JP2001147204A - Sludge densitometer - Google Patents
Sludge densitometerInfo
- Publication number
- JP2001147204A JP2001147204A JP33225599A JP33225599A JP2001147204A JP 2001147204 A JP2001147204 A JP 2001147204A JP 33225599 A JP33225599 A JP 33225599A JP 33225599 A JP33225599 A JP 33225599A JP 2001147204 A JP2001147204 A JP 2001147204A
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- microwave
- concentration
- groove
- measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、下水処理プラン
ト、排水処理プラント、上水処理プラントやそれらの汚
泥処理プラントの処理行程における汚泥中の固形物濃度
や浮遊物濃度を測定するプロセス用汚泥濃度計におい
て、マイクロ波を利用して測定した測定データから汚水
の導電率の影響を除去した汚泥濃度計に関する。[0001] The present invention relates to a sludge concentration for a process for measuring the concentration of solids and suspended solids in sludge in a treatment process of a sewage treatment plant, a wastewater treatment plant, a water treatment plant, and those sludge treatment plants. The present invention relates to a sludge concentration meter in which the influence of the conductivity of sewage is removed from measurement data measured using microwaves.
【0002】[0002]
【従来の技術】下水処理プラント、排水処理プラントや
汚泥処理プラント等において、各工程から発生する、又
は一つの行程から他の行程へ輸送する汚泥の固形物量を
常時監視し把握することは、プラントの運転管理上非常
に重要である。汚泥の固形物量は、汚泥流量と汚泥濃度
の二つの値から演算によって算出できる。汚泥流量の計
測は、電磁流量計や超音波ドプラー式流量計等が市販さ
れており、比較的信頼性の高い測定が実現されている。2. Description of the Related Art In a sewage treatment plant, a wastewater treatment plant, a sludge treatment plant, or the like, it is necessary to constantly monitor and grasp the amount of solid matter of sludge generated from each process or transported from one process to another process. Is very important in the operation management of The amount of sludge solids can be calculated from two values, sludge flow rate and sludge concentration. For measuring the sludge flow rate, an electromagnetic flow meter, an ultrasonic Doppler flow meter, and the like are commercially available, and relatively reliable measurement is realized.
【0003】一方、汚泥濃度の計測については、超音波
の減衰を原理としたもの、光の透過光量や反射光量を検
出原理としたもの等が市販されている。しかしながら、
これらの汚泥濃度計は、測定に対する妨害因子や保守作
業が煩雑であることなどから流量計と比較して信頼性な
どにおいて劣っているのが現状である。近年、マイクロ
波を利用し、従来の汚泥濃度計の短所を解決しようとし
たマイクロ波式汚泥濃度計が開発され、市販されてい
る。[0003] On the other hand, as for the measurement of the sludge concentration, those based on the principle of attenuation of ultrasonic waves and those based on the detection principle of the amount of transmitted light and the amount of reflected light are commercially available. However,
At present, these sludge densitometers are inferior in reliability and the like as compared with the flowmeter due to factors disturbing the measurement and complicated maintenance work. In recent years, microwave-type sludge densitometers have been developed using microwaves to solve the disadvantages of conventional sludge densitometers, and are commercially available.
【0004】[0004]
【発明が解決しようとする課題】上述したマイクロ波式
汚泥濃度計では、測定したデータが、固形物濃度、温
度、導電率の影響を同時に受けるので、導電率や温度の
影響を補正した後に、固形物濃度を算出して求めないと
濃度測定に誤差が生じる恐れがある。In the microwave type sludge densitometer described above, the measured data is simultaneously affected by the solid matter concentration, the temperature, and the electric conductivity. Unless the solid concentration is calculated and obtained, an error may occur in the concentration measurement.
【0005】まず、始めに、水の誘電率は約80と他の物
質と比較して非常に大きい。一方、汚水では、他の物質
が微粒子やコロイドとなって浮遊している。このため、
コロイド物質の誘電率は、約1〜3程度と水の誘電率が小
さい。したがって、水の誘電率は、浮遊している物質の
濃度に応じて減少することになる。First, the dielectric constant of water is about 80, which is very large as compared with other substances. On the other hand, in sewage, other substances are suspended as fine particles or colloids. For this reason,
The dielectric constant of the colloidal material is about 1-3, and the dielectric constant of water is small. Thus, the dielectric constant of water will decrease with the concentration of the suspended material.
【0006】次に、汚水の誘電率と濃度との間に成立す
る関数について述べる。一般に、汚水中の固形物濃度
は、通常0〜6%と小さいので、誘電率の変化も0〜6%程
度と小さい。したがって、関数の形がどうであれ、テー
ラー展開による近似が有効である。これを式で示すと次
式のようになる。Next, a function established between the dielectric constant and the concentration of sewage will be described. In general, the concentration of solids in sewage is usually as low as 0 to 6%, and the change in dielectric constant is also as small as about 0 to 6%. Therefore, whatever the shape of the function, approximation by Taylor expansion is effective. This is expressed by the following equation.
【0007】 f(1-x)=f(1)-x×f(1)+0.5×x2×f(1)+(3次以上) …(1) 上記(1)式で関数fは水の誘電率を示す。xは固形物
濃度を意味する。上記(1)式でf(1)は、100%の水
(つまり、真水)の誘電率を示す。具体的には、xが0.
06とすると、xの2乗は0.00036となり、2乗の項は、
ほとんど無視しても構わなくなる。F (1−x) = f (1) −x × f (1) + 0.5 × x 2 × f (1) + (3rd or higher) (1) In the above equation (1), the function f is Shows the dielectric constant of water. x means solids concentration. In the above equation (1), f (1) indicates the dielectric constant of 100% water (ie, fresh water). Specifically, x is 0.
Assuming 06, the square of x is 0.00036, and the squared term is
You can almost ignore it.
【0008】同時に、測定データが誘電率のべき乗を反
映している場合にも、同じ問題がある。ここで、xを固
形物濃度、nを定数のべき乗数とすると、次に示す
(2)式のnが小さいときにテーラー展開で近似でき
る。この場合、nが定数であれば、固形物濃度xを求め
ることができる。At the same time, the same problem occurs when the measured data reflects a power of the dielectric constant. Here, assuming that x is the solid concentration and n is a power of a constant, when n in Expression (2) below is small, it can be approximated by Taylor expansion. In this case, if n is a constant, the solid concentration x can be determined.
【0009】 f((1-x)n=f(1-nx)=f(1)-nx×f(1) …(2) 次に、水の誘電率は、固形物濃度だけでなく、水の導電
率や水の温度にも依存している。これらについても、上
記(1)式や(2)式と同様な問題がある。例えば、標
準温度T0、標準の温度との差をΔT、導電率をσとし、
誘電率に対応する測定データをf(1-x,T0+ΔT,σ)で表
すと、真水の参照データは、濃度0%で、導電率0mS/cm
なので、測定データにx=0,ΔT=0、σ=0を代入する
と、測定データはf(1,T0,0)となる。すると、テーラー
展開で次の(3)式が成立する。なお、(3)式でA,
B,Cは定数である。F ((1-x) n = f (1-nx) = f (1) −nx × f (1) (2) Next, the dielectric constant of water is determined not only by the solid matter concentration, It also depends on the conductivity of water and the temperature of water, which also has the same problems as in the above equations (1) and (2), for example, the difference between the standard temperature T0 and the standard temperature is ΔT , The conductivity is σ,
When the measured data corresponding to the dielectric constant is represented by f (1-x, T0 + ΔT, σ), the reference data of fresh water is 0% concentration and 0 mS / cm in conductivity.
Therefore, when x = 0, ΔT = 0, and σ = 0 are substituted for the measurement data, the measurement data becomes f (1, T0, 0). Then, the following expression (3) is established by Taylor expansion. Note that A,
B and C are constants.
【0010】 f(1-x,T0+ΔT,σ)=f(1,T0+ΔT,σ)-A×x+B×ΔT+C×σ …(3) 実際には、導電率、濃度、温度は互いに独立ではなく、
相乗効果が働いているのが問題となる。特に、汚水の導
電率の変化は、濃度測定精度に大きく影響する問題があ
る。F (1-x, T0 + ΔT, σ) = f (1, T0 + ΔT, σ) −A × x + B × ΔT + C × σ (3) Actually, conductivity, concentration, and temperature Are not independent of each other,
The problem is that the synergistic effect is working. In particular, there is a problem that the change in the conductivity of the sewage greatly affects the concentration measurement accuracy.
【0011】この発明は上記の事情に鑑みてなされたも
ので、測定データから汚泥濃度を求める際に汚水の導電
率を除去して濃度測定精度の向上を図るようにした汚泥
濃度計を提供することを課題とする。The present invention has been made in view of the above circumstances, and provides a sludge concentration meter which removes the conductivity of wastewater when obtaining sludge concentration from measurement data to improve the concentration measurement accuracy. That is the task.
【0012】[0012]
【課題を解決するための手段】この発明は、上記の課題
を達成するために、第1発明は、汚泥輸送管に反射強度
検出型マイクロ波検出プローブ本体を設け、このプロー
ブ本体からマイクロ波を汚泥輸送管内に向けて発信し、
汚泥輸送管内の被測定試料である汚泥混合液の境界面で
反射したマイクロ波を同じプローブ本体で受信し、発信
強度に対する受信強度の比を検出して汚泥混合液中の固
形物濃度を測定する汚泥濃度計において、 前記プロー
ブ本体は、一端が閉塞され、他端が開口された導波管か
ら構成され、その導波管の他端の開口部にマイクロ波が
透過可能な部材を有する第1導体部を設けるとともに、
その部材を前記汚泥輸送管内に向けて配設し、かつその
部材を内部に収納するとともに、一端が前記第1導体部
に固着され、他端に被測定試料を導く溝が形成された第
2導体部を設け、前記溝の幅と深さは、被測定試料の汚
泥濃度を算出する際に、ある帯域の選択された周波数に
おける反射強度の加算値を積分値とした測定データを用
い、その測定データが被測定試料の誘電率もしくは誘電
率のべき乗を反映している時に、被測定試料の汚水の導
電率が変化しても前記積分値が変化しない温度に応じて
変更することを特徴とするものである。According to the present invention, in order to achieve the above-mentioned object, a first invention is to provide a sludge transport pipe with a reflection intensity detection type microwave detection probe main body, and to transmit microwaves from the probe main body. Dispatch to the sludge transport pipe,
The same probe body receives the microwave reflected on the boundary surface of the sludge mixture liquid to be measured in the sludge transport pipe, detects the ratio of the reception intensity to the transmission intensity, and measures the solids concentration in the sludge mixture. In the sludge densitometer, the probe main body is formed of a waveguide having one end closed and the other end opened, and a first member having a microwave-permeable member at an opening at the other end of the waveguide. In addition to providing a conductor,
The member is disposed facing the inside of the sludge transport pipe, and the member is housed therein. One end is fixed to the first conductor portion, and the other end is formed with a groove for guiding a sample to be measured. Providing a conductor portion, the width and depth of the groove, when calculating the sludge concentration of the sample to be measured, using the measurement data with the integrated value of the reflection intensity at a selected frequency in a certain band, the When the measurement data reflects the dielectric constant of the sample to be measured or a power of the dielectric constant, it changes according to the temperature at which the integrated value does not change even if the conductivity of the sewage of the sample to be measured changes. Is what you do.
【0013】第2発明は、前記溝の幅が下記式により算
出されることを特徴とするものである。溝の幅=マイク
ロ波の波長/2/使用する温度(水温)での水の誘電率
の平方根第3発明は、前記溝の深さが下記式により算出
されることを特徴とするものである。A second invention is characterized in that the width of the groove is calculated by the following equation. Groove width = wavelength of microwave / 2 / square root of dielectric constant of water at used temperature (water temperature) A third invention is characterized in that the depth of the groove is calculated by the following equation. .
【0014】溝の深さ=溝の幅/4Groove depth = groove width / 4
【0015】[0015]
【発明の実施の形態】以下この発明の実施の形態を図面
に基づいて説明するに当たり、マイクロ波式汚泥濃度計
の概略構成説明と汚泥濃度計の検出プローブの詳細を述
べる。図1はマイクロ波式汚泥濃度計の概略構成説明
図、図2はマイクロ波式汚泥濃度計の検出プローブ部位
の要部拡大断面図である。DESCRIPTION OF THE PREFERRED EMBODIMENTS In the following, embodiments of the present invention will be described with reference to the drawings, in which a schematic configuration of a microwave type sludge concentration meter and details of a detection probe of the sludge concentration meter will be described. FIG. 1 is a schematic configuration explanatory view of a microwave type sludge concentration meter, and FIG. 2 is an enlarged sectional view of a main part of a detection probe portion of the microwave type sludge concentration meter.
【0016】まず、図1のマイクロ波式汚泥濃度計(以
後この汚泥濃度計を絞り方式マイクロ波反射検出型濃度
計と称す)の概略構成について述べる。図1において、
1は汚泥輸送管で、この汚泥輸送管1の所定部位に窓を
形成し、その窓にマイクロ波反射強度検出プローブ2を
設ける。First, a schematic configuration of the microwave type sludge densitometer of FIG. 1 (hereinafter, this sludge densitometer is referred to as a diaphragm type microwave reflection detection type densitometer) will be described. In FIG.
Reference numeral 1 denotes a sludge transport pipe, a window is formed at a predetermined portion of the sludge transport pipe 1, and a microwave reflection intensity detection probe 2 is provided on the window.
【0017】前記プローブ2からは、マイクロ波が汚泥
輸送管1内に発信され、プローブと汚泥混合液(固形物
を含んだ汚泥総体)の境界面で反射したマイクロ波を同
じプローブで受信して、発信強度に対する受信強度の比
を検出する。A microwave is transmitted from the probe 2 into the sludge transport pipe 1, and the same probe receives the microwave reflected on the interface between the probe and the sludge mixture (total sludge including solid matter). , The ratio of the reception intensity to the transmission intensity is detected.
【0018】3はマイクロ波発/受信器で、このマイク
ロ波発/受信器3で発信、受信強度の比を検出して、そ
の検出信号を汚泥濃度変換器4に入力し、ここで汚泥中
の固形物濃度を測定する。なお、プローブ2には、同軸
ケーブルや導波管などのデバイスが用いられる。Reference numeral 3 denotes a microwave generator / receiver, which detects the ratio between the transmission and reception intensities of the microwave generator / receiver 3 and inputs the detection signal to a sludge concentration converter 4, where the sludge concentration is detected. The solids concentration of is measured. Note that a device such as a coaxial cable or a waveguide is used for the probe 2.
【0019】次に、図1で述べたプローブ2の詳細を図
2により述べる。図2において、11は同軸−導波管変
換器からなるプローブ本体で、このプローブ本体11の
一方の端部は閉塞され、他方の端部は開放されている。
開放されているプローブ本体11の端部には、中央部に
貫通孔を有する円盤状の第1導体部12が取り付けられ
る。Next, the details of the probe 2 described in FIG. 1 will be described with reference to FIG. In FIG. 2, reference numeral 11 denotes a probe main body composed of a coaxial-waveguide converter. One end of the probe main body 11 is closed, and the other end is open.
A disc-shaped first conductor portion 12 having a through hole in the center is attached to an end of the probe body 11 which is open.
【0020】第1導体部12の貫通孔には、セラミック
部材からなる高周波窓部13が挿入固定され、この高周
波窓部13は、プローブ本体11の軸方向(図1に示す
汚泥輸送管内)に突出されている。また、高周波窓部1
3は、先端部に円盤状の部材14が設けられた筒状の第
2導体部15内に密着して設けられる。16は汚泥輸送
管に設けられたフランジで、このフランジ16に第1導
体部12が取り付けられる。A high-frequency window 13 made of a ceramic member is inserted and fixed in the through hole of the first conductor portion 12, and this high-frequency window 13 is provided in the axial direction of the probe body 11 (in the sludge transport pipe shown in FIG. 1). It is protruding. In addition, high-frequency window 1
3 is provided in close contact with a cylindrical second conductor portion 15 having a disk-shaped member 14 provided at the tip. Reference numeral 16 denotes a flange provided on the sludge transport pipe. The first conductor 12 is attached to the flange 16.
【0021】前記プローブ本体11内には、アンテナ1
7が設けられ、このアンテナ17は、図1に示すマイク
ロ波発/受信器3に同軸ケーブルを介して接続される。
18は同軸ケーブルのコネクタ、19はプローブ本体1
1の中空部である。An antenna 1 is provided in the probe body 11.
The antenna 17 is connected to the microwave transmitter / receiver 3 shown in FIG. 1 via a coaxial cable.
18 is a coaxial cable connector, 19 is the probe body 1
1 is a hollow portion.
【0022】上記のように構成された汚泥濃度計の動作
について述べる。図1に示すマイクロ波発/受信器3か
らの発信信号は、図示しない同軸ケーブルを介してアン
テナ17に供給される。アンテナ17から発信されたマ
イクロ波は、セラミック部材からなる高周波窓部13か
ら汚泥輸送管1内に放射されると、汚泥混合液の境界面
で反射されて、再び高周波窓部13を通してプローブ本
体11のアンテナ17で受信される。受信された信号
は、マイクロ波発/受信器3で受信された後、汚泥濃度
計変換器4で汚泥濃度に変換されて汚泥濃度計に表示さ
れる。The operation of the sludge densitometer configured as described above will be described. A transmission signal from the microwave transmitter / receiver 3 shown in FIG. 1 is supplied to an antenna 17 via a coaxial cable (not shown). When the microwave transmitted from the antenna 17 is radiated into the sludge transport pipe 1 from the high-frequency window 13 made of a ceramic member, the microwave is reflected on the boundary surface of the sludge mixed liquid, and again passes through the high-frequency window 13 to the probe body 11. Is received by the antenna 17. After the received signal is received by the microwave generator / receiver 3, it is converted into the sludge concentration by the sludge concentration meter converter 4, and displayed on the sludge concentration meter.
【0023】次に、この発明の実施の第1形態を図3、
図4により述べる。図3、図4において、高周波窓部1
3の先端部に設けられた部材14には、両図に示すよう
な汚水通し溝20が形成される。この汚水通し溝20に
は、高周波窓部13の一部が露出され、この露出部から
前述したマイクロ波が汚泥輸送管1内に放射されるとと
もに、汚泥混合液の境界面で反射されてきたマイクロ波
が、前記露出部から高周波窓部13を通してアンテナ1
7で受信される。その後、前述のようにマイクロ波発/
受信器3、汚泥濃度計変換器4を介して汚泥濃度に変換
されて、その汚泥濃度が図示しない汚泥濃度計に表示さ
れる。Next, a first embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIG. 3 and 4, the high-frequency window 1
The member 14 provided at the distal end portion 3 has a sewage passage groove 20 as shown in both figures. A part of the high-frequency window 13 is exposed in the sewage passage 20, and the microwaves are radiated from the exposed portion into the sludge transport pipe 1 and are reflected on the boundary surface of the sludge mixture. The microwave is transmitted from the exposed portion through the high-frequency window 13 to the antenna 1.
7 is received. Then, as described above,
The sludge concentration is converted into sludge concentration via the receiver 3 and the sludge concentration meter converter 4, and the sludge concentration is displayed on a sludge concentration meter (not shown).
【0024】なお、汚水通し溝20は、汚泥輸送管内を
流れる汚水が通過され易いように、汚水の流れる方向に
配置される。また、汚水通し溝20は、その溝の横幅
「前記高周波窓部13の露出幅」(以下絞りの横幅と称
す)と、溝の深さ(以下絞りの厚みと称す)が以下に述
べる第2形態、第3形態のように決定される。The sewage passage 20 is disposed in the direction in which the sewage flows so that the sewage flowing in the sludge transport pipe is easily passed. In addition, the sewage passage groove 20 has a groove width “exposed width of the high-frequency window portion 13” (hereinafter referred to as “width of the diaphragm”) and a groove depth (hereinafter referred to as “thickness of the diaphragm”) which will be described below. And the third mode.
【0025】上述した実施の第1形態には、上記のよう
に構成された絞り方式マイクロ波反射検出型濃度計を使
用して濃度測定を行い、ある帯域の選択された周波数に
おける反射強度を加算した値(以後、積分値と称す)を
測定データとして用いる。In the above-described first embodiment, the density is measured using the aperture-type microwave reflection detection type densitometer configured as described above, and the reflection intensity at a selected frequency in a certain band is added. The obtained value (hereinafter, referred to as an integral value) is used as measurement data.
【0026】図5は上記絞り式マイクロ波反射検出型濃
度計を用いたときの反射特性の様子を示す共鳴曲線の特
性図である。この特性図では、具体的には、f1を2.1GH
z,f2を2.2GHzとし、周波数を1MHzおきに101点とって
加算させると、共鳴曲線で変化の大きい部分の面積に比
例する値が得られる。ここで、前述した積分値とは、図
5に示す斜線部の面積を反映させた値である。FIG. 5 is a characteristic diagram of a resonance curve showing a state of reflection characteristics when the above-mentioned aperture-type microwave reflection detection type densitometer is used. In this characteristic diagram, in particular, 2.1GH the f 1
z, and f 2 and 2.2GHz, when the summed taking 101 points the frequency to 1MHz intervals, a value proportional to the area of the large part of the variation in the resonance curve is obtained. Here, the above-described integral value is a value reflecting the area of the hatched portion shown in FIG.
【0027】次に、絞り方式のマイクロ波反射検出型濃
度計を用いて測定したデータに積分値を使用し、前記
(3)式より精密な下記(4)式から(7)式を用いて
濃度を求める。Next, the integral value is used for the data measured using the aperture-type microwave reflection detection type densitometer, and the following formulas (4) to (7), which are more precise than the above formula (3), are used. Find the concentration.
【0028】 濃度=(実測した積分値−濃度0%で予測される積分値)/濃度係数 …(4 ) 濃度0%で予測される積分値=不動点温度積分値+温度係数×(実測した温 度 −不動点温度) …(5)Concentration = (measured integrated value−integrated value predicted at 0% concentration) / density coefficient (4) Integral value predicted at 0% concentration = fixed point temperature integral value + temperature coefficient × (actually measured value) (Temperature-fixed point temperature) ... (5)
【0029】[0029]
【数1】 (Equation 1)
【0030】 濃度係数=定数D×濃度0%で予測される積分値 …(7) ここで、(5)式に示す不動点温度という概念について
説明する。この不動点温度とは、濃度が0%のときに、
汚水の導電率が変化しても、積分値が変化しない温度の
事である。この温度は検出部の形状(上記汚水通し溝2
0)に依存し、絞りの横幅が8mmで厚み2mmのときには、
22℃に不動点温度があることを実験的に確認した。ま
た、不動点温度積分値とは、濃度0%のときの不動点温
度での積分値のことである。Concentration coefficient = constant D × integral value predicted at a concentration of 0% (7) Here, the concept of the fixed point temperature shown in Expression (5) will be described. This fixed point temperature, when the concentration is 0%,
The temperature at which the integrated value does not change even if the conductivity of the sewage changes. This temperature depends on the shape of the detecting part (the above-mentioned sewage passage groove 2).
0), when the width of the diaphragm is 8mm and the thickness is 2mm,
It was experimentally confirmed that there was a fixed point temperature at 22 ° C. The fixed point temperature integrated value is an integrated value at the fixed point temperature when the concentration is 0%.
【0031】上記の様子を図6のグラフを用いて述べ
る。図6において、不動点温度と、その±10℃程度の範
囲においては、導電率(mS/cm)が変化しても積分値に
大きな変動がないことが明らかである。従って、上記プ
ローブを用いるときは、22℃±10℃の温度範囲では、汚
水の導電率の値を無視しても、さして大きな誤差をもた
らすことなく濃度が測定できる。The above situation will be described with reference to the graph of FIG. In FIG. 6, it is clear that there is no significant change in the integral value even when the conductivity (mS / cm) changes between the fixed point temperature and the range of about ± 10 ° C. Therefore, when the above probe is used, the concentration can be measured in the temperature range of 22 ° C. ± 10 ° C. without causing a great error even if the conductivity value of the sewage is ignored.
【0032】上述した第1形態における絞りの横幅は8m
m,厚みは2mmで不動点温度は22℃であった。通常、汚水
のうち、消化汚泥と呼ばれる種類は、35〜55℃のお
湯の状態になっている。このため、不動点温度が20℃の
プローブよりも、不動点温度が45℃のプローブの方が、
測定には好ましい。従って、絞りの横幅と厚みを変更す
ることで不動点温度を上昇させるようにしたのが、次に
述べる第2、第3形態である。The width of the diaphragm in the first embodiment is 8 m.
m, the thickness was 2 mm, and the fixed point temperature was 22 ° C. Usually, of the sewage, a kind called digested sludge is in a state of hot water at 35 to 55 ° C. For this reason, a probe with a fixed point temperature of 45 ° C is more intense than a probe with a fixed point temperature of 20 ° C.
It is preferable for measurement. Therefore, the second and third embodiments described below increase the fixed point temperature by changing the width and thickness of the diaphragm.
【0033】この発明の実施の第2形態は絞りの横幅を
変更したもので、絞りの横幅の8mmは、20℃の水の誘電
率77.8を元に次の(8)式から求めたものである。In the second embodiment of the present invention, the width of the diaphragm is changed. The width of the diaphragm of 8 mm is obtained from the following equation (8) based on the dielectric constant of water at 20 ° C. of 77.8. is there.
【0034】 絞りの横幅=マイクロ波の波長/2/水の誘電率の平方根 …(8) 逆算すると、マイクロ波の周波数は2.13GHzで波長は141
mmである。このとき、図5のピーク周波数は2.15GHzで
あった。絞りの横幅の加工精度を考慮すると、上記
(8)式は高い精度を持っていることになる。ここで、
45℃の水の誘電率は70.7であるから、この値と波長141m
mを上記(8)式に代入して絞りの横幅を求めると、8.3
8mmとなった。そこで、横幅8.4mmで厚み2mmの絞りを用
いて実験を行った結果を図7に示す。The width of the diaphragm = wavelength of microwave / 2 / square root of permittivity of water (8) When calculated backward, the microwave frequency is 2.13 GHz and the wavelength is 141.
mm. At this time, the peak frequency in FIG. 5 was 2.15 GHz. Considering the processing accuracy of the width of the aperture, the above equation (8) has high accuracy. here,
The dielectric constant of water at 45 ° C is 70.7.
By substituting m into the above equation (8), the width of the aperture is calculated as 8.3
8 mm. FIG. 7 shows the results of an experiment conducted using a diaphragm having a width of 8.4 mm and a thickness of 2 mm.
【0035】図7から不動点温度は、絞りの横幅に応じ
て計算どおりに45℃となる。このため、45℃近辺の温度
の汚水を測定するにあたって、測定データから導電率の
影響を低減できるようになり、汚泥濃度を高精度に測定
できるようになる。From FIG. 7, the fixed point temperature is 45 ° C. as calculated according to the width of the diaphragm. Therefore, when measuring sewage at a temperature around 45 ° C., the influence of the conductivity can be reduced from the measurement data, and the sludge concentration can be measured with high accuracy.
【0036】この発明の実施の第3形態は、絞りの厚み
を変更したもので、絞りの厚みは、マイクロ波を適度に
通過させ、適度に押し戻すように次の(9)式を元に求
めたものである。In the third embodiment of the present invention, the thickness of the diaphragm is changed. The thickness of the diaphragm is determined based on the following equation (9) so as to allow microwaves to pass through moderately and to push back moderately. It is a thing.
【0037】絞りの厚み=絞り横幅/4 …(9) 一般に絞りの厚みが薄くなると、マイクロ波が通過しや
すくなる。そこで、絞りの厚みを次の(10)式から設
計した。Thickness of the diaphragm = width of the diaphragm / 4/4 (9) Generally, when the thickness of the diaphragm is small, microwaves can easily pass therethrough. Therefore, the thickness of the diaphragm was designed from the following equation (10).
【0038】 絞りの厚み=絞りの横幅/5.33 …(10) 上記(10)式から絞りの横幅が8mmのときは、絞りの
厚みは1.5mmとすると、マイクロ波が通過し易くなるの
で、横幅を広げるのと同じ効果が得られる。その実験結
果を図8に示す。この図8の結果から不動点温度は、絞
りの厚みを薄くすると上昇させることができ、導電率の
変化の影響が小さく高精度の汚泥濃度の測定が可能とな
る。Thickness of the diaphragm = width of the diaphragm / 5.33 (10) From the above equation (10), when the width of the diaphragm is 8 mm, if the thickness of the diaphragm is 1.5 mm, the microwave easily passes. Has the same effect as expanding the range. FIG. 8 shows the experimental results. From the results shown in FIG. 8, the fixed point temperature can be increased by reducing the thickness of the diaphragm, and the effect of the change in the conductivity is small and the sludge concentration can be measured with high accuracy.
【0039】[0039]
【発明の効果】以上述べたように、この発明によれば、
マイクロ波を用いた濃度測定において、ある帯域の選択
された周波数における反射強度を加算した値(積分値)
を測定データとし、この測定データが、被測定物である
汚水の誘電率もしくはその累乗またはそのべき根を反映
しているときに、汚水の導電率が変化しても前記積分値
が変化しない温度を絞りの横幅と厚みを変更するように
することにより、使用温度に適合した不動点温度が得ら
れるため、導電率の変化の影響が小さく、高精度に汚泥
濃度の測定が可能となる利点がある。As described above, according to the present invention,
Value obtained by adding the reflection intensity at a selected frequency in a certain band in density measurement using microwaves (integral value)
The measurement data, when the measurement data reflects the dielectric constant of the wastewater to be measured or its power or its roots, the temperature at which the integral does not change even if the conductivity of the wastewater changes By changing the width and thickness of the diaphragm, the fixed point temperature suitable for the operating temperature can be obtained, so the effect of the change in the conductivity is small, and the advantage that the sludge concentration can be measured with high accuracy is obtained. is there.
【図1】マイクロ波式汚泥濃度計の概略構成説明図。FIG. 1 is a schematic structural explanatory view of a microwave type sludge concentration meter.
【図2】マイクロ波式汚泥濃度計の検出プローブ部位の
要部拡大断面図。FIG. 2 is an enlarged sectional view of a main part of a detection probe part of a microwave type sludge concentration meter.
【図3】この発明の実施の第1形態から第3形態を示す
検出プローブ部位先端部の正面図。FIG. 3 is a front view of a tip portion of a detection probe portion showing the first to third embodiments of the present invention.
【図4】検出プローブ部位先端部の平面図。FIG. 4 is a plan view of a tip portion of a detection probe site.
【図5】マイクロ波反射検出型濃度計を用いたときの反
射特性の様子を示す共鳴曲線の特性図。FIG. 5 is a characteristic diagram of a resonance curve showing a state of reflection characteristics when a microwave reflection detection type densitometer is used.
【図6】不動点温度の説明用グラフ。FIG. 6 is an explanatory graph of a fixed point temperature.
【図7】絞りの横幅を変化させたときの導電率変更温度
特性図。FIG. 7 is a diagram showing a temperature characteristic of a change in conductivity when the width of the diaphragm is changed.
【図8】絞りの厚みを変化させたときの導電率変更温度
特性図。FIG. 8 is a diagram showing a temperature characteristic of conductivity change when the thickness of the diaphragm is changed.
1…汚泥輸送管 2検出プローブ 3…マイクロ波発/受信器 4…汚泥濃度計変換器 11…ぷローブ本体 12…第1導体部 13…高周波窓部 14…部材 15…第2導体部 16…フランジ 17…アンテナ 18…コネクタ 19…中空部 20…汚水通し溝 DESCRIPTION OF SYMBOLS 1 ... Sludge transport pipe 2 Detection probe 3 ... Microwave generator / receiver 4 ... Sludge concentration meter converter 11 ... Lobe body 12 ... 1st conductor part 13 ... High frequency window part 14 ... Member 15 ... 2nd conductor part 16 ... Flange 17 Antenna 18 Connector 19 Hollow 20 Sewage channel
Claims (3)
検出プローブ本体を設け、このプローブ本体からマイク
ロ波を汚泥輸送管内に向けて発信し、汚泥輸送管内の被
測定試料である汚泥混合液の境界面で反射したマイクロ
波を同じプローブ本体で受信し、発信強度に対する受信
強度の比を検出して汚泥混合液中の固形物濃度を測定す
る汚泥濃度計において、 前記プローブ本体は、一端が
閉塞され、他端が開口された導波管から構成され、その
導波管の他端の開口部にマイクロ波が透過可能な部材を
有する第1導体部を設けるとともに、その部材を前記汚
泥輸送管内に向けて配設し、かつその部材を内部に収納
するとともに、一端が前記第1導体部に固着され、他端
に被測定試料を導く溝が形成された第2導体部を設け、 前記溝の幅と深さは、被測定試料の汚泥濃度を算出する
際に、ある帯域の選択された周波数における反射強度の
加算値を積分値とした測定データを用い、その測定デー
タが被測定試料の誘電率もしくは誘電率のべき乗を反映
している時に、被測定試料の汚水の導電率が変化しても
前記積分値が変化しない温度に応じて変更することを特
徴とする汚泥濃度計。1. A sludge transport pipe is provided with a reflection intensity detection type microwave detection probe main body, and a microwave is transmitted from the probe main body into the sludge transport pipe, and a sludge mixture liquid as a sample to be measured in the sludge transport pipe is provided. In the sludge densitometer for receiving the microwave reflected on the boundary surface with the same probe body and detecting the ratio of the reception intensity to the transmission intensity to measure the solid matter concentration in the sludge mixture, the probe body has one end closed. A first conductor having a microwave permeable member is provided in an opening at the other end of the waveguide, and the member is placed inside the sludge transport pipe. A second conductor portion having one end fixed to the first conductor portion and the other end formed with a groove for guiding a sample to be measured, the groove being provided toward the first conductor portion; The width and depth of When calculating the sludge concentration of the sample to be measured, use the measurement data with the integrated value of the reflection intensity at a selected frequency in a certain band as the integral value, and use the measurement data as the dielectric constant or the power of the dielectric constant of the sample to be measured. A sludge concentration meter that changes according to a temperature at which the integral value does not change even when the conductivity of the sewage of the sample to be measured changes when the measurement is reflected.
を特徴とする請求項1記載の汚泥濃度計。溝の幅=マイ
クロ波の波長/2/使用する温度(水温)での水の誘電
率の平方根2. The sludge concentration meter according to claim 1, wherein the width of the groove is calculated by the following equation. Groove width = wavelength of microwave / 2 / square root of dielectric constant of water at used temperature (water temperature)
とを特徴とする請求項1記載の汚泥濃度計。 溝の深さ=溝の幅/43. The sludge concentration meter according to claim 1, wherein the depth of the groove is calculated by the following equation. Groove depth = Groove width / 4
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33225599A JP3899751B2 (en) | 1999-11-24 | 1999-11-24 | Sludge concentration meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33225599A JP3899751B2 (en) | 1999-11-24 | 1999-11-24 | Sludge concentration meter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001147204A true JP2001147204A (en) | 2001-05-29 |
JP3899751B2 JP3899751B2 (en) | 2007-03-28 |
Family
ID=18252915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33225599A Expired - Fee Related JP3899751B2 (en) | 1999-11-24 | 1999-11-24 | Sludge concentration meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3899751B2 (en) |
-
1999
- 1999-11-24 JP JP33225599A patent/JP3899751B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3899751B2 (en) | 2007-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6470734B2 (en) | Method and arrangement for measuring fluid | |
US4902961A (en) | Microwave system for monitoring water content in a petroleum pipeline | |
JP3139874B2 (en) | Densitometer | |
CA1185658A (en) | Microwave meter for fluid mixtures | |
AU776712B2 (en) | A deltal microwave sensor having improved sensitivity | |
US4546311A (en) | Arrangement for measuring moisture content | |
EP0975006A3 (en) | Plasma density measuring method, probe used for measuring plasma density and plasma density measuring apparatus | |
EP0495819B1 (en) | Improvements to oil/water measurement | |
GB2262807A (en) | Microwave determination of gas and water content of oil | |
US5625293A (en) | Determination of the watercut of a multiphase flow directly from measured microwave frequency dielectric properties | |
US4888547A (en) | Meter using a microwave bridge detector for measuring fluid mixtures | |
Abd Rahman et al. | Planar microwave sensors for accurate measurement of material characterization: A review | |
US6316946B2 (en) | Microwave leakage field sensor for measuring moisture and/or density | |
US4122449A (en) | Device for measuring a vehicle speed by utilizing the doppler effect | |
CN109891252B (en) | Quantum power sensor | |
EP1144985B1 (en) | Apparatus and method for determining dielectric properties of an electrically conductive fluid | |
GB2359435A (en) | Microwave Doppler Flowmeter | |
US6249129B1 (en) | Device for transmission measurement with the aid of microwaves | |
JP2001147204A (en) | Sludge densitometer | |
Nguyen et al. | Combination of local heating and radiometry by microwaves | |
JP3932745B2 (en) | Sludge concentration calculation method | |
JP2002139456A (en) | Sludge concentration meter | |
JP3885407B2 (en) | Sludge concentration meter | |
CN114279478B (en) | Microwave sensor based on non-hermeticity notch structure | |
Galwas et al. | Dielectric measurements using a coaxial resonator opened to a waveguide below cut-off |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041117 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061205 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061218 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110112 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120112 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130112 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140112 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |