語イメージから1単語に対して複数の単語特
徴量を抽出する辞書単語特徴量抽出手段と、入力単語特
徴量と辞書単語特徴量とを照合し、特徴量の最も近い単
語を選択し出力する単語照合出力手段とを備えた構成で
ある。A word recognition apparatus includes an input word feature extracting means for extracting image data from a predetermined word area of an input image and normalizing and extracting feature data; a word dictionary for storing words; , A character dictionary that holds the average value, variance value, and character image of each character, and a word obtained from the word dictionary, and the average value of the characteristic value of each character of the obtained word,
Characteristic value ratio calculating means for calculating a plurality of characteristic value ratios between characters from the variance value, and based on the plurality of characteristic value ratios between characters,
Word image synthesizing means for synthesizing a plurality of word images of a predetermined size from a character image of each character of a word, and dictionary word feature amount extracting means for extracting a plurality of word feature amounts for one word from the synthesized word images And word matching output means for comparing the input word feature amount with the dictionary word feature amount, and selecting and outputting the word having the closest feature amount.
【0015】この構成により、辞書単語(辞書より取得
した単語)を構成する各文字の特性値(例えば線密度な
ど)の平均値と分散値(標準偏差の2乗)により、複数
の特性値比率を生成し、生成した特性値比率に基づいて
文字イメージから複数の単語イメージを合成すること
で、1単語に対して複数の特徴量を抽出できるため、文
字の横幅などの変動に対して高精度の読取りが可能とな
る。[0015] With this configuration, a plurality of characteristic value ratios can be calculated based on the average value and the variance value (square of the standard deviation) of the characteristic values (for example, line density) of each character constituting the dictionary word (word obtained from the dictionary). By generating multiple word images from a character image based on the generated characteristic value ratio, it is possible to extract multiple feature amounts for one word. Can be read.
【0016】また、単語認識装置は、入力画像の所定の
単語領域から画像データを切出し、正規化して特徴量を
抽出する入力単語特徴量抽出手段と、単語を保持する単
語辞書と、所定の単語イメージサイズを横又は縦方向に
n(整数)個の領域に分割し、分割した各領域を開始位
置として単語イメージサイズのm/n(m<n、n、m
は整数)サイズに文字イメージを正規化して抽出した複
数のm/n特徴量と各文字の特性値の平均値、分散値と
を保持する文字辞書と、単語辞書より単語を取得し、取
得した単語の各文字の特性値の平均値、分散値から文字
間の複数の特性値比率を算定する特性値比率算定手段
と、文字間の複数の特性値比率に基いて、文字辞書から
単語の各文字の複数のm/n特徴量を取得し、取得した
各文字の複数のm/n特徴量から1単語に対して複数の
単語特徴量を合成する辞書単語特徴量合成手段と、入力
単語特徴量と辞書単語特徴量とを照合し、特徴量の最も
近い単語を選択し出力する単語照合出力手段とを備えた
構成である。Further, the word recognition device cuts out image data from a predetermined word region of the input image, normalizes the image data, and extracts a feature value, a word dictionary for holding words, a word dictionary for storing the words, The image size is divided into n (integer) regions in the horizontal or vertical direction, and each divided region is used as a start position to set the word image size to m / n (m <n, n, m).
Words are acquired from a word dictionary, which holds a plurality of m / n feature amounts extracted by normalizing a character image to a size and the average value and variance value of the characteristic value of each character, and a word dictionary. A characteristic value ratio calculating means for calculating a plurality of characteristic value ratios between characters from an average value and a variance value of characteristic values of each character of the word; and a character dictionary for each word based on the plurality of characteristic value ratios between characters. A dictionary word feature synthesizing means for acquiring a plurality of m / n features of a character, and synthesizing a plurality of word features for one word from the acquired m / n features of each character; And a word collation output unit for collating the quantity with the dictionary word feature quantity and selecting and outputting a word having the closest feature quantity.
【0017】この構成では、予め文字辞書に、単語イメ
ージサイズを横又は縦方向にn分割した各領域位置ごと
に文字の複数のm/n特徴量を搭載している。そして、
辞書単語(辞書より取得した単語)を構成する文字の特
性値(例えば線密度など)の平均値と分散値(標準偏差
の2乗)に基づいて複数の単語特性値比率を決め、単語
特性値比率に従って、1単語に対して複数の特徴量を合
成することで、文字の横幅などの変動に対して高精度の
読取りが可能となる。In this configuration, a plurality of m / n feature amounts of characters are mounted in advance in the character dictionary for each region position obtained by dividing the word image size into n in the horizontal or vertical direction. And
A plurality of word characteristic value ratios are determined based on an average value and a variance value (standard deviation squared) of characteristic values (for example, line density) of characters constituting a dictionary word (a word obtained from the dictionary), and the word characteristic value is determined. By synthesizing a plurality of feature amounts for one word according to the ratio, high-precision reading can be performed with respect to fluctuations such as the width of a character.
【0018】また、前記辞書単語特徴量合成手段は、単
語を構成する文字間の複数の特性値比率に基づいて文字
辞書から取得した各文字のm/n特徴量を所定方向に所
定量移動して単語の特徴量を再生成しなおす特徴量変形
手段を有し、特徴量変形手段により再生成した各文字の
m/n特徴量を基に単語の特徴量を合成する構成であ
る。この構成により、特徴量を文字の所定方向(例えば
横書文書の場合は文字の上または下方向など)に所定量
移動することで、例えば傾き(右下がり単語など)を持
つ単語の特徴量を生成できるので、傾いた単語等に対し
ても高精度の読取りが可能となる。The dictionary word feature amount synthesizing means moves the m / n feature amount of each character obtained from the character dictionary by a predetermined amount in a predetermined direction based on a plurality of characteristic value ratios between characters constituting the word. And a feature amount transforming unit that regenerates the feature amount of the word by using the m / n feature amount of each character regenerated by the feature amount transforming unit. With this configuration, by moving the feature amount by a predetermined amount in a predetermined direction of the character (for example, in the case of a horizontally written document, upward or downward of the character), the characteristic amount of a word having a slope (a downward-sloping word, for example) can be obtained. Since it can be generated, high-precision reading is possible even for inclined words and the like.
【0019】また、単語認識装置は、所定の単語イメー
ジサイズを横又は縦方向にn(整数)個の領域に分割
し、分割した領域の中の特定の領域を開始位置として単
語イメージサイズのm/n(m<n、n、mは整数)サ
イズに文字イメージを正規化して抽出した複数のm/n
特徴量と、各文字の特性値の平均値、分散値とを保持す
る文字辞書と、単語を構成する文字間の複数の特性値比
率に基いて単語の各文字の複数のm/n特徴量を文字辞
書より取得し、取得した各文字の複数のm/n特徴量を
特性値比率に基づいた単語イメージ上の領域の特徴量に
変換し、変換した各文字のm/n特徴量を基に単語の特
徴量を合成する辞書単語特徴量合成手段とを備えた構成
である。Further, the word recognition device divides a predetermined word image size into n (integer) regions in the horizontal or vertical direction, and sets a specific region in the divided regions as a start position to m of the word image size. / N (m <n, where n and m are integers) a plurality of m / n extracted by normalizing the character image to the size
A character dictionary that holds a feature amount, an average value and a variance value of a characteristic value of each character, and a plurality of m / n feature amounts of each character of the word based on a plurality of characteristic value ratios between characters constituting the word. Is obtained from the character dictionary, the plurality of m / n features of the obtained characters are converted into the features of the area on the word image based on the characteristic value ratio, and the m / n features of the converted characters are used as the basis. And a dictionary word feature amount synthesizing means for synthesizing a feature amount of a word.
【0020】この構成により、単語を構成する文字イメ
ージの各m/n特徴量を単語イメージ上のn分割した特
定の領域位置に1つ持つことで各領域位置ごとにm/n
特徴量を持つ必要がなくなるので、文字の辞書容量を小
さくできる。According to this configuration, each m / n feature amount of a character image constituting a word is provided at a specific region position divided into n on the word image, so that each m / n feature amount is provided for each region position.
Since there is no need to have a feature amount, the dictionary capacity of characters can be reduced.
【0021】[0021]
【発明の実施の形態】実施例1の単語認識装置1の構成
図を図1に示す。FIG. 1 is a block diagram of a word recognition apparatus 1 according to a first embodiment.
【0022】単語認識装置1は、画像入力部2、正規化
部3、特徴抽出部4、認識処理部11からなる。認識処理
部11は、特徴照合部5、特徴合成部8、認識結果出力部
6、単語辞書9、文字辞書7を備える。The word recognition device 1 comprises an image input unit 2, a normalization unit 3, a feature extraction unit 4, and a recognition processing unit 11. The recognition processing unit 11 includes a feature matching unit 5, a feature synthesizing unit 8, a recognition result output unit 6, a word dictionary 9, and a character dictionary 7.
【0023】特徴合成部8は、単語特徴量抽出部81また
は単語特徴量合成部82からなる。The feature synthesizing unit 8 includes a word feature amount extracting unit 81 or a word feature amount synthesizing unit 82.
【0024】図2に単語認識装置の動作の説明図を示
す。FIG. 2 is an explanatory diagram of the operation of the word recognition device.
【0025】図2(a)に住所例を示す。FIG. 2A shows an example of an address.
【0026】住所、氏名、都道府県、市区群、町村およ
び住所の手書き記入用の枠は、活字で印刷されている。
また、都道府県などの位置決定の基準となる文字は、規
定の座標に印刷されている。住所欄に、「東京」「立
川」「柴崎」が手書きで記載されているものとする。The address, name, prefecture, city and ward group, town and village, and the frame for handwritten entry of the address are printed in print.
Characters that serve as references for determining the position of a prefecture are printed at prescribed coordinates. It is assumed that "Tokyo", "Tachikawa", and "Shibasaki" are written by hand in the address column.
【0027】図2(b)に動作例を示す。FIG. 2B shows an operation example.
【0028】まず画像入力部2は入力された画像につい
て、位置基準となる都道府県の文字が印刷されている位
置を検出し、その前の文字列「東京」を切り出す。そし
て、切り出された文字列を正規化部3で正規化する。正
規化された単語は、特徴抽出部4で特徴量を抽出し、特
徴照合部5に渡す。First, the image input unit 2 detects the position where the character of the prefecture serving as the position reference is printed in the input image, and cuts out the character string "Tokyo" preceding it. Then, the extracted character string is normalized by the normalization unit 3. The feature amount of the normalized word is extracted by the feature extracting unit 4 and passed to the feature matching unit 5.
【0029】市区群、町村についても同様に処理を行
う。The same processing is performed for the municipalities and towns and villages.
【0030】単語辞書9には、北海、東京、沖縄等都道
府県などのすべての単語が登録されており、文字辞書7
には、すべての文字の特徴量が登録されている。In the word dictionary 9, all words of the prefectures such as Hokkai, Tokyo and Okinawa are registered.
In, the feature amounts of all characters are registered.
【0031】次に認識処理部11の処理の流れを図3に
示す。Next, FIG. 3 shows the flow of the processing of the recognition processing section 11.
【0032】まず、特徴合成部8は単語辞書に従って、
まず「北海」の単語を検索する。(図3のS11ステッフ゜ )
「北海」の単語が見つかると、「北」と「海」について
特徴合成処理を行う。(図3のS12ステッフ゜ )次に本発明
の特徴である特徴合成について2つの方式について説明
を行う。 (1) 単語特徴量抽出処理(図3のS121ステッフ゜) 単語特徴量抽出部81の処理について説明する。First, the feature synthesizing unit 8 operates according to the word dictionary.
First, search for the word "North Sea". (S11 step in Fig. 3)
When the word "North Sea" is found, feature synthesis processing is performed on "North" and "Sea". (S12 step in FIG. 3) Next, two methods of feature synthesis which are features of the present invention will be described. (1) Word Feature Extraction Processing (Step S121 in FIG. 3) The processing of the word feature extraction unit 81 will be described.
【0033】文字イメージを持つため、メモリ容量が大
きい高速のOCR装置に使用される。Since it has a character image, it is used for a high-speed OCR device having a large memory capacity.
【0034】文字イメージから単語イメージを合成する
場合には、予め、文字についてサンプルイメージを文字
辞書7に持つ。そして、単語を構成する各文字イメージ
から単語イメージの生成を行い、単語特徴量を抽出す
る。このため、単語を構成する各文字の特性値に基づい
た変動パラメータを用いて、文字間の特性値比率を計算
し特性値比率に基づいて正規化した単語イメージを生成
する。例えば文字の横幅の特性値として多数のサンプル
イメージをもとにした文字の縦方向の線密度和の平均値
と分散値(標準偏差の2乗)を求める。When a word image is synthesized from a character image, a sample image of the character is stored in the character dictionary 7 in advance. Then, a word image is generated from each character image constituting the word, and a word feature amount is extracted. For this reason, the characteristic value ratio between characters is calculated using the variation parameter based on the characteristic value of each character constituting the word, and a word image normalized based on the characteristic value ratio is generated. For example, the average value and the variance (square of the standard deviation) of the sum of the line densities in the vertical direction of the character based on a large number of sample images are obtained as the characteristic values of the width of the character.
【0035】また、文字の高さの特性値として、多数の
サンプルイメージをもとに高さの平均値と分散値(標準
偏差の2乗)を求める。これらの特性値は、予め全て文
字辞書7に搭載している。Further, as the characteristic value of the character height, an average value and a variance value (square of the standard deviation) of the height are obtained based on a large number of sample images. These characteristic values are all installed in the character dictionary 7 in advance.
【0036】図4に単語特徴量抽出処理の流れ図を示
す。図5に単語イメージの合成処理の説明図を示す。FIG. 4 shows a flowchart of the word feature value extraction processing. FIG. 5 is an explanatory diagram of the word image synthesizing process.
【0037】まず、文字辞書7より単語を構成する文字
の縦方向の線密度和の平均値と分散値を取得する。(S2
1 ステップ) 図5の北海の「北」の線密度和を例えば平均値30、分
散値36(標準偏差6)とする。北海の「海」の線密度
和を例えば平均値50、分散値16(標準偏差4)とす
る。First, the average value and the variance of the sum of the line densities in the vertical direction of the characters constituting the word are obtained from the character dictionary 7. (S2
1 Step) The line density sum of “north” of the North Sea in FIG. 5 is set to, for example, an average value 30 and a variance value 36 (standard deviation 6). The sum of the linear densities of the “sea” in the North Sea is, for example, an average value 50 and a variance value 16 (standard deviation 4).
【0038】次に単語を構成する文字間での線密度和の
複数の横幅の特性値比率を算出する。(S22 ステップ) 平均値および分散値から「北」の線密度和は、24〜3
6、「海」の線密度和は46〜54までの値となる。Next, the characteristic value ratio of a plurality of widths of the sum of the line densities between the characters constituting the word is calculated. (Step S22) From the average value and the variance value, the line density sum of “north” is 24 to 3
6. The sum of the linear densities of "sea" is a value from 46 to 54.
【0039】そこで、特性値比率としては、36:46
(=1:1.27)〜24:54(=1:2.25)までの範囲から複数
とおり選ぶ。例えば、1:1.5 、1:2.0 など。Therefore, the characteristic value ratio is 36:46.
(= 1: 1.27) to 24:54 (= 1: 2.25). For example, 1: 1.5, 1: 2.0, etc.
【0040】次に文字辞書7より、単語を構成する文字
の持つ高さの平均値と分散値を取得する。(S23 ステッ
プ) 次に単語を構成する各文字の高さの平均値と分散値か
ら、文字間の高さ比率を算出する。(S24 ステップ) 例えば画素数72×72の場合、文字「北」の高さの平
均値を40、分散値を16(標準偏差4)、「海」の高
さの平均値を60、分散値(標準偏差5)を25とす
る。Next, an average value and a variance value of the heights of the characters constituting the word are obtained from the character dictionary 7. (Step S23) Next, the height ratio between the characters is calculated from the average value and the variance of the heights of the characters constituting the word. (Step S24) For example, when the number of pixels is 72 × 72, the average value of the height of the character “north” is 40, the variance value is 16 (standard deviation 4), the average value of the height of the “sea” is 60, and the variance value is 60. (Standard deviation 5) is set to 25.
【0041】平均値および分散値から「北」の高さは、
36〜46、「海」の高さは、55〜65までの値とな
る。From the mean and variance values, the height “north” is
36 to 46, the height of the “sea” is a value from 55 to 65.
【0042】そこで、高さ比率は、46:55(=1:1.2
7)〜36:65(=1:1.8) までの範囲から複数とおり
選ぶ。例えば、1:1.5 、1:1.8 など。Therefore, the height ratio is 46:55 (= 1: 1.2
7) Select multiple options from the range up to 36:65 (= 1: 1.8). For example, 1: 1.5, 1: 1.8, and so on.
【0043】次に横幅の変動と高さの変動を組合わせて
複数パターン(上記例では4パターン)の正規化サイズ
の単語イメージを合成する。(S25 ステップ) そして次に複数の単語特徴量を抽出する。(S26 ステッ
プ) (2) 単語特徴量の合成処理(図3のS122ステッフ゜) 単語特徴量合成部82の処理について説明する。Next, by combining the variation in the width and the variation in the height, a word image of a plurality of patterns (four patterns in the above example) having a normalized size is synthesized. (Step S25) Then, a plurality of word feature values are extracted. (Step S26) (2) Word Feature Amount Synthesis Process (Step S122 in FIG. 3) The process of the word feature amount synthesis unit 82 will be described.
【0044】本方式は、単語を構成する各文字の特徴か
ら単語の特徴量を合成する方式である。文字イメージが
不要のため、メモリ容量の小さいOCR装置に使用され
る。このときの文字の特徴として例えば加重方向指数ヒ
ストグラム特徴(信学論Vol.J70DNo.7,pp.1390-1397 )
を用いる。This method is a method of synthesizing a feature amount of a word from a feature of each character constituting the word. Since a character image is not required, it is used for an OCR device having a small memory capacity. The character feature at this time is, for example, a weighted direction exponential histogram feature (IEICE Vol.J70DNo.7, pp.1390-1397)
Is used.
【0045】例えば、単語の正規化イメージの横幅を7
分割する。For example, if the width of the normalized image of a word is 7
To divide.
【0046】次に分割した横幅のm/7(m<7、mは
整数)の幅を占めるように文字イメージの正規化処理を
行い、その正規化したイメージに対して加重方向指数ヒ
ストグラム特徴を抽出する。得られた特徴を以後m/7
特徴と呼ぶ。Next, the character image is normalized so as to occupy the width of m / 7 (m <7, m is an integer) of the divided horizontal width, and the weighted direction index histogram feature is applied to the normalized image. Extract. The obtained features are referred to as m / 7
Called features.
【0047】例えば、ある文字が1/7特徴をもつ場
合、7分割した各領域位置により、7通りの1/7特徴
を持つことになる。For example, if a certain character has a 1/7 feature, there are seven 1/7 features depending on the position of each of the seven divided areas.
【0048】文字辞書7には予め全文字に対してm/7
特徴を生成し登録しておく。そして、単語を構成する文
字特徴どうしのm/7分数の和が1になるように単語特
徴を合成する。The character dictionary 7 stores m / 7 for all characters in advance.
Generate and register features. Then, the word features are synthesized such that the sum of the m / 7 fractions of the character features constituting the word becomes 1.
【0049】例えば、2文字単語(例えば東京)の場合
は、文字辞書7に登録されている文字の特性値によっ
て、3/7特徴(東)+4/7特徴(京)とか、2/7
特徴(東)+5/7特徴(京)とかの合成を行う。For example, in the case of a two-letter word (for example, Tokyo), depending on the characteristic values of the characters registered in the character dictionary 7, 3/7 feature (east) +4/7 feature (K) or 2/7 feature
Combine with feature (east) + 5/7 feature (kyo).
【0050】特性値としては、例えば、線密度和を使用
する。As the characteristic value, for example, a linear density sum is used.
【0051】単語を構成する各文字の文字の幅方向の特
性値比率を例えば線密度和の比に基づいて決定し、文字
辞書7からm/7特徴を抽出して合成する。The characteristic value ratio in the width direction of each character constituting a word is determined based on, for example, the ratio of the sum of line densities, and m / 7 features are extracted from the character dictionary 7 and synthesized.
【0052】図6に単語特徴量の合成処理の流れ図を示
す。図7に単語特徴量の合成処理の説明図を示す。FIG. 6 shows a flowchart of the word feature amount synthesizing process. FIG. 7 is an explanatory diagram of the word feature amount synthesizing process.
【0053】まず、文字辞書7より単語を構成する文字
の持つ例えば横幅方向の線密度和の平均値と分散値を取
得する。(S31 ステッフ゜) 図7(a) に特性値比率例を示す。First, the average value and the variance value of the sum of the line densities in the width direction, for example, of the characters constituting the word are obtained from the character dictionary 7. (S31 step) FIG. 7A shows an example of the characteristic value ratio.
【0054】北海の「北」の線密度和を例えば平均値3
0、分散値36(標準偏差6)とする。北海の「海」の
線密度和を例えば平均値50、分散値16(標準偏差
4)とする。The sum of the line densities of “north” of the North Sea is calculated, for example, as an average value of
0 and variance value 36 (standard deviation 6). The sum of the linear densities of the “sea” in the North Sea is, for example, an average value 50 and a variance value 16 (standard deviation 4).
【0055】平均値および分散値から「北」の線密度和
は、24〜36、「海」の線密度和は46〜54までの
値をとることにする。From the average value and the variance value, the sum of the line densities for "north" takes values from 24 to 36, and the sum of line densities for "sea" takes values from 46 to 54.
【0056】次に単語を構成する文字間の線密度和の特
性値比率を求める。(S32 ステッフ゜) そこで、特性値比率として、36:46(=3.07:3.92 メ
ッシュ数7)〜24:54(=2.15:4.85メッシュ数7)
までの範囲から整数値を複数とおり選ぶ。Next, the characteristic value ratio of the sum of the line densities between the characters constituting the word is obtained. (S32 step) Then, as the characteristic value ratio, 36:46 (= 3.07: 3.92 mesh number 7) to 24:54 (= 2.15: 4.85 mesh number 7)
Select multiple integer values from the range up to.
【0057】例えば、3:4、2:5。(S33 ステッフ゜) 次に文字小容量辞書使用モードかの判定をする。(S34
ステッフ゜) 文字小容量辞書使用時には、算出した特性値比率に対応
する文字の特徴量をまず文字辞書7より取得する。(S3
5 ステッフ゜) 次に取得した特徴量を単語上の所定の領域位置までシフ
ト計算を行い、所定の位置からの特徴量とする。この文
字小容量辞書使用時の方法は、全ての位置について、m
/7特徴を持つのではなく、ある位置のm/7特徴を横
方向にずらすことで異なる位置のm/7特徴を代用す
る。For example, 3: 4, 2: 5. (S33 step) Next, it is determined whether the mode is the small-capacity dictionary use mode. (S34
Step ゜) When the small-capacity character dictionary is used, the characteristic amount of the character corresponding to the calculated characteristic value ratio is first obtained from the character dictionary 7. (S3
5) Next, the acquired feature amount is shifted to a predetermined area position on the word, and is calculated as a feature amount from the predetermined position. The method when using the small-capacity character dictionary is as follows.
Instead of having the / 7 feature, the m / 7 feature at a certain position is shifted laterally to substitute the m / 7 feature at a different position.
【0058】図7(b)に特徴量移動の例を示す。文字辞
書7には、1/7位置からの特徴を持つとする。FIG. 7B shows an example of the feature amount movement. It is assumed that the character dictionary 7 has features from the 1/7 position.
【0059】「北海」の特性値比率3:4の場合には、
「北」は、1/7位置から3メッシュ幅、「海」は、4
/7位置から4メッシュ幅となる。In the case of the characteristic value ratio of “North Sea” 3: 4,
"North" is 3 mesh width from 1/7 position, "Sea" is 4
/ 4 position from the / 7 position.
【0060】従って、「北」 については、1/7の位置
からの3/7特徴を文字辞書7より取得する。「海」に
ついては、1/7の位置からの4/7特徴を文字辞書7
より取得する。そして、「海」の1/7の位置から4メ
ッシュ数の幅の特徴量を4/7の位置からの4メッシュ
幅の特徴量に、計算により変換する。他の特性値比率
2:5の場合も同様に取得する。( S36 ステッフ゜)そし
て、取得した特徴量をもとに単語としての特徴量を特性
値比率ごとに合成する。(S39 ステッフ゜) 文字小容量辞書使用モードでないときは、算出した比率
に対応する文字の特徴を領域位置に基づいて文字辞書7
より取得する。(S37 ステッフ゜) 北海の特性値比率3:4の場合には、「北」 について
は、1/7の位置からの3/7特徴を文字辞書7より取
得する。「海」については4/7の位置からの4/7特
徴を文字辞書7より取得する。他の特性値比率2:5の
場合も同様に取得する。Therefore, for “north”, the 3/7 feature from the 1/7 position is obtained from the character dictionary 7. For the “sea”, the 4/7 feature from the 1/7 position is stored in the character dictionary 7
Get more. Then, a feature amount having a width of 4 meshes from the 1/7 position of the “sea” is converted into a feature amount having a 4 mesh width from the 4/7 position by calculation. The other characteristic value ratios of 2: 5 are obtained in the same manner. (S36 step) Then, based on the acquired feature amounts, the feature amounts as words are synthesized for each characteristic value ratio. (S39 step) When the mode is not the character small-capacity dictionary use mode, the characteristic of the character corresponding to the calculated ratio is determined based on the region position.
Get more. (Step S37) In the case of the characteristic value ratio of the North Sea of 3: 4, for the “north”, the 3/7 feature from the 1/7 position is acquired from the character dictionary 7. For the “sea”, the 4/7 feature from the 4/7 position is obtained from the character dictionary 7. The other characteristic value ratios of 2: 5 are obtained in the same manner.
【0061】取得した特徴量をもとに単語としての特徴
量を特性値比率ごとに合成する。(S39 ステッフ゜) 図7(c) に特徴量の変形例を示す。Based on the acquired feature amounts, feature amounts as words are synthesized for each characteristic value ratio. (S39 step) FIG. 7C shows a modification of the feature amount.
【0062】各文字のm/7特徴を足し合わせる際に、
それぞれの特徴量を上又は、下方向に変形させて足し合
わせることで、さまざまな単語を構成する文字の変動に
対応する。When adding the m / 7 characteristics of each character,
By changing each feature amount upward or downward and adding them together, it is possible to cope with fluctuations of characters constituting various words.
【0063】S36 ステッフ゜、S37 ステッフ゜で取得した各文字の
特徴量について、次の特徴量の変形を行う。The following feature values are transformed with respect to the feature values of the respective characters obtained in steps S36 and S37.
【0064】例えば2文字単語が右下がりに書かれてい
るときを考慮して、1文字めの特徴を上方向に1メッシ
ュ分移動し、2文字目の特徴量をそのままにして、右下
がり単語に対処する。このとき、1文字目の下から数え
て7メッシュ目は1メッシュ分の移動により捨てられ
る。また、2文字単語が右上がりに書かれているときを
考慮して、 1文字めの特徴をそのままにして、2文字
目の特徴を上方向に1メッシュ分移動して右上がり単語
に対処する。(S38 ステッフ゜) その再計算しなおした1文字目の特徴量と2文字目の特
徴量とが特性値比率ごとに合成される。(S39 ステッフ゜) 特徴合成が完了すると、入力画像の特徴量と照合され
る。(図3のS13ステッフ゜)この単語特徴量と入力画像の特
徴量と照合してその差を記憶する。For example, in consideration of the case where a two-letter word is written to the lower right, the feature of the first character is moved upward by one mesh, and the feature amount of the second character is left as it is. To deal with. At this time, the seventh mesh counted from the bottom of the first character is discarded by moving one mesh. Also, considering the case where the two-letter word is written to the upper right, the features of the first character are left as they are and the features of the second character are moved upward by one mesh to deal with the upward-sloping word. . (S38 step) The recalculated feature amount of the first character and the feature amount of the second character are combined for each characteristic value ratio. (S39 step) When the feature synthesis is completed, the feature is compared with the feature amount of the input image. (Step S13 in FIG. 3) This word feature is compared with the feature of the input image and the difference is stored.
【0065】これらの処理をすべての単語について実施
し、最終的に入力画像の特徴量と特徴合成部8からの特
徴量との差が最小値の特徴量のものを認識結果として出
力する。(図3のS14ステッフ゜ ) 市区群、町村についも同様な処理を行うことで住所例の
単語認識を終了する。These processes are performed on all the words, and finally, a feature having a minimum difference between the feature of the input image and the feature from the feature synthesizing section 8 is output as a recognition result. (S14 step in FIG. 3) Word recognition of the address example is completed by performing the same processing for the municipalities and towns and villages.
【0066】[0066]
【発明の効果】本発明によれば、1単語に対して、複数
の単語特徴量を合成するので、単語の高さ、幅、傾きな
どが変動しても高精度に認識が可能となる。また、文字
の各m/n特徴量を1つ持ち、他の領域位置は計算で求
めることにより辞書容量の削減が可能となる。According to the present invention, since a plurality of word feature amounts are synthesized for one word, recognition can be performed with high accuracy even if the height, width, inclination, and the like of the word fluctuate. In addition, it is possible to reduce the dictionary capacity by having one m / n feature amount of each character and calculating other region positions by calculation.
【図1】 実施例の単語認識装置の構成図FIG. 1 is a configuration diagram of a word recognition device according to an embodiment.
【図2】 実施例の単語認識装置の動作の説明図FIG. 2 is an explanatory diagram of an operation of the word recognition device of the embodiment.
【図3】 認識処理部の説明図FIG. 3 is an explanatory diagram of a recognition processing unit.
【図4】 単語特徴量抽出処理の流れ図FIG. 4 is a flowchart of a word feature amount extraction process.
【図5】 単語イメージの合成処理の説明図FIG. 5 is an explanatory diagram of a word image combining process.
【図6】 単語特徴量の合成処理の流れ図FIG. 6 is a flowchart of a word feature amount synthesizing process;
【図7】 単語特徴量の合成処理の説明図FIG. 7 is an explanatory diagram of a word feature amount synthesizing process;
【図8】 従来例の単語認識装置の構成図FIG. 8 is a configuration diagram of a conventional word recognition device.
【図9】 従来例の単語認識装置の動作の説明図FIG. 9 is an explanatory diagram of an operation of a conventional word recognition device.
1 単語認識装置 2 画像入力部 3 正規化部 4 特徴抽出部 5 特徴照合部 6 認識結果出力部 7 文字辞書 8 特徴合成部 9 単語辞書 11 認識処理部 81 単語特徴量抽出部 82 単語特徴量合成部 DESCRIPTION OF SYMBOLS 1 Word recognition apparatus 2 Image input part 3 Normalization part 4 Feature extraction part 5 Feature collation part 6 Recognition result output part 7 Character dictionary 8 Feature synthesis part 9 Word dictionary 11 Recognition processing part 81 Word feature quantity extraction part 82 Word feature quantity synthesis Department
Claims (4)
タを切出し、正規化して特徴量を抽出する入力単語特徴
量抽出手段と、 単語を保持する単語辞書と、 各文字の特性値の平均値、分散値と文字イメージを保持
する文字辞書と、 単語辞書より単語を取得し、取得した単語の各文字の特
性値の平均値、分散値から文字間の複数の特性値比率を
算定する特性値比率算定手段と、 文字間の複数の特性値比率に基いて、単語の各文字の文
字イメージから所定サイズの複数の単語イメージを合成
する単語イメージ合成手段と、 合成した複数の単語イメージから1単語に対して複数の
単語特徴量を抽出する辞書単語特徴量抽出手段と、 入力単語特徴量と辞書単語特徴量とを照合し、特徴量の
最も近い単語を選択し出力する単語照合出力手段とを備
えたことを特徴とする単語認識装置。1. An input word feature extracting means for extracting image data from a predetermined word area of an input image and normalizing to extract a feature, a word dictionary storing words, and an average value of characteristic values of each character. , A character dictionary that holds variance values and character images, and a characteristic value that acquires words from the word dictionary and calculates multiple characteristic value ratios between characters from the average value of the characteristic values of each character of the acquired words and the variance value Ratio calculating means, word image synthesizing means for synthesizing a plurality of word images of a predetermined size from a character image of each character of a word based on a plurality of characteristic value ratios between characters, and one word from the synthesized plurality of word images Dictionary word feature amount extraction means for extracting a plurality of word feature amounts, and word matching output means for comparing the input word feature amount with the dictionary word feature amount and selecting and outputting a word having the closest feature amount. Equipped A word recognition device characterized by the following.
タを切出し、正規化して特徴量を抽出する入力単語特徴
量抽出手段と、 単語を保持する単語辞書と、 所定の単語イメージサイズを横又は縦方向にn(整数)
個の領域に分割し、分割した各領域を開始位置として単
語イメージサイズのm/n(m<n、n、mは整数)サ
イズに文字イメージを正規化して抽出した複数のm/n
特徴量と各文字の特性値の平均値、分散値とを保持する
文字辞書と、 単語辞書より単語を取得し、取得した単語の各文字の特
性値の平均値、分散値から文字間の複数の特性値比率を
算定する特性値比率算定手段と、 文字間の複数の特性値比率に基いて、文字辞書から単語
の各文字の複数のm/n特徴量を取得し、取得した各文
字の複数のm/n特徴量から1単語に対して複数の単語
特徴量を合成する辞書単語特徴量合成手段と、 入力単語特徴量と辞書単語特徴量とを照合し、特徴量の
最も近い単語を選択し出力する単語照合出力手段とを備
えたことを特徴とする単語認識装置。2. An input word feature extracting means for extracting image data from a predetermined word area of an input image and normalizing and extracting a feature, a word dictionary for storing words, a horizontal or a predetermined word image size. N (integer) vertically
And a plurality of m / n extracted by normalizing the character image to m / n (m <n, n and m are integers) of a word image size with each of the divided regions as a start position.
A character dictionary that holds the feature values and the average and variance values of the characteristic values of each character; a word is obtained from the word dictionary; And a plurality of m / n feature amounts of each character of the word from the character dictionary based on the plurality of characteristic value ratios between the characters. A dictionary word feature amount synthesizing means for synthesizing a plurality of word feature amounts for one word from a plurality of m / n feature amounts, collating the input word feature amount with the dictionary word feature amount, and determining a word having the closest feature amount; A word recognizing device comprising: a word collating and outputting means for selecting and outputting.
する文字間の複数の特性値比率に基づいて文字辞書から
取得した各文字のm/n特徴量を所定方向に所定量移動
して単語の特徴量を再生成しなおす特徴量変形手段を有
し、 特徴量変形手段により再生成した各文字のm/n特徴量
を基に単語の特徴量を合成することを特徴とする請求項
2記載の単語認識装置。3. The dictionary word feature amount synthesizing unit moves a m / n feature amount of each character obtained from a character dictionary by a predetermined amount in a predetermined direction based on a plurality of characteristic value ratios between characters constituting a word. 9. A method according to claim 8, further comprising: a feature amount transforming means for regenerating the feature amount of the word, wherein the feature amount of the word is synthesized based on the m / n feature amount of each character regenerated by the feature amount transforming means. 2. The word recognition device according to item 2.
向にn(整数)個の領域に分割し、分割した領域の中の
特定の領域を開始位置として単語イメージサイズのm/
n(m<n、n、mは整数)サイズに文字イメージを正
規化して抽出した複数のm/n特徴量と、各文字の特性
値の平均値、分散値とを保持する文字辞書と、 単語を構成する文字間の複数の特性値比率に基いて単語
の各文字の複数のm/n特徴量を文字辞書より取得し、
取得した各文字の複数のm/n特徴量を特性値比率に基
づいた単語イメージ上の領域の特徴量に変換し、変換し
た各文字のm/n特徴量を基に単語の特徴量を合成する
辞書単語特徴量合成手段とを備えたことを特徴とする請
求項2記載の単語認識装置。4. A predetermined word image size is divided into n (integer) areas in the horizontal or vertical direction, and a specific area in the divided areas is used as a start position to obtain a word image size m / m.
a character dictionary holding a plurality of m / n feature amounts extracted by normalizing a character image to n (m <n, n and m are integers) size, and an average value and a variance value of a characteristic value of each character; Acquiring a plurality of m / n feature amounts of each character of the word from the character dictionary based on a plurality of characteristic value ratios between characters constituting the word;
A plurality of m / n feature values of each of the acquired characters are converted into feature values of a region on the word image based on the characteristic value ratio, and the feature values of the words are synthesized based on the converted m / n feature values of each character. 3. The word recognition device according to claim 2, further comprising: a dictionary word feature amount synthesizing unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33028899A JP3879341B2 (en) | 1999-11-19 | 1999-11-19 | Word recognition device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33028899A JP3879341B2 (en) | 1999-11-19 | 1999-11-19 | Word recognition device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001147989A true JP2001147989A (en) | 2001-05-29 |
JP3879341B2 JP3879341B2 (en) | 2007-02-14 |
Family
ID=18230985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33028899A Expired - Fee Related JP3879341B2 (en) | 1999-11-19 | 1999-11-19 | Word recognition device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3879341B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7024042B2 (en) | 2000-10-04 | 2006-04-04 | Fujitsu Limited | Word recognition device, word recognition method, and storage medium |
-
1999
- 1999-11-19 JP JP33028899A patent/JP3879341B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7024042B2 (en) | 2000-10-04 | 2006-04-04 | Fujitsu Limited | Word recognition device, word recognition method, and storage medium |
Also Published As
Publication number | Publication date |
---|---|
JP3879341B2 (en) | 2007-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6970601B1 (en) | Form search apparatus and method | |
CN111340023B (en) | Text recognition method and device, electronic equipment and storage medium | |
JPH05242292A (en) | Separating method | |
US7796817B2 (en) | Character recognition method, character recognition device, and computer product | |
US5937093A (en) | Pattern recognition methods and apparatus to reduce processing time by groupnise comparison of features and coordinated dynamic elimination of candidates | |
JP4237864B2 (en) | Word recognition device | |
JPH09138802A (en) | Character recognition translation system | |
JP2001147989A (en) | Word recognizing device | |
JPH0430070B2 (en) | ||
JPS6336037B2 (en) | ||
JP3187899B2 (en) | Character recognition device | |
JP2861860B2 (en) | Address line extraction device | |
JP4221960B2 (en) | Form identification device and identification method thereof | |
JP3122476B2 (en) | Automatic document copy machine | |
CN113537225B (en) | Method for character recognition, electronic device, and storage medium | |
JP2001147990A (en) | Device and method for processing image data and storage medium to be utilized therefor | |
JP4201013B2 (en) | Word recognition device | |
JP2976990B2 (en) | Character recognition device | |
JP3897999B2 (en) | Handwritten character recognition method | |
JP3867237B2 (en) | Character recognition method and apparatus, and recording medium on which character recognition program is recorded | |
JPH03126188A (en) | Character recognizing device | |
JPH03142691A (en) | Table format document recognizing system | |
JP4209511B2 (en) | Character recognition method, character recognition device, and computer-readable recording medium recording a program for causing a computer to execute the character recognition method | |
JP3687999B2 (en) | Character recognition device | |
JP3245241B2 (en) | Character recognition apparatus and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061012 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061017 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061030 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101117 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101117 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111117 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111117 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121117 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121117 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131117 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |